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Abstract:  In this pioneering research, we leverage the direct and fixed-point approaches to meticulously 

prove the Ulam-Hyers-Rassias stability of a cubic functional equation characterized by a complex and 

innovative mean sum formulation of successive function variables of the form  
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in quasi-β-Banach space. 
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I. INTRODUCTION 

    S.M. Ulam's [23] visionary concept of functional equation stability, introduced in 1964, posed a profound 

and intriguing question that has since become a cornerstone of mathematical inquiry: 'Can a function that 

precisely satisfies a functional equation be found in close proximity to another function that only 

approximately satisfies it?' This seminal query ignited a wave of intense research, and in 1941, D.H.Hyers 

[10] achieved a groundbreaking breakthrough, providing a pivotal partial solution that has had far-reaching 

and profound implications. A paradigm-shifting moment occurred in the realm of functional equation stability 

when T.Aoki [2] boldly expanded upon Hyers' seminal work, pushing the boundaries to additive mappings. 

However, it was Th.M.Rassias' [18] revolutionary and monumental generalization of Hyers' conclusion in 

1978 that catapulted the field into a new era of intense scrutiny, exploration, and innovation. This 

groundbreaking achievement not only revitalized interest in the subject but also laid the foundation for the 

Ulam-Hyers-Rassias stability theory, which has since become a seminal and indispensable touchstone of 

functional equation research. For those seeking a deeper understanding of this dynamic, rapidly evolving, and 

increasingly complex field, a plethora of insightful and authoritative resources can be found in 

[3,4,5,6,7,8,10,13,14,15]. 

    The main purpose of this research paper is to provide a comprehensive examination of the generalized UHR 

stability of cubic functional equations of the form 
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(1)                             

in quasi-  - Banach space leveraging direct and fixed-point method. 

We now review the basic outcome of alternative fixed-point theory. 
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Theorem. I.1. [The alternative fixed point] Suppose for a complete generalized metric space  d, and strictly 

contractive mapping  : with  Lipchitz  constant L . Then given an arbitrary   ,either     1, nnd

for all ,0n  

Or  there exist a natural number 0n  such that 

(ABF1)     1, nnd for all ;onn   

(ABF2) The sequence }{  n   is converges strongly to a fixed point * of  ;  

(ABF3) The fixed point *  is uniquely determined in the set of all points of   in the set 

  };,:{   on
d  

(ABF4)       ,
1

1
, * d

L
d


  for every   

 BASICS OF QUASI-BETA BANACH SPACE.

     In this section, first we present here some basic facts in [24,25] concerning quasi-  -Normed space and 

some preliminary results. We fix a real number   with 1<0   and let  denote either R  or C .  

Definition I.2.  Let K  be a linear space over F  . A quasi-  -norm ||.||  is a real-valued function on K  

satisfying the following: 

 (i) 0|||| k  for all Kk   and 0|||| k  if and only if 0k . 

 (ii) |||||||| kk    for all F  and all Kk  . 

 (iii) There is a constant 1  such that  |||||||||||| tktk   for all  Ktk , . 

The pair   ||.||,K is called quasi-  -normed space if ||.||  is a quasi-  -norm on K . The smallest possible   

is called the modulus of concavity of ||.|| . 

Definition I.3. A quasi-  -Banach space is a complete quasi-  -normed space. 

Now, the authors presented the generalized Ulam - Hyers stability of the functional equation (1) in quasi-Beta 

normed space.  

  

                                                      II. STABILITY RESULT IN  QUASI BETA BANACH  SPACE VIA DIRECT METHOD 

    In this section, we employ the direct method to scrutinize the Ulam-Hyers-Rassias stability of functional 

equation (1) within the framework quasi-  - Banach space. 

         Herein after, unless otherwise specified we assume that 1  be a normed linear space and 2 be a 

quasi-  - Banach space. 

 For a given function 21:    we adopt the following notation       
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for all ),...,3,2,1(,1 nii  . 

