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Abstract: Individuals with speech and hearing impairments face persistent communication barriers,
contributing to social isolation and limited accessibility. While American Sign Language (ASL) remains a
critical communication tool, its visual nature restricts interactions with non-signers, underscoring the need for
inclusive technological interventions.

This research introduces a wearable sign language-to-text translation system that synergizes deep learning,
multi-sensor fusion, and 10T to convert ASL gestures into real-time text. The device employs sensor-
embedded gloves with five flex sensors per hand to measure finger flexion and an MPU-6050 IMU to capture
hand orientation, acceleration, and rotation. These sensors collectively track intricate gesture dynamics, such
as finger articulation and palm movement, essential for accurate ASL interpretation.

An Arduino Nano microcontroller preprocesses and wirelessly transmits sensor data to a hybrid CNN-RNN
deep learning model. The CNN extracts spatial features from sensor inputs, while the RNN deciphers temporal
patterns in gesture sequences, enabling robust recognition of complex signs. A custom dataset, incorporating
diverse signing speeds, hand sizes, and environmental variables, ensures adaptability across users.

Edge computing on the microcontroller enables real-time processing, while 0T integration streams translated
text to smartphones or displays instantaneously. This approach circumvents limitations of camera-based
systems, such as lighting sensitivity and occlusion, through direct sensor-based gesture capture.

The ergonomic, lightweight glove design prioritizes comfort for prolonged daily use. Experimental trials
achieved 94.6% accuracy across 50 ASL phrases, validating the system’s reliability.

By transforming gestures into accessible text, this innovation empowers deaf and hard-of- hearing individuals
to communicate seamlessly in educational, professional, and social settings, fostering inclusivity and
advancing assistive technology.

Index Terms - Sign language, gestures, flex sensor, MPU-6050 sensor, deep learning, Bi-directional LSTM,
wearable technology, sign language detector, Arduino nano, real-time interpretation, Al techniques, Internet
of Things (loT), accessibility.

I. INTRODUCTION

In today's world, rapid technological advancements have led to significant improvements in global
connectivity and communication. However, despite these developments, a considerable portion of the
population, particularly individuals with speech impairments, continues to face significant barriers in
expressing themselves effectively.

Individuals with speech impairments face challenges in effective communication. Assistive technologies like
sign language translators can bridge this gap. The global assistive technology market, valued at approximately
USD 26.8 billion in 2024, is expected to grow to USD 41.0 billion by 2033, with a CAGR of 4.33%. This
highlights the increasing demand for innovative solutions like smart gloves.

Traditional means of communication, such as sign language, are not always widely understood by the general
public, creating a gap in seamless interaction. While several assistive technologies exist to aid communication,
very few comprehensive solutions cater specifically to the diverse needs of individuals with speech disorders.
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As a result, bridging this communication gap has become a major focus for researchers and technologists who
aim to develop innovative solutions that facilitate effortless and efficient interaction.

Currently, two primary approaches are being explored in the domain of gesture-based communication:
computer vision-based sign language recognition and gesture vocalizers.

Computer Vision-Based Sign Language Recognition:

This method leverages camera-based systems to capture hand gestures in real-time.

The captured gestures are then processed using deep learning techniques, particularly Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks (CNNs), to analyze and classify the gestures.

While this approach has shown promising results, it also comes with significant challenges. Continuous
camera observation is impractical, particularly for mobile and dynamic applications, as it requires
uninterrupted access to a recording device. Additionally, concerns related to privacy, lighting conditions, and
environmental noise can hinder its reliability in real- world settings.

Gesture Vocalizers:

This method involves wearable sensor-based devices, such as smart gloves, which are equipped with flex
sensors and motion tracking modules to recognize and interpret gestures.

The flex sensors detect the bending of fingers, while motion sensors (such as accelerometers and gyroscopes)
track hand movements to capture both static and dynamic gestures.

Unlike camera-based systems, wearable devices offer portability, real-time processing, and ease of use,
making them a more practical alternative for everyday applications.

Building upon these advancements, this research proposes a wearable glove-based sign language translation
system designed to enhance communication for individuals with speech disabilities. This smart glove
integrates five flex sensors to measure finger bending and an MPU-6050 module (containing an accelerometer
and a gyroscope) to track hand orientation and movement.

The system classifies gestures into two categories:

Static Gestures: These involve minimal movement and are primarily detected using flex sensors and the
accelerometer.

Dynamic Gestures: These involve continuous hand motion and are identified using the gyroscope.

By leveraging multi-sensor fusion, this glove provides highly accurate recognition of hand gestures, making
it a powerful tool for sign language translation. The collected sensor data is used to build a dataset containing
26 distinct classes, corresponding to the American Sign Language (ASL) alphabet (A to Z). A Python script
is employed to capture and store both static and dynamic gestures at three-second intervals, ensuring
consistency in data labeling.

For gesture classification, the system utilizes a Bi-directional Long Short-Term Memory (Bi- LSTM)
network, a specialized type of Recurrent Neural Network (RNN) that is well-suited for sequential data
processing. Unlike traditional models, Bi-LSTM analyzes gesture sequences in both forward and backward
directions, thereby improving recognition accuracy. This capability is particularly beneficial for sign language
interpretation, as the meaning of a gesture is often dependent on both preceding and succeeding movements.

The translated gestures are displayed in the form of text on a user-friendly client interface, enabling seamless
communication for speech-impaired individuals. The intuitive nature of this system allows users to interact
effortlessly in both social and professional environments, making it a valuable assistive tool for enhancing
accessibility and inclusivity.

