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Abstract: In this pioneering research, we leverage the direct and fixed-point approaches to meticulously
prove the Ulam-Hyers-Rassias stability of a cubic functional equation characterized by a complex and
innovative mean sum formulation of successive function variables of the form

k—3)(k -2 n n
Sifita)- 52D @) Sriacsa+,)-k-9 Sriaa)

k 1|(3 2 1<k<l<m 1<k<l
in quasi-p-Banach space.
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|. INTRODUCTION

S.M. Ulam’s [23] visionary concept of functional equation stability, introduced in 1964, posed a profound
and intriguing question that has since become a cornerstone of mathematical inquiry: 'Can a function that
precisely satisfies a functional equation be found in close proximity to another function that only
approximately satisfies it?' This seminal query ignited a wave of intense research, and in 1941, D.H.Hyers
[10] achieved a groundbreaking breakthrough, providing a pivotal partial solution that has had far-reaching
and profound implications. A paradigm-shifting moment occurred in the realm of functional equation stability
when T.Aoki [2] boldly expanded upon Hyers' seminal work, pushing the boundaries to additive mappings.
However, it was Th.M.Rassias' [18] revolutionary and monumental generalization of Hyers' conclusion in
1978 that catapulted the field into a new era of intense scrutiny, exploration, and innovation. This
groundbreaking achievement not only revitalized interest in the subject but also laid the foundation for the
Ulam-Hyers-Rassias stability theory, which has since become a seminal and indispensable touchstone of
functional equation research. For those seeking a deeper understanding of this dynamic, rapidly evolving, and
increasingly complex field, a plethora of insightful and authoritative resources can be found in
[3,4,5,6,7,8,10,13,14,15].

The main purpose of this research paper is to provide a comprehensive examination of the generalized UHR
stability of cubic functional equations of the form

zr(k Izla,j > {[wjzr( )+ ST, +6, +6,)-(k-3) X6, +6, )}

k=1k3 2 =1 1<k<l<m 1<kl
(1)
in quasi- B - Banach space leveraging direct and fixed-point method.
We now review the basic outcome of alternative fixed-point theory.
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Theorem. 1.1. [The alternative fixed point] Suppose for a complete generalized metric space (,d)and strictly
contractive mapping &:y —wwith Lipchitz constant L. Then given an arbitrary 0 ey ,either d(§"9,§"+10)=oo
forall n>o0,
Or there exist a natural number n, such that
(ABF1) d(¢"0,&™0)< o for all n=n,;
(ABF2) The sequence {£"6} is converges strongly to a fixed point 6" of &;
(ABF3) The fixed point 6" is uniquely determined in the set of all points of ¢ in the set
w:{eew:d(9,§n°t9)<oo};
(ABF4) d(e, 9*)s ﬁd(@, o) forevery ey .
I.1 BASICS OF QUASI-BETA BANACH SPACE.

In this section, first we present here some basic facts in [24,25] concerning quasi- g -Normed space and

some preliminary results. We fix a real number g with 0< <1 and let 1 denote either R or C.
Definition 1.2. Let K be a linear space over F . A quasi- g-norm ||.|| is a real-valued function on K
satisfying the following:

(i) IIk|=0 forall ke K and ||k|=0 if and only if k=0.

(ii) || 2k l= 22 || k|| forall 2eF andall keK.

(iii) There is a constant 2 >1 such that ||k +t|l< A(| k|| +]/t])forall kteK.

The pair (K,||.]|) is called quasi- g -normed space if ||.|| is a quasi- #-norm on K . The smallest possible 1
is called the modulus of concavity of ||.||.

Definition 1.3. A quasi- g -Banach space is a complete quasi- 4 -normed space.

Now, the authors presented the generalized Ulam - Hyers stability of the functional equation (1) in quasi-Beta

normed space.

1. STABILITY RESULT IN QUASI BETA BANACH SPACE VIA DIRECT METHOD

In this section, we employ the direct method to scrutinize the Ulam-Hyers-Rassias stability of functional
equation (1) within the framework quasi- 4 - Banach space.

