"LEAKAGE CURRENT DETECTION & ELECTRIC HAZARD PREVENTION SAFETY FOOTWEAR"

Author: Prathamesh Taskar¹, Prasad Patil², Aditya Patole³, Ajay Dhage⁴, Shubham Gaikwad⁵ GES Sir Dr. M. S. Gosavi Polytechnic Institute.

ABSTRACT

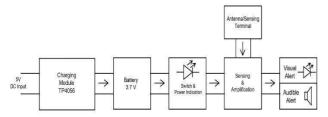
Electrical hazards pose serious risks in industrial, commercial, and household environments, often leading to electric shocks, fires, and equipment damage. This project focuses on designing a wearable electrical hazard detection system using a transistorbased circuit instead of complex microcontrollers. The system detects live electrical fields and leakage currents, providing real-time alerts through an led and buzzer. The circuit is lightweight, portable, and energy- efficient, making it suitable for electricians, industrial workers, and general users. Rigorous testing and troubleshooting ensured accuracy, stability, and reliability. This project contributes to enhanced safety measures and can be further improved with wireless alerts, smart integration, and advanced hazard prediction.

Introduction

Electricity is an essential part of modern life, powering industries, households, and agricultural activities. However, electrical hazards pose significant risks to workers, especially in industrial and farming environments, where exposure to live circuits and static discharge can lead to severe injuries or fatalities. Ensuring workplace safety is paramount in preventing electrical accidents.

This project focuses on Wearable Technologies for Electrical Hazard Detection, designed to protect workers and farmers from potential electrical dangers. By integrating advanced detection systems and protective footwear, this innovation aims to provide an efficient, real-time alert system that can minimize the risk of electric shocks and static discharges.

The primary objectives of this project include :-


Developing a wearable device capable of detecting electrical hazards in real time.

Ensuring safety for workers and animals by preventing accidental electrical exposure.

By implementing this technology, industries can significantly reduce the risk of electrical accidents, fostering a safer work environment for employees. The integration of smart safety solutions in occupational settings is a crucial step toward modernizing worker protection and reducing workplace hazards.

Proposed Methodology

- 1. System Design Designed the circuit using transistors, resistors, an antenna (for detection), and an alert system (LED & buzzer).
- 2. Component Selection Chose appropriate electronic components based on sensitivity, power efficiency, and durability.
- 3. Hardware Development Assembled the circuit on a breadboard for initial testing and later on a PCB for final implementation.
- 4. Testing & Calibration Adjusted resistor values to fine-tune detection sensitivity and optimize power consumption.
- 5. Troubleshooting & Refinement Resolved issues like false alarms, weak signal detection, and power drainage.
- 6. Antenna Integration An antenna is fixed in the shoe's base to sense leakage current from the ground.
- Circuit Placement in Shoes The circuit is fixed inside the shoe, ensuring hands-free operation for the user.
- 8. Final Implementation Developed a wearable prototype and validated its performance in real-world environments

Working:

The given circuit diagram represents a touch or proximity sensor alarm circuit that uses a TP4056 charging module, a 3.7V battery, and a transistor-based amplification and switching mechanism to activate a buzzer when a signal is detected.

Power Supply & Battery Charging

A 5V 1A DC power source charges the 3.7V battery using the TP4056 charging module.

The switch allows the battery power to flow to the circuit.

Proximity Sensing Stage

Transistor T1 acts as a sensor, which detects touch or proximity when a human body or conductive object comes close to the antenna/sensing terminal.

This small signal is amplified by T1, turning it on.

Amplification & Switching Stage

When T1 is activated, it triggers T2, which further amplifies the signal.

T2 then turns on T3, which completes the circuit to power the buzzer and LED.

Buzzer & LED Activation

When T3 turns on, current flows through the buzzer and LED, causing an alarm sound and visual indication.

The buzzer continues to sound as long as the sensing input remains active.

Conclusion:

The circuit works as a simple and effective touch/proximity alarm system. It is energy- efficient, rechargeable, and useful for various automation and security applications.

successfully detects electrical hazards and provides real-time alerts using a simple transistor-based circuit. Through rigorous testing and troubleshooting, the system has been optimized for accuracy, reliability, and power efficiency. Its compact and wearable design makes it suitable for industrial, household, and outdoor applications. This project contributes to electrical safety by helping prevent accidents, electrocution, and fire hazards. Future enhancements can include wireless alerts and improved sensitivity to expand its effectiveness.

References:

- Prof.Smitha S K Assistant Professor EEE
 Dept.GSSSIETW,Mysuru Ganavi G, Himashree H S,
 Renuka S Manneri, Tejashree S Students of EEE Dept.
 GSSSIETW, Mysuru, Karnataka, India. Leakage Current
 Detection in Power Transmission Line Insulators Using
 IoT.
- Detection and Monitoring of Leakage Currents in Power Transmission Insulators Marcelo Martins Werneck, Daniel Moreira dos Santos, Cesar Cosenza de Carvalho, Fábio Vieira Batista de Nazaré, and Regina Célia da Silva Barros AllilNon-Contact AC Current Tester October

2022, Authors: Jannatul Riddy (Comilla University)

- 3. M. Yamashita, T. Kiwa, M. Tonouchi, K. Nikawa, C. Otani and K Kawase, "Non-contact measurement of MOSFET with zero bias voltage using the laser-THz emission microscope[P]", Infrared and Millimeter Waves 2004 and 12th International Conference on Terahertz Electronics 2004. Conference Digest of the 2004 Joint 29th International Conference on, 2004.
- 4. Wen-Kai Kuo and Jen-Yu Kuo, "Non-Contact Bias Voltage Measurement on Analog Microelectronic Circuits via a Special Side Electrode-Equipped Electro-Optic Tip[P]", Optical MEMS and Their Applications Conference 2006. IEEE/LEOS International Conference on, 2006.
- Jinbo Zhang, Shushu Liang, Yan Gao and Dan Lv, "Research and Realization of Online and Non-contact Infrared Temperature Measurement of High-Voltage Switch Contactors[P]", Measuring Technology and Mechatronics Automation (ICMTMA) 2010 International Conference on, 2010.

- 6. N. Nanato and K. Nishiyama, "Locating of normal transitions in a Bi2223 high temperature superconducting coil by non-contact voltage measurement method[J]", Cryogenics, pp. 72, 2015.
- 7. K.M. Tsang and W.L. Chan, "Dual capacitive sensors for non-contact AC voltage measurement[J]", Sensors & Actuators: A. Physical, vol. 167, no. 2, 2011.
- 8. Shaoliang Wei, Licheng Zhang, Wenchang Gao and Zhongyue Cao, "Noncontact Voltage Measurement Based on Electric-Field Effect[J]", Procedia

Engineering, vol. 15, 2011.

- 9. G McKenzie and P Record, "Non-contact measurement of dc voltages using nonlinear elements[J]", Measurement Science Technology, vol. 23, no. 4, 2012. and
- 10. Jie Yang, Jingang Wang, Ruixi Luo, Can Gao, Li Songnong and Zhou Kongjun, "Simulation Test System of Non-Contact D-dot Voltage Transformer[J]", International Journal of Emerging Electric Power Systems, vol. 17, no. 2, 2016.