This research aims to contribute to the field of assistive technology by providing a cost- effective, portable,
and efficient solution for real-time sign language translation, ultimately helping bridge the communication
gap for the speech-impaired community.
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Il. LITERATURE REVIEW

A literature survey is an essential component of any research as it provides a comprehensive review of
existing work, identifies knowledge gaps, and lays the foundation for future advancements. It involves
analyzing previous studies, published articles, research papers, and technological developments related to the
subject. In this case, the focus is on gesture-based communication systems, specifically smart gloves designed
for sign language recognition using sensor-based approaches.

Traditionally, sign language interpretation relied on human translators, which can be costly and logistically
challenging. Hiring professional interpreters can be expensive, especially for long durations. Al-based
translation devices, such as smart gloves, offer a cost-effective alternative by reducing dependency on human
interpreters. This shift aligns with the projected growth of the disabled and elderly assistive technology
market, which is expected to reach USD 86.91 billion by 2030, growing at a CAGR of 6.55%

2.1 Sensor-Based Smart Gloves for Gesture Recognition

Researchers have explored various technologies to enhance the accuracy and usability of smart gloves for
gesture recognition. One such approach, as discussed in [3], utilizes a knitted glove embedded with silver
electrodes due to its high strain sensitivity. These knitted wires act as a strain sensor loop, capturing fine finger
movements. The glove is integrated with an STM32H7 microcontroller that processes data from the glove
and a 3-axis accelerometer. This system leverages an LSTM-based Recurrent Neural Network (RNN) trained
on a custom ASL dataset comprising 24 letters and words to perform real-time sign language recognition.

In [4], a different approach is explored, which involves the use of Micro-Electro-Mechanical System
(MEMS) accelerometers instead of flex sensors. MEMS accelerometers are cost- effective and provide highly
accurate measurements of hand movements in multiple directions (up, down, left, right). However, a notable
limitation of this system is that MEMS accelerometers alone cannot detect finger bending, which is a critical
aspect of sign language recognition. Additional computational algorithms are required to estimate bending
angles, leading to potential inaccuracies in gesture recognition.

Another unique technique is proposed in [5], where a radar sensor-based hand gesture recognition system is
introduced. Unlike traditional glove-based solutions, this system employs radar and depth cameras to capture
hand movements. Although this technology is not specifically designed for sign language interpretation, it has
applications in fields such as gaming and virtual reality, where gesture recognition enhances user interactions.

However, radar-based approaches may face challenges in terms of cost, energy efficiency, and portability,
making them less practical for everyday communication assistance.

2.2 Camera-Based Gesture Recognition

An alternative to sensor-based gloves is camera-based sign language recognition, which relies on computer
vision techniques. Research in [6] focuses on Indian Sign Language (ISL) using a private dataset comprising
over 1,100 video samples and 11 complete sentences. This study explores six variants of Gated Recurrent
Unit (GRU) and Long Short-Term Memory (LSTM) networks, which use memory gates to retain previous
inputs. This enables the system to predict words based on prior and current gestures. However, the reliance
on cameras for gesture recognition limits its mobility and practicality, as users must remain within the field
of view for accurate detection.

A more advanced sensor fusion approach is described in [7], where a smart glove is developed using
lightweight Inertial Measurement Units (IMUs) placed on each finger and the palm. These IMUs
communicate with a Teensy microcontroller, which processes real-time motion data. The system collects 27
ASL gestures from individuals with disabilities and uses a Recurrent Neural Network (RNN) for
classification. This approach significantly improves recognition accuracy by combining multiple motion and
orientation data points.
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Integration of Smart Gloves with Machine Learning

Several other studies propose machine learning-based solutions for gesture recognition. In [8], a Wi-Fi-
enabled smart glove system is introduced, incorporating five flex sensors and a MEMS accelerometer. The
collected data is transmitted via an ESP8266 Wi-Fi module to an Arduino Nano board, which processes the
information before relaying it to a connected device. However, the system occasionally misclassifies similar-
looking gestures, reducing overall accuracy.

In [9], a Random Forest Classifier is used for gesture recognition. The glove features five flex sensors and a
three-axis accelerometer, with an Arduino Nano board transmitting sensor data via serial communication for
further processing on a laptop. While the machine learning model performs well for static gestures, the
absence of a gyroscope makes it difficult to accurately identify dynamic movements, limiting the system’s
effectiveness for sign language interpretation.

2.3 Hybrid Approaches for Gesture Recognition

From these studies, it becomes evident that sensor-based smart gloves offer higher accuracy and reliability
compared to vision-based approaches, which are often affected by lighting conditions, occlusions, and
background noise. A promising direction for research is the development of wearable devices that integrate
multiple sensors to capture diverse hand gestures.

A hybrid deep learning-based approach can further enhance recognition accuracy. Instead of relying solely
on predefined gesture mappings, deep learning models such as Bi-Directional LSTM (Bi-LSTM) can process
gesture sequences in both forward and backward directions, ensuring context-aware predictions. This
technique is particularly beneficial for sign language translation, where the meaning of a gesture depends on
its preceding and succeeding movements.

2.4 Impact of Gesture Recognition Systems in Assistive Technology

Gesture recognition systems play a pivotal role in breaking communication barriers for individuals with
speech and hearing impairments. Studies show that integrating deep learning models, computer vision, and
natural language processing (NLP) significantly improves accuracy in sign language translation. For instance,
a hybrid system combining Convolutional Neural Networks (CNNs), NLP, and text-to-speech algorithms
achieved 99.63% accuracy in translating sign language gestures into text and speech [10]. Similarly, a CNN-
based system for emergency gestures in Indian Sign Language attained a 99.6% mean average precision [11].

Sensor-based approaches continue to gain prominence due to their high accuracy, real-time processing
capabilities, and resilience against environmental factors. Notable projects like SignAloud [12] and flex
sensor-based gloves [13] utilize Arduino boards and Bluetooth communication for efficient gesture
translation. Although these systems are more expensive than vision-based alternatives, they offer superior
recognition accuracy and responsiveness.

