IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

AI/ML Solutions to Optimize Energy Consumption Using IoT Data in Cement Technology

Author:-

Name: Chandrashekara R S, Registration number: 24CPHDF010

CMR University

Supervisor name:

Prof. (Dr.) Khanna Samrat Vivekanand Omprakash

CMR University

Abstract

The cement industry is a major energy consumer and contributor to CO₂ emissions. With the rise of Industry 4.0, integrating IoT with AI/ML provides a path toward energy optimization, predictive maintenance, and process automation. This study presents an AI/ML-driven framework utilizing IoT data for real-time monitoring and optimization of cement production processes. By implementing smart sensors, predictive analytics, and AI-driven process control, cement manufacturers can reduce energy consumption and enhance sustainability.

1. Introduction

The cement industry plays a vital role in infrastructure development but is highly energy-intensive, contributing approximately 7% of global CO₂ emissions. Traditional methods of energy management often fail to address inefficiencies due to the complexity of cement production processes. The adoption of IoT-enabled smart sensors and AI/ML models provides a data-driven approach to optimize energy usage.

1.1. Industry Case Study

Ahmedabad, June 2024 – Leading cement manufacturers, such as Ambuja Cements and ACC Limited, are incorporating digital transformation strategies to enhance efficiency. Through smart automation and AI-based predictive maintenance, these companies aim to optimize energy use while minimizing operational costs.

2. Cement Carbon Footprint and Energy Challenges

Cement production is among the largest industrial sources of **carbon emissions** due to its **energy-intensive kiln operations** and reliance on fossil fuels.

2.1. Cement Manufacturing & Energy Consumption

- 1. **Raw Material Processing** Crushing limestone and clay into a fine powder.
- 2. Clinker Production Heating raw materials in kilns at temperatures above 1450°C.
- 3. **Final Grinding & Packaging** Processing clinker with additives to produce cement.

2.2. Environmental Impact

- CO₂ Emissions: From the calcination process and burning of fossil fuels.
- Energy Wastage: Inefficiencies in kilns, grinders, and compressors.
- Process Variability: Unoptimized fuel and material feed rates increase costs.

2.3. Role of IoT in Cement Energy Optimization

- Real-time Monitoring: Smart meters track electricity and fuel consumption.
- **Predictive Maintenance**: Vibration and thermal sensors detect equipment failures early.
- Emission Control: Gas sensors analyze CO₂, NOx, and SOx levels for regulatory compliance.

3. IoT-Based Energy Optimization Framework

3.1. Smart Meters for Energy Monitoring

- 1. Continuously tracks power consumption at different production stages.
- 2. Identifies energy-intensive operations for optimization.
- 3. Example: Monitoring electricity usage in grinding mills.

Process Flow:

- 1. **Sensor Data Collection** Captures real-time energy consumption.
- 2. **Cloud Storage & Processing** Sends data to an AI system.
- 3. Energy Pattern Analysis Identifies inefficiencies.
- 4. Automated Control Adjustments Optimizes power usage dynamically.

3.2. Vibration Sensors for Machinery Performance

- 1. **Detects abnormalities in rotating equipment**, such as mills and crushers.
- 2. **Prevents unplanned downtime** by enabling predictive maintenance.
- 3. **Example**: Identifying misalignment in a **grinding mill motor**.

Process Flow:

- 1. **Vibration Data Collection** Sensors record operational status.
- 2. **Data Transmission** Sent to a central monitoring system.
- 3. **Anomaly Detection** AI identifies unusual vibration patterns.
- 4. **Predictive Maintenance Alerts** Schedules repairs before failure.

3.3. Thermal Sensors for Kiln Temperature Optimization

- 1. **Maintains optimal heating conditions** for clinker formation.
- 2. **Reduces fuel wastage** by preventing overheating.
- 3. **Example**: AI-based **fuel flow control** for stable kiln temperatures.

Process Flow:

- 1. **Temperature Monitoring** Sensors measure heat levels in kilns.
- 2. **Data Analysis & AI Optimization** Adjusts fuel feed rates dynamically.
- 3. **Temperature Control Adjustments** Prevents overheating and energy waste.

3.4. Gas Sensors for Emission Control

- 1. Monitors CO₂, NOx, and SOx emissions in real time.
- 2. Helps cement plants comply with environmental regulations.
- 3. **Example**: AI-driven feedback system reduces carbon footprint.