Ulam-Hyer’s Stability Analyze. To analyze the stability result, we establish the following: 

 Existence of Solution: 

  We demonstrate the existence of a solution to the functional equation. 

 Satisfaction of Solution: 

  We verify that the solution satisfies the functional equation. 

 Uniqueness of Solution: 

   We prove that the solution is unique. 

Theorem II.1 Let 1 be fixed. Also let   ),0[: 1 
n

  be a mapping fulfills                  
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(2) 

for every ),...,3,2,1(,1 nii   and 21:   be a cubic operator obey the inequality 

                                                             nn  ,...,,,...,, 2121                                                                                       

(3) 

for each ),...,3,2,1(,1 nii  . Then there exists a unique cubic correspondence 21:   such that 
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for  all 1  , where the correspondence )(  and )(  are defined by 
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  n,...,0,0)(   for every 1   respectively. 

Proof. Case (i): Assume  1 . Replacing   n ,...,, 21  by  ,...,0,0  in (3), we realize 

                                                                
 

 


,...,0,0
3














nn
                                                                                           

(5) 

for all 1  . Changing    by n  in (5), we obtain 
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for all 1  .Taking   )(,...,0,0  n into (6), we arrive 
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for all 1  . In general   
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for all 1  . Setting  by ln in (8) and dividing ln3 , we land 
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for all 1  . As limit l the right off  (9) approaches to 0. It follows that the sequence 
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for all 1  . To demonstrate that   meets (1), replacing  n ,...,, 21 by  n
sss nnn  ,...,, 21  and dividing sn3  

in (3) and allowing limit s  and using (10), a simple observation reveals that that   satisfies (1) for every 

),...,3,2,1(,1 nii  . To prove   is idiosyncratic, we let '  be another mapping satisfies (1) and (3). These 

yields 
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for all 1  . We thus conclude )(')(   , this confirms the uniqueness of the solution. 
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for all 1  . The remaining argument is a direct analogue of  Case(i). This concludes the rigorous proof of 

the Theorem.     

                      As a direct implication of the Theorem II.1, we have the following corollary to concerning the 

stability of (1). 

Corollary II.2 Let’s suppose that   is a positive number and   is a real number with 3 . Let 21:    

be a cubic function fulfills the functional disproportion 
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 for all ),...,3,2,1(,1 nii  . Then there exists unique cubic correspondence  21:     in such a way that 
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for all 1  . 

III. STABILITY RESULT IN QUASI BETA  BANACH SPACE USING FIXED POINT METHOD 

          In this section, we investigate the Ulam-Hyers-Rassias stability of the functional equation (1) within 

the Scaffolding of quasi -β- Banach space, employing the fixed-point method to establish our results. 

Theorem III.1   Suppose 21:   be a mapping satisfies the disproportion (3) with respect to there exists 

a correspondence ),0[: 1 
n

 under the proviso that 
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for all ),...,3,2,1(,1 nii  . In the presence of )(iLL   such that the function )(   meets the specified 

conditions 
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for every 1  .Then there exists unique cubic correspondence 21:   fulfills the functional equation (1) 

and the disproportion 
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for all 1  . 

Proof. Postulate a set  
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for all 1  . With help of (19), (20) and  (22)  it is apparent that   
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                                                              Ld  ,  , for    0i   

                                                                iLd 
  1,                                                                                                               

(25) 

Combining (23) and (25), we come to       

                                                                   


iLd 1,                                                                                                           

(26) 

Therefore (ABF1) of Theorem I.1 holds. 

By (ABF2) of Theorem I.1, there exists a fixed point   of   in   on the condition that  

                                                             
 

n
i

n
i

n 3
lim)(










 , for all 1  . 

It remains to show that 21:   fulfilling the functional equation (1), the proof of this is analogous to the 

concept presented in Theorem II.1. 
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Again by (ABF3) of Theorem I.1, )(  is the unique fixed point of   in the set 

  })(),(:)({   d . 