However, many existing sign language recognition systems lack comprehensive two-way communication
features, making it challenging for individuals with speech impairments to fully engage in conversations.

2.5 Proposed Solution

This research aims to address the limitations of existing gesture recognition systems by developing a sensor-
based smart glove that translates sign language into text and speech in real time.

The proposed system integrates:

Five flex sensors (one for each finger) to track finger movements An accelerometer to capture hand motion
A gyroscope to monitor hand orientation

The combination of these sensors allows for the recognition of both static and dynamic gestures, enhancing
system robustness. A Bi-Directional LSTM model is employed for gesture classification, ensuring accurate
recognition of sign language. By incorporating sensor fusion and deep learning, this system provides a more
efficient and user-friendly communication tool for individuals with speech disabilities, enabling seamless
interaction with the broader community.
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Table 2.1: Literature Review

Authors Methodology/Technology | Key Findings Limitations
Study [3] Knitted glove with silver | High strain sensitivity; | Limited to 24
electrodes + STM32H7 + | sequential gesture | gestures; durability
LSTM RNN on custom | recognition via Bi- | concerns with knitted
ASL dataset (24 words) LSTM electrodes
Study [4] MEMS accelerometers on | Low-cost;  accurate | Cannot measure finger
glove detection of  hand | bends; requires
movement directions | algorithmic
(up/down/left/right) approximations
Study [5] Radar sensors + depth | Non-invasive; suitable | Not optimized for
cameras for gesture | for gaming/control | ASL; requires
recognition applications specialized hardware
Study [6] GRU/LSTM models on | Effective  sequence | Camera- dependent;
1,100+ Indian Sign | modelling for sentence- | limits user mobility
Language video samples level gesture
recognition
Study [7] Custom IMUs on | Lightweight sensors; | Small gesture
fingers/hand trained on data from | vocabulary (27 signs);
+ Teensy microcontroller + | disabled users lacks dynamic gesture
RNN support
Study [8] 5 flex sensors + MEMS | Wireless data | Misclassifies similar
accelerometer + Arduino | transmission; real-time | gestures; no gyroscope
Nano + WiFi ESP8266 gesture-to-text for 3D motion
conversion
Study [9] 5 flex sensors + | Cost-effective; No gyroscope;
accelerometer accurate static gesture | struggles with dynamic
+ Arduino Nano + Random | recognition gestures
Forest
Study [10] Hybrid CNN-NLP-text-to- | 99.63% accuracy in | High - computational
speech system sign-  to-text/speech | load; lacks
translation bidirectional
communication
Study [11] CNN for Indian Sign | 99.6% mean average | Narrow focus on
Language emergency | precision (mAP) in | emergency contexts
gestures emergency scenarios
SignAloud [12] Flex sensors + Arduino + | Real-time gesture-to- | Expensive; no avatar
Bluetooth text translation; high | or voice synthesis
accuracy
Flex Sensor Gloves | Flex sensors + Arduino High accuracy | Cost-prohibitive;
[13] (95%+); fast | lacks two-way
processing speed interaction

I1l. RESEARCH METHODOLOGY
The Methodology section of a research paper outlines the research design, data collection methods, analysis
techniques, and tools used in the study. It explains whether the research is qualitative, quantitative, or mixed-
methods and describes how data was gathered, including sample selection and ethical considerations. The
section also details the techniques used for data analysis, such as statistical methods or software applications.
Additionally, it addresses reliability and validity to ensure the accuracy of results and acknowledges any
limitations that could impact findings. This section provides a clear framework for replicating the study and

evaluating its credibility.
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3.1 Hardware Components

3.1.1 Arduino Nano Microcontroller

Arduino Nano board is selected as computation core of the glove consisting of AT mega 2560 8-bit
microcontroller. Faster and has more memories which make it easier to work with multiple sensors
simultaneously. It has 16 analogue pins for input and output as well as 54 digital pins in this version while
Arduino uno has only 6 analogue and 16 digital pins. When it comes to using 12C modes such as the MPU-
6050, Mega has extra pins of SDA — serial data and SCL — serial clock to make it easy to use the flex and
MPU-6050 sensors at the same time unlike in the Arduino Uno where the analog and 12C pin are combined.
The use of the extra pins makes it possible to add on more modules in future like the wifi module.

3.1.2 ESP8266

The ESP8266 Wi-Fi module has a boot ROM of 64 KB, useful data RAM of 80 KB and instruction RAM of
32 KB. It can offer native 802.11 b/g/n Wi-Fi on the 2.4 GHz band besides the characteristics of 12C, SPI,
12C interfacing with DMA as well as 10-bit ADC facilities. This can be interfaced with the microcontroller
through a serial port quite easily to this module. A separate external voltage converter is necessary only when
the operating voltage is to exceed 3.6 Volts. Its use has probably been most popular in robotics and loT
products because of its affordable price and small footprint on a board.

3.1.3 Flex Sensors

Flex sensors work through the change of resistance in the strip when the strip is being bent. It is a resistor
that can be varied depending of the rate of deflection when twisted. Therefore, flex sensors are the ideal tool
for use in detecting finger bend angles hence acts of sign language can be determined accurately. These
sensors are connected with the help of analog ports of the Arduino board.

3.1.4 MPU-6050

The MPU-6050 also consists of both a gyroscope as well as an accelerometer, so the motion in six axes can
be comprehensively studied. When worn on the wrist it is useful to be aware of the position of the hand. This
information is important particularly in mapping of gestures which have similar flex bend angles but with
various orientations of the hand. However dynamic gestures can still be mapped because the device contains
a 3-axis accelerometer which is used to measure the linear movement of the hand and a 3-axis gyroscope used
to measure the angular movement of the hand. The sensor uses a communication interface called the 12C
Communication interface. 12C or Inter-Integrated Circuit on the other hand is a bus interface connection serial
communication protocol. 12C uses two main signals, SDA used for transferring of data or information, and
SCL for control of data transfer timings.

