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Abstract: Prime number distribution has been a subject of extensive mathematical exploration, with profound
implications in number theory, cryptography, and computational mathematics. Traditional analytical
approaches often rely on deterministic algorithms and conjectures, such as the Prime Number Theorem and
Riemann Hypothesis. However, recent advancements in machine learning (ML) offer novel perspectives for
predicting prime number distributions using data-driven methodologies. This study explores advanced ML-
driven regression models to analyze and predict the occurrence of prime numbers within numerical sequences.
Various regression techniques are employed to approximate underlying patterns in prime distributions.
Comparative evaluations based on accuracy, generalization ability, and computational efficiency highlight the
most effective models for prime number prediction. The findings contribute to the growing intersection of
machine learning and mathematical research, demonstrating the potential of ML-based regression models in
number theory and complex sequence analysis.

Index Terms - Prime Numbers, Machine Learning, Regression Models, Prime Number Distribution,
Predictive Analytics, Number Theory, Data-Driven Approach, Computational Mathematics, Artificial
Intelligence.

1. Introduction:

A prime number is a natural number greater than one that has exactly two factors: 1 and itself. For example,
13 is a prime number because it cannot be expressed as the product of two smaller natural numbers. In contrast,
composite numbers have multiple factors and can be represented as the product of two or more primes—for
instance, 14 can be written as 2 x 7.This fundamental characteristic of numbers is encapsulated in the
Fundamental Theorem of Arithmetic, a cornerstone of number theory that dates back to ancient Greek
mathematics [9]. Prime numbers, the fundamental building blocks of arithmetic, have fascinated
mathematicians for centuries. Traditionally viewed as abstract entities within pure mathematics, they are
admired for their intrinsic complexity and elegance.Hardy and Wright [8]advanced the comprehension of prime
numbers by examining their essential properties and distribution within number theory. Apostol [14]offered
valuable perspectives on the significance of prime numbers in arithmetic and number theory, highlighting their
distinctive features and inherent unpredictability. Rivest, Shamir, and Adleman [7] revolutionized
cryptography by displaying the practical use of prime numbers in secure communication through the RSA
encryption algorithm. Granville[12]contributed notably to computational mathematics by investigating the
characteristics of prime numbers and their impact on algorithmic efficiency and number theory.
Plichta[13]broadened the scope of prime number research by exploring their potential applications in biological
modeling, proposing their influence on natural patterns and structural formations in biological systems.
Despite extensive research on prime numbers, accurately predicting their distribution remains a significant
challenge. Jacques Hadamard [3]advanced the theoretical understanding of prime number distribution by
proving the Prime Number Theorem, which describes their asymptotic behavior. Independently, Charles Jean
de la Vallée-Poussin[2]also established the same theorem, reinforcing the mathematical framework of prime
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number distribution. Harold M. Edwards[6]examined the implications of the Riemann Hypothesis, offering
valuable insights into the relationship between the Riemann zeta function and prime distribution while Conrey
[15]further reinforced its theoretical framework. However, these approaches often involve complex
computations and do not always provide precise predictions for prime occurrences within specific numerical
ranges.

Heideman et al.[25]explored the use of machine learning in analyzing prime number distributions, highlighting
how data-driven methods can uncover hidden patterns that conventional analytical techniques might miss. Kim
et al. [33] stressed the shift from traditional analytical methods to empirical, learning-based models,
highlighting the potential of machine learning in studying prime distributions. Jiang & Zhao [28]further
enhanced the application of machine learning for identifying underlying structures in prime number
distributions, demonstrating the advantages of data-driven approaches over purely analytical methods.

Earlier research has shown the efficiency of machine learning algorithms in identifying mathematical patterns
and predicting numerical sequences. Silver et al. [22] highlighted the efficiency of machine learning algorithms
in recognizing mathematical patterns and forecasting numerical sequences. Similarly, Goodfellow, Bengio,
and Courville [20] investigated the use of machine learning methods for detecting mathematical patterns and
predicting numerical sequences. Li et al.[29] demonstrated how machine learning regression models can
improve traditional number-theoretic approximations, emphasizing Al's contribution to solving mathematical
problems. Zhang and Wu [35] explored the intersection of artificial intelligence and number theory, evaluating
the effectiveness of ML-based regression techniques compared to classical methods. Patel et al. [36] furthered
Al-driven mathematical research by assessing the performance of machine learning regression models in
relation to conventional number-theoretic approaches.