Herein after, unless otherwise specified we assume that w, be a normed linear space and v, be a
quasi- 4 - Banach space.
For a given function T:y, —w,, we adopt the following notation

EIR)S
1=1

n 1 k n 1
Or(6,,6,,....6,) = ZF[EZQ'J_Z_S ) )
A kT S0, 46+ 6,)- (k-3) $T(0, +6)
1<k<l<m 1<k<I
forall 6, ey, (i=123,....,n).
Ulam-Hyer’s Stability Analyze. To analyze the stability result, we establish the following:
v' Existence of Solution:
We demonstrate the existence of a solution to the functional equation.
v' Satisfaction of Solution:
We verify that the solution satisfies the functional equation.
v Uniqueness of Solution:

We prove that the solution is unique.
Theorem I1.1 Let 7 =+1 be fixed. Also let x:y," —[0,:0) be a mapping fulfills
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x(nﬁel,nfsez ..... nzsen)

3st

lim
S—0 n

(2)

forevery 6 ey, (i=123,....,n) and I':y;, —y,be a cubic operator obey the inequality
ler(..6;.....6, ) < &(6,,6,.....0,)
3)
for each @9 ey, (i=123,...,n). Then there exists a unique cubic correspondence H:y,; — v, such that
a!ntkﬁ!

Iro)-nols £ <5

2

(4)

for all 6 y,, where the correspondence H(9) and «(¢) are defined by H(#) = lim M

and
n3kr

a(0) =%(0,0,....n0) for every oy, respectively.
Proof. Case (i): Assume z=1. Replacing (4, 92 ..... ) by (0,0,...,6) in (3), we realize

ioh
()

for all 6 ey,.Changing ¢ by ng in (5), we obtain

<x00 ..... 0)

(6)

for all @ cy,.Taking %(0,0,...,n8) = a(6) into (6), we arrive

r(o)- 02

<a(0)

(7)

for all 6 ey,. In general

rio)- 1)

n

s-1 !k '
Sls_lzanﬁ

k=0 n3

(8)

for all @ ey, . Setting ¢ by n'e in (8) and dividing n®*#, we land

||F(n'9)_ F(ns*'ﬁ)" <y aln“o)

" nd n3(s+h "— o 3Bk

(9)
forall 6 ey, . Aslimit | - « the right off (9) approaches to 0. It follows that the sequence {F(n”:f)} is a Cauchy

sequence in y, . Since v, is Banach, therefore the sequence {F(”Bf)} reaches a limiting point H(®) ey, . SO,
n
we define
H(6) = lim d@
S—>® N
(10)

for all 6 ey,. To demonstrate that H meets (1), replacing (6,,6,.....6,) by (nsel,nse2 ..... nsan) and dividing n*

in (3) and allowing limit s — o and using (10), a simple observation reveals that that H satisfies (1) for every
0 ey, (i=123,..,n). To prove H is idiosyncratic, we let H' be another mapping satisfies (1) and (3). These

yields
HO-1@)] =—[ne-weo)

Y )
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S k+s
<92 A $ a!n 6’?
n® o n3k

—0as s—0
for all 6 ey,. We thus conclude H(9) =H'(9), this confirms the uniqueness of the solution.

Case (ii): For r=-1. Putting ¢ by %in (7) and multiplying n®*, we reach

n3F(QJ ~I(0)[<n% a(gj
n n

(11)

forall @ ey, . In general
nBSr(ﬁ)—r(e)
nS

n

s15t 3 [0
<A Eln a[ " j
(12)
for all @ ey,. The remaining argument is a direct analogue of Case(i). This concludes the rigorous proof of
the Theorem.

As a direct implication of the Theorem I1.1, we have the following corollary to concerning the
stability of (1).
Corollary 11.2 Let’s suppose that ¢ is a positive number and » is a real number with »=3. Let T:y; >y,
be a cubic function fulfills the functional disproportion

||ar(91,92,...,9n)||<{

g,

eS110, |10 #3
i=1

(13)
forall @ ey, (i=123,...,n). Then there exists unique cubic correspondence H:w, —w, insuch away that
/ﬁisfléﬂsﬂ
BE)
Ir@) -nE)=<q "
2 g
————0#3
]
(14)
forall oey,.