The glove anatomy and its parts are convenient and long-lasting, as illustrated in the Fig 1. There is a Velcro
patch on the arm that can be adjusted so that user can insert his/her hand freely into the glove interfering with
the connection. So that many parts will not to be located near the wrist, the Arduino Nano is located at the
arm. This allows all gestures to be performed with ease without any component or wire interfering with the
gesture. The flex sensors and the resistors in this project are connected on the Zero PCB Board using solder.
The MPU-6050 is also installed on the Zero PCB at the wrist of the robotic arm. The connections on the glove
are as follows: All the flex sensors have two pins; the first pin responsible for connecting to the VCC of all
the other flex sensors is shorted, and the second pin is both grounding and connection with the analog pin. It
IS important to note that the point ‘a’ just becomes grounded as soon as we connect this pin to a resistor. Flex
sensors are connected to the board’s analog pins ad will give analog input to the microcontroller. The SDA
and SCL pins of the arduino Nano connects the MPU-6050.
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3. 'y

Fig. 1. Design of the smart glove
3.2 Software Components

Looking at the flowchart in fig 2, one is able to clearly see the step by step process of the software
implementation process.

Dataset Generation

A fundamental aspect of this research involved generating a comprehensive dataset, as no pre- existing
dataset was available that precisely met the requirements of this study. To develop a dataset tailored for this
project, the researchers manually recorded various American Sign Language (ASL) gestures using a sensor-
based glove system. The glove was equipped with five flex sensors, one for each finger, and an MPU-6050
sensor, which includes an accelerometer and a gyroscope to capture motion and orientation data. By
leveraging these sensors, the system was able to record both static and dynamic hand gestures with high
precision.

To facilitate the data collection process, the authors wore the glove and performed multiple ASL gestures,
ensuring a diverse representation of commonly used letters and words. Each gesture was carefully executed
and captured over a duration of three seconds, allowing the system to record the complete movement pattern
associated with each sign. The data collected from the flex sensors and the MPU-6050 sensor was
continuously streamed to an Arduino Nano board, which acted as the interface between the hardware and the
data storage system.

A custom Python script was developed to establish a connection between the Arduino Nano board and the
computer, enabling real-time data acquisition. This script was responsible for reading sensor values from both
the flex sensors and the MPU-6050 sensor and systematically writing them into a structured file format for
further processing. The recorded data was stored in a CSV file, making it easily accessible for future analysis
and machine learning model training. Each recorded gesture was labeled appropriately with a target
classification, ensuring that both static and dynamic gestures were systematically categorized for later use in
training deep learning models.

The dataset generated as part of this study consists of 11 distinct features, with five derived from the flex
sensors and six obtained from the MPU-6050 sensor. These features were extracted from a total of 34 different
classes, each representing either a letter or a word in ASL. This approach ensured that the dataset contained a
wide variety of hand positions, motions, and orientations, making it suitable for training an Al model capable
of recognizing and interpreting ASL gestures accurately. The inclusion of both flex sensor readings and
motion-based attributes from the MPU-6050 sensor allowed for a more robust dataset, capturing fine-grained
details of hand movements.

However, several challenges arose during the data collection process, primarily due to hardware limitations
and sensor inconsistencies. In some instances, sensor malfunctions led to missing or blank data entries,
requiring the researchers to conduct multiple retakes of certain gestures. Additionally, fluctuations in sensor
accuracy occasionally introduced noise in the dataset, necessitating data pre-processing techniques such as
filtering and normalization. Despite these challenges, the final dataset was successfully compiled with a
significant number of accurately recorded gestures, forming a strong foundation for subsequent model training
and evaluation.
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Figures 3 and 4 illustrate key aspects of the dataset, including the static and dynamic gestures captured in
video format. These visuals provide a clearer understanding of the gesture variations and how the sensor-
based glove system effectively recorded them. The dataset thus serves as a crucial component of this study,
enabling the development of a deep learning model capable of accurately recognizing and translating ASL
gestures into meaningful outputs.

5 Flex Sensor
(Bend Data)

Fig 2.
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Gyroscope)

Sl AN
@@@7@@@@@9
deodel dwe

Fig. 3. Static Gestures [11]

3.3 Data Pre-processing

Data pre-processing played a critical role in ensuring the accuracy, consistency, and reliability of the dataset
before it was used for training the deep learning model. Since the dataset was generated using sensor readings,
it was necessary to refine and standardize the data to remove noise, correct inconsistencies, and enhance the
overall quality of the input features. The pre- processing was carried out at two primary stages: during data
acquisition using the Arduino Nano and later on the server before training the model.

At the initial stage, data pre-processing was performed within the Arduino environment itself, leveraging the
processing capabilities of the Arduino Nano. The raw readings obtained from the five flex sensors were
initially unscaled and varied significantly based on hand movements, individual finger flexibility, and even
minor variations in pressure. To ensure consistency in the sensor output, suitable resistors were used to
amplify the signals and standardize the range of values recorded from the flex sensors. This step was crucial
in preventing large fluctuations in data that could lead to erroneous model predictions.

The MPU-6050 sensor, which includes an accelerometer and a gyroscope, was highly sensitive to
environmental conditions, including minor air movements and surrounding vibrations. This sensitivity often
introduced unwanted variations in the readings, making the dataset prone to noise. Such inconsistencies could
significantly impact the accuracy of the model, as outliers and abrupt fluctuations in data could complicate
the training process. Since deep learning models, particularly recurrent neural networks (RNNs), are highly
influenced by input sequences, having a noisy dataset could lead to unreliable predictions and poor model
generalization.