Finally, by (ABF4) of the Theorem I.1, we settled 

                                                                      


 



,
1

,
1

d
L

L
d

i

  

                                                               )(
1

,
1


L

L
d

i






 

                                                        )(
1

)()(
1


L

L i






 

for all 1  . This concludes the proof. 

Corollary III.2 Let's suppose that   is a positive number and   is a real number with 3 . Let 21:    

be a transformation satisfying the functional disproportion 

                                                          













3;||||

;

,...,,

1

21




 
n

i
i

n                                                                                        

(27)                      

 for all ),...,3,2,1(,1 nii  . Then there exists unique cubic transformation  21:     so as to  

                                                           






















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;
1

)()(

3

)3(

3

3


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











nn

n

n

n

                                                                                 

(28)  

for all 1  . 

Proof. Let  

                                                                       













n

i
i

n

1

21
;||||

;

,...,, 



                                                                                   

(29) 

for all ),...,3,2,1(,1 nii   in Theorem III.1. Replacing  

 n ,...,, 21  by  n
s

i
s

i
s

i  ,...,, 21  

and dividing by s
i
3

 in the equation (29), we reach                     
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  as 0s . 

    

Therefore (15) holds for all ),...,3,2,1(,1 nii  . Now it follows from (16), we accomplish 
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
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for each 1  . 

Case (i): For 0i , we acquire 



 3

3
3 1

n
n

L i 







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
 . From (17), we observe that  
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(30) 

for every  1  . 

Case (ii): For 1i , we hold  





3

33 1

n
nL i 

 . From (17), we claim that  
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for all 1  . 

Case (iii): For  0i , we gain 
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(32) 

for all 1  . 

Case (iv): For  1i , we attain      
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(33) 

for each and every 1  . This concludes the demonstration of the corollary.

  
                                                                                             IV. APPLICATION PROBLEM 

      In this section we provide some real-life application problems based on the cubic functional equation 

(1) for 3n . 

For 3n , it is straightforward to confirm that the functional equation (1) transforms into 
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(34)                               

  
Application in Structural Engineering: Predicting Material Strength for Composite Beams 

   In structural engineering, composite beams are often used in construction to combine materials with 

different properties (like concrete, steel, and other composites) in order to optimize performance. One of the 

key factors in designing composite beams is predicting how the materials will interact under various loading 

conditions, specifically how they distribute stress across their sections. 

Problem Setup: 

Given a composite beam made of four different materials, the goal is to predict the flexural strength (or 

bending resistance) of the beam when subjected to stress. The materials have different stress levels, denoted 

as Mpa41   , Mpa52   Mpa63   Mpa74  . The behavior of the composite beam under these stress levels 

is modeled by the following cubic functional equation (34). The function 3)(   represents the material's 

stress response to a given load. The objective is to determine how the effective stress of the composite beam 

behaves when considering the stress contributions from each material. 
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Solution 

1. Calculate Individual stress values: 

Using 3)(   

 644)4( 3   1255)5( 3   2166)6( 3   3437)7( 3   

2. Calculate pairwise sums of stress values: 

7299)9()54( 3   100010)10()64( 3   133111)11()74( 3  

133111)11()65( 3   172812)12()75( 3   219713)13()76( 3  

3. Calculate Triple-Sum of stress values: 

 337515)15()654( 3   409616)16()754( 3  

 419317)17()764( 3   583218)18()765( 3  CC 

4. Compute the Left-Hand Side (LHS) of the Equation: 

       375.166)5.5()5.5(
4

7654 3 






 
  

5. Compute the Right-Hand Side (RHS): 

     21971728133113311000729
64

1
5832491340963375

64

1
34321612564

64

1
                                       

=  831618216748
64

1
   = 375.166  

Thus, the effective stress (material strength) of the composite beam is approximately 166.375Mpa 

Conclusion: 

This demonstrates how the cubic functional equation can be applied to predict the material strength of a 

composite beam made from four different materials. By using the stresses of individual materials and applying 

the functional equation (34), we can calculate the overall strength of the composite beam, which is crucial for 

design and analysis in structural engineering. 
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