I11. STABILITY RESULT IN QUASI BETA BANACH SPACE USING FIXED POINT METHOD

In this section, we investigate the Ulam-Hyers-Rassias stability of the functional equation (1) within
the Scaffolding of quasi -B- Banach space, employing the fixed-point method to establish our results.
Theorem I11.1 Suppose Ty, — v, be a mapping satisfies the disproportion (3) with respect to there exists

a correspondence % :y," —[0,0) under the proviso that

lim X(visgl,visé’z,...,visgn)
S—0 Vi3s

=0, where v, =

(15)
forall 6, ey,,(i=123,...,n). In the presence of L =L(i) such that the function 8 — «(#) meets the specified
conditions

a(0) =%(0,0,...,n0); La(d)= %ﬂa(vi 0)
Vi

(16)
for every 0 ey, .Then there exists unique cubic correspondence H:y, — w, fulfills the functional equation (1)
and the disproportion

IF(©) -H(@©)| < L

a(0)

(17)
forall 6ey,.
Proof. Postulate a set
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®={:T:y; - y,,I'(0) =0}

(18)
and define the generalized metric on o as

d([,I") = inf{s > 0;|[(8) " (9)|| < 5ex(6)}
(19)
for all 6 ey, it can be confirmed at a glance that (®,d) is complete.
Define a transformation T: ® —» ® by
I'(v;0)

Vi 38

ér (9) =

(20)
for all 6 y,.We now declare & is contraction on @, if for any I',I"e ® subject to

d(r,r)<é
= IF@)-1"(0)| < sa(6)

[rev) _rov)|_  aov)

" Vi3 Vi3 "_ Visﬁ
= |&-(0)—&.(0)]| <5 L a(6)
= d(&r.&r) <ol

= d&.&)sLdmr)
(21)
this reveals that the mapping & :® — @ is contractive mapping on @ having a Lipchitz constant L. It’s trail
around with (7), we settle on

Hr(e)_@ < (o)

22
1£or)all 0 €y, . With help of (19), (20) and (22) it is apparent that
d(&-,r)<1, for i=1
= d(&, 1)< M
(23)
Similarly, from (11) for the case i=0, it is apparent that
n3r(9J—r(9)

= <La(6)
n

(24)
for all o<y, where La(6) =n3a(§j . With help of (19) ,(20) and (24), we end up at

d(& )<L ,for i=0
= d(&-, 7)< LM
(25)
Combining (23) and (25), we come to
d(&, D)< <o
(26)
Therefore (ABF1) of Theorem 1.1 holds.
By (ABF2) of Theorem 1.1, there exists a fixed point H of & in @ on the condition that

n
H(0) = |imdvi3—n€) ,forall oey,.
n—o0 Vi

It remains to show that H:y,; — y, fulfilling the functional equation (1), the proof of this is analogous to the
concept presented in Theorem 11.1.
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Again by (ABF3) of Theorem 1.1, H(9) is the unique fixed point of & in the set
N ={H(0) € @ : d(H(6),['(0))< o} .
Finally, by (ABF4) of the Theorem 1.1, we settled

1-i
d(r,H)< lL_—Ld(gr,r)

= d(MH)< ——a(d
(rH)< = a(o)
= |r@©)-H(@©)|< ﬁa(e)
for all 6 ey,. This concludes the proof.
Corollary 111.2 Let's suppose that & is a positive number and « is a real number with »=3. Let T':y;, > v,
be a transformation satisfying the functional disproportion
&

|or @,.0, .00 ) < e300, %03
i=

(27)
forall 6 ey,,(i=123,....n). Then there exists unique cubic transformation H:y; >, SO asto
a3
-1
[(0)-H(9)| <
u 1<) oy
— %3
N
(28)
forall oey,.
Proof. Let
&
Ao,,0,,..,0 )= n »
(60:82..-.81) 8,§1I|9i 1
(29)

forall 6, ey,,(i=123,...,n) in Theorem Ill.1. Replacing
61,65....6,) by (°0,11°0,....v°0, )
and dividing by v;* in the equation (29), we reach

35 -0
1 K( sg. 1.8 s )_ Vi _
— MO,V 0y,.v70, )= e = as s—0.
Vi —xv®le 1 |0
i=1

Therefore (15) holds for all 8, ey,,(i=123,...,n). Now it follows from (16), we accomplish

g,

a(6) =%(0,0,...,n0) = {

o]
and
1 o
38 <
1 Vi
3B a(vi0) = Il
v — e,
Vi
-38
= i0((1/-6’) = '
R T P
-3
1 _Jvi"a(9);
= vi3ﬁ a(ViH) = {Viﬂ(w?’)a(@);

IJCRT2504057 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a460


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

1 _JLa();
= Vi_3ﬂa(vi0) - {La(@);

for each g ey,.