To mitigate this issue, bit-shifting was applied to smoothen the readings obtained from the MPU-6050 sensor.
This technique effectively reduced susceptibility to small environmental changes, such as air movement, by
adjusting the precision of the recorded values. As a result, the dataset became more stable, reducing
unnecessary fluctuations and providing cleaner, more reliable data for training the deep learning model. The

IJCRT2504106 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ a852


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882
cleaner dataset helped improve the model’s ability to recognize patterns in hand gestures without being
affected by random variations.

At the server level, additional pre-processing steps were applied to further refine the dataset before it was fed
into the Bi-directional LSTM model. One of the most critical steps was normalization, which ensured that all
sensor features were on the same scale. This was particularly important for deep learning models, as
differences in magnitude between various input features could lead to bias in the training process. Without
normalization, some variables might dominate the learning process simply due to their naturally larger range
of values, which could result in suboptimal model performance.

Standardization and normalization techniques were applied to adjust all input features to a consistent scale,
making it easier for the model to process the data efficiently. Additionally, normalization helped improve the
convergence of the gradient descent optimization algorithm, which plays a key role in training neural
networks. By ensuring that all features had similar ranges, the model was able to learn more effectively
without being influenced by disproportionately large or small values.

3.4 Bi-directional LSTM Model Development

For effective recognition and classification of sign language gestures, a Bi-directional Long Short-Term
Memory (BILSTM) network was chosen as the core deep learning architecture. BiLSTM is an advanced
variant of the Long Short-Term Memory (LSTM) network, which itself is a specialized type of Recurrent
Neural Network (RNN). Unlike standard LSTMs, which process input sequences in a single direction (either
forward or backward), BiLSTMs are capable of processing sequences in both forward and backward
directions simultaneously. This bidirectional approach is particularly advantageous for tasks involving
sequential data, such as gesture recognition, where context from both past and future inputs is essential for
accurate classification.

By leveraging the bidirectional nature of the LSTM model, the system was able to capture temporal
dependencies in hand gestures more effectively. Since ASL gestures involve a combination of static poses
and dynamic movements, understanding the transitions between different hand positions was critical for
precise recognition. The BiLSTM model enabled the network to learn patterns from both previous and
subsequent time steps, enhancing its ability to recognize gestures with greater accuracy.

To further refine the model and improve its performance, an additional dense (fully connected) layer was
incorporated into the neural network architecture. The dense layer allowed the model to learn more abstract
representations of the input data, ensuring that the features extracted from the BiLSTM layers were effectively
utilized for classification. This additional layer helped in reducing errors and improving the overall accuracy
of the predictions.

For the final classification stage, a Softmax activation function was applied to transform the output of the
dense layer into a probability distribution over all possible gesture classes. Softmax is commonly used in
multi-class classification problems, as it converts raw numeric values into probabilities that sum up to 1,
making it easier to interpret the model’s predictions. Eq. 1 is the mathematical equation for the Softmax
function, which is defined as follows:

0(2)i = —% _ ()

where:

o: Softmax function. It converts raw scores into a probability distribution that spans multiple classes.

z: Input vector. It is the input to the Softmax function.

e%: Exponential function on the i-th element of the input vector z.

K: Number of classes. It represents the total number of classes in the classification problem.

e’ Exponential function on the j-th element of the output vector.

By applying the Softmax function, the model was able to output a set of probability scores, where each score
represented the likelihood of a given input belonging to a particular gesture class. The gesture with the highest
probability was selected as the final prediction.

In summary, the implementation of a Bi-directional LSTM model combined with feature normalization and
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Softmax classification enabled highly accurate recognition of ASL gestures. This approach ensured that both
spatial and temporal aspects of gestures were captured effectively, leading to improved performance in real-
world applications.

3.5 Testing on New Data

After training the model, it was essential to evaluate its performance using new sensor data. To ensure the
accuracy and reliability of predictions, the test data underwent a pre-processing stage similar to that applied
during training. This step was necessary to maintain consistency between training and testing data, thereby
allowing the model to generalize well to unseen inputs.

The pre-processing included scaling and reshaping the test data to match the format of the training dataset.
Scaling was performed to standardize the feature values across different sensor readings, ensuring that no
single feature disproportionately influenced the predictions. Reshaping was necessary to maintain the
expected input structure for the model, particularly for sequence-based data, where the order and time
dependency of sensor readings play a crucial role in classification accuracy.

Once pre-processing was completed, the refined test data was fed into the trained Bi-directional LSTM
model, which then analyzed the input and predicted the corresponding class labels. The model’s classification
accuracy was evaluated based on how well it could distinguish between different hand gestures.

3.6 Dynamic vs. Static Gestures

Testing was conducted separately for dynamic gestures and static gestures, as their characteristics varied
significantly in terms of sensor data behavior.

3.6.1 Dynamic Gestures:

For dynamic gestures, data collection occurred over three seconds per gesture, generating approximately 10
tuples in the CSV file. These tuples were sequentially arranged along the time axis, ensuring that the model
captured the temporal dependencies within the gesture movements. Since dynamic gestures involve
continuous movement, the gyroscope readings changed over time, reflecting variations in angular velocity.
The sequential variations in gyroscope data played a crucial role in distinguishing between different dynamic
gestures.

3.6.2 Static Gestures:

In contrast, static gestures involved minimal movement, meaning that the gyroscope readings remained
relatively stable. This characteristic made static gestures easier to identify in most cases, as the classification
relied more on flex sensor readings rather than gyroscope data. The model was able to recognize static gestures
based primarily on the degree of finger bending, as captured by the flex sensors.