This study explores ML-driven regression techniques to enhance the prediction of prime number distribution.
By leveraging advanced regression models, such as linear regression, polynomial regression, Random Forest,
Gradient Boosting and Decision Tree, we analyze their effectiveness in estimating prime occurrences within
specified intervals. The integration of machine learning in prime number research offers a novel perspective,
bridging theoretical mathematics with empirical data-driven methodologies. Our objective is to assess the
feasibility of ML models in predicting prime number behavior and compare their accuracy with traditional
number-theoretic approximations.

2. Related Work:

2.10verview of Existing Research: The distribution of prime numbers has been a longstanding subject of
interest in number theory, with traditional mathematical methods offering essential insights. Foundational
results such as the Prime Number Theorem (Hadamard & de la Vallée-Poussin,)[4] and the Riemann
Hypothesis (Riemann)[1] have played a crucial role in understanding the asymptotic properties of prime
numbers.

However, recent advancements in machine learning have led to the development of data-driven methods.
Wang et al.[26] highlighted that advancements in machine learning have facilitated data-driven methods,
providing fresh insights into the analysis of prime number distributions. Building on this progress, He et
al.[27]applied machine learning techniques to further investigate prime number distributions through a data-
driven approach.

Numerous research initiatives have explored the application of machine learning in recognizing numerical
patterns and predicting sequences. Various studies have utilized supervised learning techniques, particularly
regression models, to investigate complex mathematical structures (Devlin et al.)[23]. Krenn et al.[24]
demonstrated the effectiveness of machine learning in mathematical conjectures by analyzing integer
sequences with polynomial regression and support vector regression (SVR). Similarly, Chen and Zhang[30]
investigated the role of machine learning in mathematical conjectures by applying polynomial regression and
SVR to integer sequences. Furthermore, deep learning techniques, including neural networks and recurrent
architectures, have been employed for sequence modeling and number pattern recognition (Goodfellow,
Bengio, & Courville)[19].

In the prediction of prime numbers, prior research has primarily examined heuristic algorithms and
probabilistic models, including sieve-based methods (Atkin & Bernstein)[16] and Monte Carlo techniques
(Tao)[18].However, there has been limited exploration of advanced regression techniques for predicting the
distribution of prime numbers across different numerical ranges. Most existing studies emphasize the
classification of primes and non-primes rather than utilizing regression frameworks to forecast their
occurrence (Balog & Granville )[10].
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2.2. Research Gap: Despite the growing interest in applying machine learning to number theory, there is a
significant research gap in utilizing advanced regression models to predict prime number distributions across
large numerical ranges. Current methodologies either focus on prime classification (Granville)[11] or use
traditional mathematical formulations, lacking comprehensive comparative analyses of machine learning-
based regression models (Silverman)[21]. Furthermore, previous studies have not extensively evaluated the
effectiveness of models such as polynomial regression, SVR, random forest regression, XGBoost, and multi-
layer perceptrons (MLP) for prime number forecasting (Liu et al.,)[34].

3. Prime numbers:

Prime numbers are natural numbers greater than 1 that have only two positive divisors: 1 and themselves. In
simpler terms, only 1 and it can evenly divide a prime number, without leaving a remainder. Mathematically,

anumber p is prime if p > 1 and if %:d=1ord=p.

The series of prime numbers starting with 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, and so on, has captivated
the interest of mathematicians, both professional and amateur. The prime number theorem, which will be
discussed, provides a way to predict the distribution of prime numbers, at least in a general sense [5].

3.1Prime Number Theorem: The Prime Number Theorem characterizes the asymptotic behavior of prime
numbers, stating that the count of prime numbers up to a given number x follows a specific distribution.

denoted m(x), is asymptotically equivalent to ﬁ where [nx is the natural logarithm of x. Formally, the
theorem is stated as: (x) ~ ——.
It means lim 2 = 1.

X—00

Inx

3.2Prime-counting function: The prime-counting function, n(x), indicates the total count of prime numbers
that are less than or equal to a given value x. One of the well-known approximations of n(x) is given in terms

of the Logarithmic Integral Function, denoted as Li(x), which is defined as: Li(x) = ;1%
For sufficiently large x, the prime-counting function n(x) can be approximated using the logarithmic integral
function as: n(x)=~{Li}(x).