-3
Case (i): For i=0, we acquire L=v; % = [%) =n% . From (17), we observe that

1—i m3ﬁ
[H(©)-T(0)] < —a(ﬁ) = a(9) L
(30)
forevery Gey,.

Case (ii): For i=1,we hold L=v;% =(n)* =%ﬂ. From (17), we claim that
n

1O T« a0 = a0 =5
-1
(31)
forall oey,.

B(w-3) 38
Case (iii): For i=0, we gain L=/ (%j :n—ﬁ .From (17), one can obtain

- el
"H(H) 1—‘(9)" < T a(H) (0) - n(uﬂ _ n3,5'

(32)
forall oey,.

Case (iv): For i=1,weattain L =v,”“3 =(n)/® = ___ From (17), one can reach
n

Ll‘ =) _a” e
[@)-T@) < @@ =17 =57

(33)
for each and every @ ey, . This concludes the demonstration of the corollary.

IV. APPLICATION PROBLEM
In this section we provide some real-life application problems based on the cubic functional equation
(1) for n=3.
For n=3, it is straightforward to confirm that the functional equation (1) transforms into
F(el +60, +0, +04]:i{r(91)+r(92) }+i{r(al +0,+0,)+T(0,+6, +6,) }
4 64 |+T(05)+T(0,)] 64 |+T(0,+0;+0,)+T(0, +65+6,)
[, +60,)+I(6,+63)+T(0,+6,)
64 {+F(6’2 +03)+1(0, +6,)+T'(6, +64)}
(34)

Application in Structural Engineering: Predicting Material Strength for Composite Beams

In structural engineering, composite beams are often used in construction to combine materials with
different properties (like concrete, steel, and other composites) in order to optimize performance. One of the
key factors in designing composite beams is predicting how the materials will interact under various loading
conditions, specifically how they distribute stress across their sections.

Problem Setup:

Given a composite beam made of four different materials, the goal is to predict the flexural strength (or
bending resistance) of the beam when subjected to stress. The materials have different stress levels, denoted
as @, =4Mpa , 6, =5Mpa , 6, =6Mpa, 4, = 7Mpa. The behavior of the composite beam under these stress levels
is modeled by the following cubic functional equation (34). The function () =#* represents the material's

stress response to a given load. The objective is to determine how the effective stress of the composite beam
behaves when considering the stress contributions from each material.
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Solution

1. Calculate Individual stress values:

Using () = 6°

r(4)=4%=64 , I'(5)=5°=125,I(6)=6° =216 ,I(7) =7° =343

2. Calculate pairwise sums of stress values:

[(4+5)=T(9) =9% =729 ,T(4+6) =I'(10) =10° =1000, '(4+7) =T'(11) =113 =1331

[(5+6)=T(11) =11° =1331,(5+7) ='(12) =12% =1728 , (6 + 7) = [(13) =13* = 2197
3. Calculate Triple-Sum of stress values:

[(4+5+6) =T (15) =15° =3375, ['(4+5+7) = (16) =16° = 4096

[(4+6+7)=T(17) =17 =4193, C(5+6+7) = C(18) =18° =5832

4. Compute the Left-Hand Side (LHS) of the Equation:

F(Lf”) =T'(5.5) = (5.5)° =166.375

5. Compute the Right-Hand Side (RHS):

6—14 {64+125+ 216+ 343} + 6—14 {3375+ 4096 + 4913 + 5832} — 6—14 {729 +1000 +1331+1331+1728 + 2197}

= é(ms +18216-8316) =166.375

Thus, the effective stress (material strength) of the composite beam is approximately 166.375Mpa
Conclusion:

This demonstrates how the cubic functional equation can be applied to predict the material strength of a
composite beam made from four different materials. By using the stresses of individual materials and applying
the functional equation (34), we can calculate the overall strength of the composite beam, which is crucial for
design and analysis in structural engineering.
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