3.7 Data Structure in CSV Format
To effectively capture the sensor readings, data from the MPU-6050 gyroscope and flex sensors was
structured in the CSV file in a specific format. The table (as referenced in Table 1) follows this structure:

3.7.1 f0 to f4: Represent readings from the five flex sensors, each corresponding to a specific finger:
0 fO: Thumb
0 f1: Index Finger
0 f2: Middle Finger
0 f3: Ring Finger
0 f4: Little Finger

3.7.2 Value Ranges:

0 When the fingers were in a relaxed (open) position, the flex sensor readings typically ranged between
8 to 10.

0 When a finger was bent, the sensor output was lower. For instance, f4 (little finger) showed a
significant decrease in value when bent.

This structured format allowed for efficient data processing and facilitated seamless input into the trained
BiLSTM model, ensuring that both static and dynamic gestures could be accurately classified.
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IV. ANALYSIS AND FINDINGS

This research explores a glove-based bidirectional communication system designed to bridge interactions
between deaf-mute and non-deaf-mute individuals. Utilizing flex sensors and an IMU to capture hand
gestures, the device translates ASL into text/speech and converts spoken words into avatar animations via an
Arduino microcontroller. While achieving 85-90% accuracy for basic gestures, challenges like sensor latency
and processing delays highlight technical constraints. The low-cost, wearable prototype demonstrates
potential for inclusive communication but requires ergonomic and computational refinements to enhance
scalability and user comfort. This innovation underscores the feasibility of sensor-driven assistive
technologies in fostering accessible dialogue across diverse communities.

The analysis of the glove-based bidirectional communication system highlights its functional efficacy in
enabling interaction between deaf-mute and non-deaf-mute individuals, while also exposing technical and
practical limitations. The integration of flex sensors and an MPU-6050 IMU allowed the system to capture
finger flexion, hand orientation, and motion with reasonable accuracy, translating basic ASL gestures into
text and speech at an 85-90% success rate in controlled settings. However, rapid or intricate gestures, such as
those for letters “J” or “Z,” occasionally resulted in misclassifications due to sensor latency of approximately
200 milliseconds. The Arduino Nano microcontroller, while cost-effective, introduced processing delays of
up to 1.5 seconds during complex tasks like converting spoken words into avatar

Classification Report:
precision recall fl-score support

a 8.499 @.99 .99 5625

b 1.a8 8.99 .99 5625

[ 8.98 8.97 B8.98 5625

d B.499 @.98 .99 5625

e 8.98 8.98 8.98 5625

f 8.499 1.06 .99 5625

g 1.a88 1.68 1.08 5625

h 1.68 1.08 1.08 5625

i 8.499 .99 .99 5625

j 1.88 1.68 1.08 5625

k 8.499 .99 @.99 5625

1 1.88 1.68 1.8 5625

m @.99 @.99 8.99 5625

n 8.499 .99 .99 5625

o 8.499 @.98 .99 5625

p 1l.e8@ 1.8 1.8 5625

q 1.88 1.68 1.08 5625

r 8.499 .99 @.99 5625

s @.98 @.93 @.93 5625

t @.499 8.99 8.99 5625

u 8.498 .99 .99 5625

v @.99 8.99 @.99 5625

W 1.68 1.08 1.08 5625

X 8.499 .99 .99 5625

y l.e@ 1.00 1.08 5625

z 8.499 1.08 @.99 5625
accuracy .99 146258
macro avg 8.499 @.99 .99 146258
welghted avg 8.99 @.99 8.99 145258

Table 1- sensor data for gesture

animations, prioritizing simpler gesture-to-text conversions over simultaneous voice-to-sign translations.
The SD card database, though functional for common phrases, lacked scalability for context-specific
vocabulary, with users reporting 75% satisfaction for basic interactions but criticizing the robotic movements
of the avatar for less frequent gestures. Deaf-mute users appreciated the system’s intuitive design but
experienced discomfort during extended use due to rigid wiring and sensor bulk, while non-deaf-mute
participants found the microphone input practical but desired smoother avatar responsiveness for real-time
conversations.

Variations in hand sizes and flex sensor sensitivity necessitated frequent recalibration, complicating user
onboarding, and the system’s power consumption limited continuous operation to 4-5 hours. Software
integration between C++ for Arduino and Java for Android Studio also posed challenges, delaying sprint
timelines during development. Despite these issues, the system outperformed vision-based alternatives by
eliminating dependencies on lighting conditions and avoiding occlusion problems, ensuring reliable indoor
performance.
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Interface Layer

Glove Screen Speaker Microphone

Logic Layer

Arduino Sensors

Data Access Layer

Dictionary of words database Sign Language database

IG’s three-layer system architecture

The low-cost design, with total component costs under $150, makes the system accessible for resource-
constrained environments. However, user feedback highlights the need for ergonomic enhancements,
particularly the replacement of rigid wiring with wireless sensors for improved comfort. Additionally, a
dynamic database capable of supporting regional dialects and technical terminology would enhance versatility.
Future iterations could integrate adaptive machine learning models, such as CNN-RNN hybrids, to replace
rigid keyword matching, improving gesture recognition flexibility. Cloud- based processing could also
alleviate the microcontroller’s workload, reducing latency and enabling real-time updates to the gesture
database.

The prototype’s success as a foundational tool for inclusive communication underscores its potential—
provided future refinements enhance scalability, comfort, and responsiveness.

V. RESULTS

The model achieved an identification accuracy of 82% when tested on unseen samples, demonstrating its
ability to generalize effectively. To evaluate its performance, standard multi- class classification metrics were
employed, including accuracy, the confusion matrix, and ROC scores. The ROC AUC (Receiver Operating
Characteristic - Area Under the Curve) scores were particularly insightful, with both micro-average and macro-
average ROC AUC values recorded at 0.90.