3.3The Riemann Hypothesis: The Riemann Hypothesis is a renowned unsolved problem in mathematics. It
proposes a conjecture regarding the distribution of the non-trivial zeros of the Riemann zeta function, a
complex-valued function defined for complex numbers.

The Riemann zeta function {(s) is given by:{(s) = Z;’{;l%, for R(s) > 1. It can also be extended to other

values of s through analytic continuation, except at s=1, where it has a simple pole.
4. Regression Models for Prime Number Prediction:

Various regression models, including linear, quadratic, cubic, and polynomial, are evaluated for pattern
recognition. Prior studies by Singh, D. P.[31,37] highlight their importance in numerical prediction, statistical
analysis, and decision-making by integrating statistical and machine learning techniques.

Machine learning models by Singh [38-41]have been applied to predict breast cancer, lung cancer,
hypertension, kidney disease, and diabetes.

This research explores regression-based machine learning techniques to analyze prime number distributions.
Using datasets spanning different six prime ranges, models like Linear, Quadratic, Cubic Regression, Gradient
Boosting, Random Forest, AdaBoost, Decision Tree, and KNN are evaluated to uncover patterns and
determine the most effective predictive approach:

4.1. Linear Regression Model: James et al. [32], stated that linear regression is based on an approximate
linear relationship between X and Y, which is=Bo+p1X.

4.2. Quadratic and Cubic Regression Model: The quadratic regression model represented as: Y=Bo+p1X+p2
X2

Similarly, the cubic regression model, which accounts for the effects of the independent variable and is
expressed as: Y=Po+B1X+B2X>+psX>
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4.3. Multiple Regression Model: Singh et al. and Singh [31,37] described multiple regression as a statistical
technique that extends simple linear regression by incorporating two or more independent variables. This
approach enhances the understanding of variations in the dependent variable by considering multiple
predictors, thereby providing a more comprehensive analysis of relationships within the data.
Mathematically, a multiple linear regression model is expressed as:

Y =PBo+ Pixy+ Paxo+ i+ Byxg T €
Where y= dependent variable, xi= independent variables p; =coefficients, € = random error.
4.4. Random Forest Regression: Random Forest Regression is an ensemble learning technique that generates
multiple decision trees during training and computes the average of their predictions to enhance accuracy and
minimize overfitting.
1. Construction of Individual Decision Trees
A decision tree in RFR partitions the feature space RY recursively using axis-aligned splits to minimize the
impurity in each subset.
Let D = {(x;,y;)}\_, be the training dataset, where xi€RY is the feature vector and yi€R is the target value.
The dataset is randomly sampled with replacement (Bootstrap Sampling) to create B subsets DP, each used to
train a separate regression tree.
At each split of a tree, a subset of features m (m<d) is randomly selected, and the optimal split is determined
by minimizing the variance of the target values:

L _[NL Ng

Split Criterion: arg nsnjn N Var(y,) + N Var(yR)]
where: s is the splitting threshold for feature j, y.,yr are the target values in left and right child nodes after the
split, NL,Nr are the number of samples in the left and right nodes.
Prediction from an Individual Tree
Each tree Ty provides a regression estimate for an input x by averaging the target values of samples in the
corresponding leaf node: y, = T}, (x)
Aggregated Prediction in Random Forest: The final Random Forest regression output is the average prediction
over all B decision trees: y = %Zf:l Tp(x)

Feature Importance:
The importance of a feature x; is determined by the reduction in variance across all splits involving X;,

CompUted as. Ij = Znodes using xj% (Varparent o Varchildren)

where N is the number of samples in the node before splitting.

4.5. Gradient Boosting Regression: The mathematical formulation of GBR can be described as follows:
Let D = {(x;, y;)}}L, be a dataset where: x; € R¢ is the feature vector.y € R is the target variable. N is the
total number of observations.