Process Flow:

- 1. Emission Data Collection Captured by IoT gas sensors.
- 2. AI-Based Pattern Analysis Identifies trends in emissions.
- 3. Automated Process Adjustments Optimizes fuel-air mixture for efficiency.

4. AI/ML Framework for Energy Optimization

4.1. Data Preprocessing

- Anomaly Detection: Isolation Forest, Z-score analysis.
- Feature Engineering: Creating metrics such as Energy Efficiency Index (EEI).

4.2. AI-Based Predictive Models

- Energy Forecasting: ARIMA, LSTM predict future power consumption.
- Failure Prediction: XGBoost, Decision Trees enable proactive maintenance.
- Anomaly Detection: Autoencoders, One-Class SVM detect inefficiencies.

4.3. Reinforcement Learning for Process Control

- Optimizing Kiln Operations: AI dynamically adjusts fuel input.
- Energy Load Balancing: Reduces peak power consumption.

5. Use Cases in Cement Industry

5.1. AI-Optimized Kiln Energy Management

- AI adjusts temperature control algorithms to minimize fuel waste.
- Real-time data insights help optimize combustion efficiency.

5.2. Predictive Maintenance for Equipment

- Machine learning detects **early failure signs** in motors and compressors.
- Reduces downtime and extends equipment lifespan.

5.3. AI-Guided Emission Monitoring & Compliance

- IoT gas sensors track emissions, feeding data into AI models.
- Automated adjustments in production parameters reduce pollutants.
- **❖** To analyze concrete strength using data analysis, we typically use a dataset that includes features affecting concrete compressive strength

I analyzed a cement strength dataset with factors like cement, water, aggregates, and age that impact concrete's compressive strength. My goal is to build a predictive model to estimate concrete strength from these features.

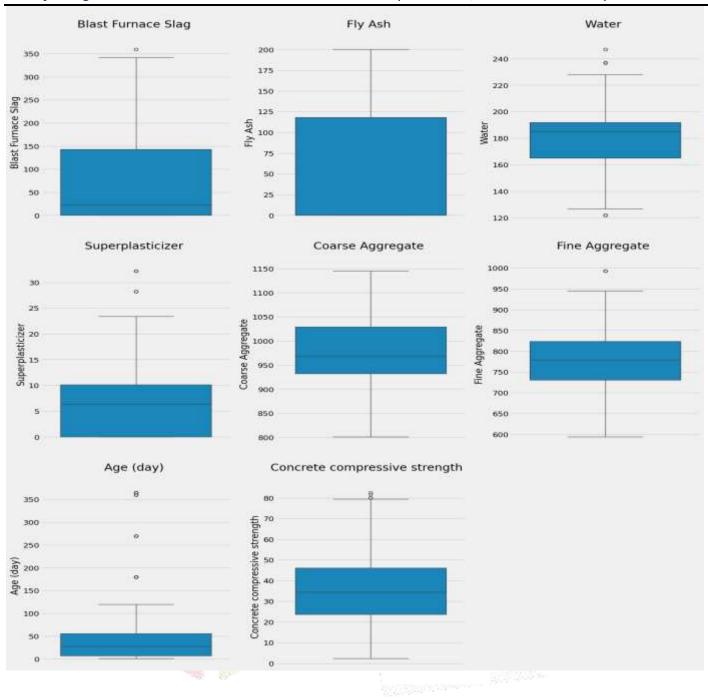
This script imports essential libraries for data analysis and visualization: **pandas** for data handling, **NumPy** for numerical operations, **Matplotlib** and **Seaborn** for static and statistical visualizations, **Missingno** for missing data analysis, and **Plotly Express** for interactive plots. It also suppresses warnings, applies the 'fivethirtyeight' plot style, and ensures inline plotting in Jupyter Notebooks.