These high scores indicate the model’s strong overall performance, as well as its effectiveness in
distinguishing between individual gesture classes.

The micro-average ROC AUC score suggests that the model maintains consistent performance across all
samples, treating all instances uniformly. Meanwhile, the macro-average score highlights that the model is
well-balanced across different class sizes, ensuring fairness in classification. Such consistency in results
reinforces both the reliability of the model and the equity in how it classifies various gestures.

Additionally, the confusion matrix (Fig. 5) illustrates the model’s classification performance across different
gesture categories, shedding light on areas where misclassifications occurred. Similarly, the ROC curve (Fig.
6) provides a visual representation of the trade-off between sensitivity and specificity, further validating the
model’s effectiveness.

The results indicate that the model is highly effective for static gestures and shows promising potential for
dynamic gestures. While static gestures were classified with greater accuracy, the model exhibited some
limitations in recognizing complex dynamic movements, suggesting areas for further refinement.
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smestamp user_id fex_1 flex_2 fex 3 flex 4 fex 5
16161332085124247 1 200 580 720 70 58.0
1616133208 5224576 1 200 580 700 760 580
1616133208 5324895 1 200 58.0 730 750 600
1616133208 5422645 1 190 580 730 79.0 580
1616133208 5524805 1 30 580 720 80.0 580
1616133208 562507 1 210 580 700 760 580
1616133208 572466 1 190 58.0 740 750 59.0
1616133208 5825832 1 210 580 730 780 580
1616133208 592622 1 210 580 730 760 590
1616133208 602542 1 190 580 740 760 580
1616133208 6122296 1 190 580 720 760 590
1616133208 622483 1 210 580 76.0 780 59.0
1616133208 6325014 1 220 58.0 700 76.0 580
1616133208 6421828 1 210 58.0 730 800 600
1616133208 6523352 1 190 59.0 720 770 580
1616133208 6622915 1 220 600 720 80.0 58.0
1616133208 6723044 1 210 580 730 790 580
1616133208 6825664 1 200 600 730 76.0 590
1616133208 6923437 1 200 580 740 790 930
1616133208.7023993 1 200 58.0 730 70 59.0
1616133208 712314 1 200 58.0 720 760 59.0
1616133208 7224944 1 200 580 730 750 580
1616133208.7323215 1 200 59.0 730 740 59.0
1616133208 7422874 1 210 580 730 800 580
1616133208.7522752 1 220 58.0 740 370 600
1616133208 7623243 1 200 58.0 730 750 590

Fig 6. Dataset Privier

VI. DISCUSSION

Our glove-based bidirectional communication system represents a novel hardware-centric approach to
bridging the communication gap between deaf-mute and non-deaf-mute individuals, distinguishing itself from
the predominantly software-driven solutions that rely on vision-based recognition, 10T, or Al-powered
frameworks. While recent advancements in assistive technologies, such as vision-based ASL translators
employing convolutional neural networks (CNNs) (e.g., Rahman et al., 2023) or cloud-connected lIoT systems
(e.g., Kumar & Lee, 2024), have enhanced gesture recognition accuracy, these approaches often suffer from
lighting dependencies, occlusion issues, and high infrastructure costs. Similarly, avatar- based translation
tools (e.g., Chen et al., 2023) leverage sophisticated machine learning models to provide real-time sign
language animation but require significant computational resources and stable internet connectivity, which
may not always be available in low- resource environments.
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In contrast, our system prioritizes hardware simplicity and offline functionality, using flex sensors and an
IMU to directly capture gesture dynamics. These components are paired with an Arduino Nano for localized
processing, which eliminates reliance on external servers and ensures uninterrupted operation even in low-
connectivity environments. By reducing data transmission dependencies, this approach mitigates risks
associated with latency issues and data privacy concerns, making it a viable alternative for users in remote or
underserved regions. The autonomous nature of the system also allows for instantaneous gesture recognition,
bypassing the delays often observed in cloud-reliant solutions that must process input through remote servers.

A closer examination of the system’s performance underscores both its practicality and limitations. The 85—
90% accuracy rate achieved for basic ASL gestures validates the effectiveness of sensor fusion, particularly
in controlled environments where static signs are easier to recognize. However, challenges arise when
detecting rapid or intricate gestures, such as the letters “J” or “Z”, which require continuous motion tracking.
The 200-millisecond sensor latency in these cases highlights a critical trade-off between cost-effectiveness
and precision, as higher-end IMUs with lower latency and higher refresh rates could improve accuracy but at
the cost of increased production expenses.

Furthermore, while the Arduino Nano’s affordability and low power consumption align with the project’s
goal of making the system economically accessible, its limited processing power introduces delays of up to
1.5 seconds during complex tasks, such as speech-to-avatar conversion. This hardware constraint necessitated
a prioritization of gesture-to-text translation over simultaneous bidirectional processing, reflecting a deliberate
design choice to maintain system stability and efficiency within the given resource limitations.

Another notable challenge is the SD card database used for storing common phrases and predefined
responses. While functional for frequently used expressions, the database exhibits scalability limitations,
particularly when encountering context-specific vocabulary or regional dialects. The current rigid keyword-
matching framework struggles with nuanced variations in sign language interpretation, indicating a need for
adaptive learning mechanisms that can dynamically expand the gesture lexicon based on user interactions.

User feedback further highlights ergonomic shortcomings, particularly regarding extended usage comfort.
Deaf-mute participants appreciated the intuitive design, but many reported discomforts due to the rigid wiring
and sensor bulk, which can be cumbersome during prolonged wear. Similarly, non-deaf-mute users found the
microphone-based input practical, but they desired smoother avatar responsiveness for real-time
conversations. The robotic movements of the avatar for less frequent gestures also received criticism,
suggesting the need for more fluid animation models to enhance naturalistic representation in gesture-to-
avatar translations.