We start with an initial model, often chosen as the mean of the target values:

N
Fo(x) = argmin ) L(y;¢)
C

i=1
Where L(y;, 3,) is the loss function. Mean Squared Error L(y;,3,) = (y — $)?
Find an optimal multiplier ym that minimizes the loss:

N
Y = argmin > Ly Fos (60) + Yn )
=1

iz
Compute Step Size Learning Rate v and Update Model:
Fn (%) = Fp1 (%) + Vb, (x)
where v (learning rate) controls the contribution of each tree.
Final Prediction:
After M iterations, the final model is: E, (x) = Fo(x) + XM _, v¥mhum, ().
4.6.Adaptive Boosting Regression: The mathematical formulation of AdaBoost regression can be described
as follows:
Let the training dataset be: D = {((x;,y,)) Ii=1,2,..,n}
where: x; € R? is the feature vector of the ith sample. y € R is the target value. n is the number of training
samples.
Each training sample is assigned an initial weight: wi(l) = %,Vi =1,23..n

Train a weak regressor 4(x) (e.g., decision stump, weak decision tree) using the weighted dataset.
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S W™y —hpn(x)) |

n (m)
i=1 L

The model weight an is calculated as: a,,, = ln( ) where S is a hyperparameter, typically set as g =1

The weighted error of the weak regressor is computed as: €,,, =

in regression.

Update the sample weights to emphasize poorly predicted samples:
(m+1) _  (m)

w; =w; exp(mly; — hyp (x)1)
(m+1)
Normalize the weights: w(m“) nw‘—(mﬂ)
j= 1WL

Final Prediction:

The final prediction is a weighted sum of weak regressors: F(x) = ¥ _. ap,h,, (%)

where higher-weighted models contribute more to the final prediction.

4.7. Decision Tree Regression: Decision Tree Regression is a non-parametric supervised learning algorithm
that predicts the target variable by learning decision rules inferred from the data features. The model splits the
data into regions and assigns a constant value to each region.

Problem Formulation

Given a dataset: D = {(x1,y1), (x2,V2), (X3, V3) v e e (0, Y1) }
where x; € R® is the feature vector, and y € R is the corresponding continuous target variable.
The goal is to split the feature space recursively into M disjoint regions R1, R, ..., such that within each

region, the target variable is best approximated by a constant value.
At each split, we choose the feature j and split value s that minimize the sum of squared errors (SSE):

n}{qn [ineRl(j,s)(yi - le)z ] ineRz(j,s)(yi 4 yRZ)Z]

where: R;(j,s) = {xl-|xl-j < s} and R,(j,s) = {xl-|xl-j > s}.

Jr, YrK is the mean of the target values in region Rx:

This process is applied recursively until a stopping criterion is met.

Once the tree is built, prediction for a new input x is given by: §(x) = ¥5i_; 9z, 1(x € R;,)

where: 1(-) is the indicator function, which is 1 if x belongs to region Rm and 0 otherwise.

Jr,, Is the average target value in region Rm .

Complexity and Overfitting Control: To prevent overfitting, Decision Tree Regression uses pruning or

regularization strategies such as: Limiting tree depth d, Minimum number of samples in a leaf node nmin.
Cost complexity pruning (CCP) using an impurity penalty term:
M

Cmy =" > (= 9,) +alll

m=1x;€ERy,
where |T| is the number of terminal nodes (leaves) and « is the complexity parameter.
4.8.K-Nearest Neighbors (KNN) Regression: The Mathematical Formulation of KNN Regression is defined
as:
Let: D = {(X, Y1), (X5, Y5), (X3,Y3) e o ... (X,,, V) } be the training dataset, where X; € R¢ is the feature
vector, and Y; € R is the corresponding continuous target variable. X* be the new input data point where we
want to predict Y*.
N, (X*) be the set of k nearest neighbors of X*, determined using a distance metric (commonly Euclidean

distance): d(X;, X;) = \/Z (Ko = Xim)”
Simple (Unweighted) KNN Regression: The predicted value Y* is given by the arithmetic mean of the target
values of the k nearest neighbors: Y* = %ZieNk(X*) Y;

Weighted KNN Regression: Instead of taking a simple average, a weighted average can be used, where closer

neighbors contribute more. A common weighting function is the inverse distance weighting: ¥* =
Yieng (x) WiYi

ZiengxmWi

where the weight wi is defined as: w; = m , >0

5. Model Evaluation and Performance Metrics: Willmott C. and Matsuura K. [17]highlighted the benefits
of Mean Absolute Error (MAE) compared to Root Mean Square Error (RMSE) for assessing the overall
performance of models. To assess model accuracy, we use the following metrics:
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5.1Mean Squared Error: Mathematical Model of MSE is defined as:
1 ~
MSE = ~-¥iL,(vi = 9:)°
Where: n is Total number of observations. y; is the actual value. 9; is the predicted value. (y; — 9;)?is
Squared error for each observation
5.2Mean Absolute Error: The Mean Absolute Error (MAE) is a widely used metric for assessing the

performance of regression models. It quantifies the average size of the errors between predicted and actual
values, ignoring whether the errors are positive or negative. The mathematical model for MAE is given by:

1 ~
MAE = n iy — 9l

where: n is the total count of data points, y; denotes the actual value of the i-th data point, y; represents the
predicted value of the i-th data point, |y; — ¥;| signifies the absolute error for each observation.