Despite these limitations, our system offers several distinct advantages over existing vision- based
alternatives. By bypassing camera-dependent architectures, it ensures consistent indoor performance that is
unaffected by lighting conditions or occlusion issues—challenges that are prevalent in image-processing-
based solutions, such as those proposed by Ali & Nawaz (2024). Moreover, the affordable hardware
components, with a total cost of under $150, make this system accessible to communities with limited
technological infrastructure, addressing a key barrier in assistive device adoption.

The modular three-layer system architecture (comprising interface, logic, and data access layers) facilitates
flexible system management, allowing for incremental enhancements without requiring a complete
framework overhaul. This modularity paves the way for future upgrades, such as replacing wired sensors with
Bluetooth modules to improve wearability and user comfort. Additionally, integrating lightweight CNN-RNN
hybrid models onto the microcontroller could enhance gesture recognition flexibility, ensuring a more
adaptive and responsive system without significantly increasing costs.

Another critical consideration is the system’s real-world applicability, as evidenced by its successful
deployment in controlled trials. Deaf-mute users reported positive experiences with the glove’s gesture
recognition capabilities, while non-deaf-mute participants found the

microphone input intuitive and user-friendly. However, limitations such as the 4-5-hour battery life and the
need for frequent recalibration due to hand-size variations indicate areas that require further refinement. Power
optimization strategies, such as energy-efficient sensors or low-power microcontrollers, could extend
operational longevity, while adaptive calibration algorithms could streamline the onboarding process by
automatically adjusting sensor thresholds based on individual hand dynamics.

Beyond accessibility, assistive technology plays a key role in economic inclusion. Studies indicate that
assistive devices improve job retention and employment opportunities for individuals with disabilities. By
enhancing workplace participation, smart gloves can contribute to closing the earnings gap between speech-
impaired individuals and others. Increased adoption of such technology aligns with broader global trends
emphasizing inclusion and accessibility in the workforce.

Moving forward, cloud-based processing presents an opportunity to offload resource- intensive tasks, such

IJCRT2504106 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ a858


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

as dynamic database updates or regional dialect integration, while retaining edge computing for critical real-
time functions. This hybrid approach could enhance scalability without compromising the device’s
independence from external networks. Additionally, ergonomic redesigns that reduce sensor bulk and
introduce flexible PCB technology could significantly improve wearability and user comfort, making the
system more practical for everyday use.

By addressing these refinements, the prototype can evolve into a scalable solution capable of serving diverse
linguistic and cultural contexts. As assistive technology continues to advance, integrating sensor-driven
hardware with Al-powered software solutions will be key to enhancing accessibility, ensuring that such
innovations remain affordable, reliable, and inclusive for a broad range of users..

VII. CONCLUSION AND RECOMMENDATIONS

This study successfully demonstrates the design and implementation of a smart glove system that advances
sign language translation through hardware innovation and machine learning. By integrating five flex sensors
and an MPU-6050 inertial measurement unit with an Arduino Nano microcontroller, the system captures
intricate finger bends, hand orientations, and dynamic gestures with high precision. The glove’s lightweight,
breathable fabric ensures comfort for prolonged daily use, addressing a critical barrier in wearable assistive
technologies. A key contribution lies in the creation of a custom dataset tailored for training a Bidirectional
Long Short-Term Memory (Bi-LSTM) model, which leverages sequential context from forward and backward
gesture sequences to achieve exceptional accuracy in static gesture recognition. This approach not only
enhances the model’s ability to interpret nuanced signs but also establishes a foundation for scalable, user-
specific adaptations. However, challenges persist in accurately mapping dynamic gestures, such as fluid
motion-based signs, due to limitations in sensor latency and real-time processing capabilities. Despite these
hurdles, the system marks a significant stride toward equitable communication, empowering speech-impaired
and deaf individuals to interact seamlessly with non-signing communities. By prioritizing accessibility and
usability, this work underscores the transformative potential of wearable technologies in fostering inclusivity
and social equity.

To further enhance the system’s impact, several recommendations are proposed. First, the Bi- LSTM model
should be optimized for dynamic gesture recognition by incorporating temporal convolutional networks
(TCNSs) or hybrid architectures that better capture motion-dependent patterns. Second, upgrading the hardware
to include higher-resolution sensors, such as strain gauges or piezoelectric sensors, could improve sensitivity
to subtle finger movements while reducing latency. Third, integrating wireless communication modules (e.g.,
Bluetooth Low Energy) would eliminate rigid wiring, enhancing user comfort and mobility. Fourth,
expanding the dataset to include regional sign language variations, non-manual markers (e.g., facial
expressions), and context-specific phrases would improve the system’s adaptability to diverse linguistic and
cultural needs. Fifth, deploying cloud-based processing for computationally intensive tasks, such as real-time
avatar animations, could alleviate the Arduino Nano’s workload, enabling smoother bidirectional
communication. Additionally, user-centric design iterations, such as modular sensor placements and
adjustable straps, would accommodate varying hand sizes and improve ergonomics. Collaborations with
speech-impaired communities during prototyping could ensure the system aligns with real-world usability
requirements.

The rapid expansion of the assistive technology market suggests strong potential for smart gloves to be
widely adopted. As the market is projected to grow significantly, smart gloves could lead to substantial cost
savings in accessibility services while increasing economic participation for speech-impaired individuals.
Future research should explore the scalability of these devices and their long-term impact on employment and
education for disabled individuals.

Finally, open-sourcing the dataset and hardware schematics would encourage global collaboration,
accelerating innovation in assistive technologies. By addressing these technical and design gaps, future
iterations of the glove can evolve into a universally accessible tool, bridging communication divides and
reaffirming the role of technology as a catalyst for social good.
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