5.3 R2 Score: The R2 Score (Coefficient of Determination) is mathematically defined as: R? = 1 — iiﬂ
tot

where: SS,., (Residual Sum of Squares) is given by: SS,.. = Y-, (y; — $1)?
SS;0: (Total Sum of Squares) is given by: SS;or = X7, (y; — 7)?

where: y; = Actual values of the dependent variable. y; = Predicted values from the regression model. y, =
Mean of the actual values. n = Number of data points.

5.4Adjusted R? Score: The Adjusted R? Score is a modified version that accounts for the number of predictors
in the model:

(1-R?*)(n-1)

— ) where p is the number of independent variables (predictors).

szlj =1 (
6. Regression Analysis Prime Number distribution By ML Techniques:
The research investigates prime number distribution using regression techniques and machine learning. Prime

numbers within six different ranges are analyzed, and Analyzing prime number distributions across specified
ranges using machine learning, with patterns visualized in graphs:
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Regression Models Comparison (1-999983)
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Machine learning-driven regression analysis is utilized to predict the distribution of prime numbers across
various ranges. The results indicate that most ML algorithms exhibit a similar pattern in prime number
distribution. However, a detailed analysis reveals that Gradient Boosting and Decision Tree models
outperform other regression techniques, achieving higher accuracy, lower error rates, and consistently strong
R2 values.

7. Results and Discussion:

The experimental findings demonstrate that Gradient Boosting and Decision Tree models exhibit exceptional
performance in predicting prime numbers across various ranges. Notably, both models achieve a Mean
Squared Error (MSE) of zero in multiple instances, highlighting their superior accuracy and ability to fit the
data without significant errors.
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The RZ and Adjusted R? values for Gradient Boosting and Decision Tree models consistently reach 1.0,
indicating a perfect fit to the data. This suggests that these models successfully capture the underlying patterns
of prime number distributions within the examined ranges. The high R2 values reinforce the models'
robustness and predictive reliability, making them highly suitable for regression-based analysis of prime
numbers.
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Tablel
Range MM odel Name MNMSE NAE rR-= Acdjusted R>

O 207 Gradient Boosting 0.0 0.0 1.0 1.0
1 509 Decision Tree 0.0 0.0 1.0 1.0
2 1231 Decision Tree 0.0 0.0 1.0 1.0
£ 9973 Decision Tree 0.0 0.0 1.0 1.0
4 99997 Decision Tree 0.0 0.0 1.0 1.0
S 999983 Decision Tree 0.0 0.0 1.0 1.0

When evaluating performance across increasingly large ranges, the Decision Tree model emerges as the most
consistent performer. Specifically, in extreme cases, such as the ranges up to 99,997 and 999,983, the Decision
Tree model maintains its superior predictive capability. This suggests that the Decision Tree's ability to
partition the data space effectively allows it to model complex relationships, even as the dataset size increases.
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Overall, the results confirm that Decision Tree and Gradient Boosting models are well-suited for prime
number regression analysis. While both models achieve remarkable accuracy, Decision Tree consistently
provides stable performance across extended numerical ranges, making it a preferred choice for large-scale
prime number predictions. Future work may explore the integration of hybrid models or feature engineering
techniques to further enhance predictive performance.

8. Conclusion:

This study investigates machine learning-driven regression models for predicting prime number distributions.
Our findings reveal that Gradient Boosting and Decision Tree models achieve superior accuracy and
efficiency, effectively capturing prime number patterns. While polynomial and tree-based models perform
well for smaller ranges. This research contributes to the intersection of machine learning and number theory,
offering a data-driven framework for prime number prediction.

Future research can enhance prime number prediction by leveraging hybrid models, deep reinforcement
learning, and advanced neural networks. The integration of machine learning in mathematics highlights its
potential to tackle complex theoretical challenges with computational intelligence.
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