We read the data

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age (day)	Concrete compressive strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.986111
	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.887366
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.269535
	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.052780
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.296075

```
df.info()
 √ 0.0s
                                                                                                                               Python
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):
    Column
                                   Non-Null Count Dtype
   Cement
                                  1030 non-null float64
   Blast Furnace Slag
                                  1030 non-null float64
2 Fly Ash
                                  1030 non-null float64
                                  1030 non-null float64
    Water
    Superplasticizer
                                   1030 non-null
                                  1030 non-null float64
    Coarse Aggregate
6 Fine Aggregate
                                  1030 non-null float64
                                  1030 non-null int64
   Age (day)
    Concrete compressive strength 1030 non-null float64
dtypes: float64(8), int64(1)
memory usage: 72.6 KB
```

```
cols = df.columns
plt.figure(figsize = (16, 20))
plotnumber = 1
for i in range(1, len(cols)):
    if plotnumber <= 9:
       ax = plt.subplot(3, 3, plotnumber)
        sns.boxplot(y = cols[i], data = df, ax = ax)
        plt.title(f"\n(cols[i]) \n", fontsize = 20)
    plotnumber += 1
plt.tight_layout()
plt.show()
                                                                                                                                                         Python
```

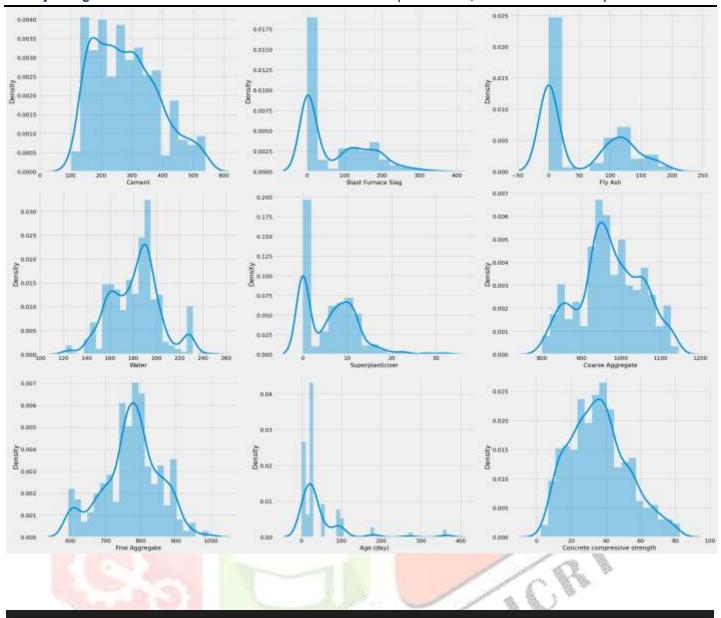


```
plt.figure(figsize + (25, 20))
plotnumber = 1

for col in df.calumns:
    if plotnumber <= 9:
        ax = plt.subplot(3, 3, plotnumber)
        sum.distpat(df[cul])
        plt.xlabel(cul, fontsize = 15)

plotnumber += 1

pit.tight_layout()
plt,show()</pre>
```

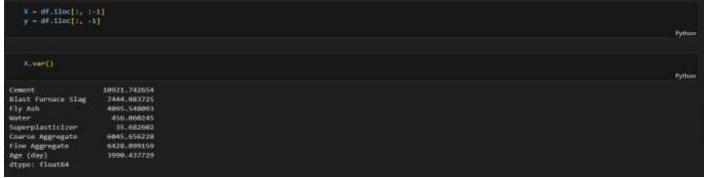


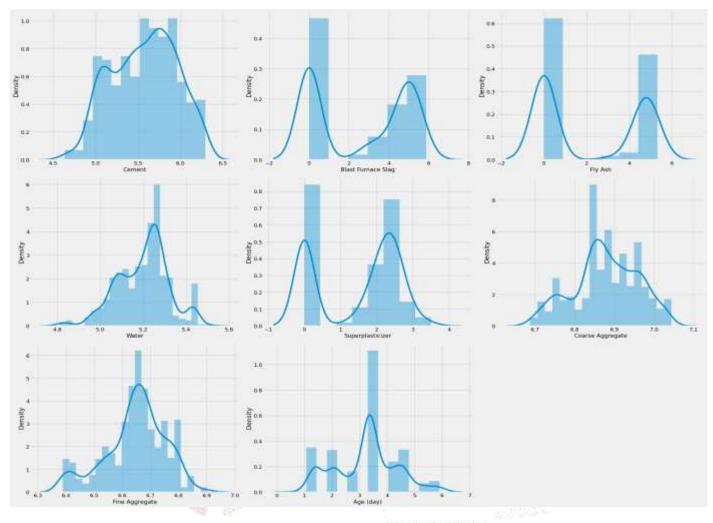
```
plt.figure(figsize = (20, 12))
sns.heatmap(df.corr(), annot = True, fmt = '0.2f', annot_kws = {'size' : 15}, linewidth = 2, linecolor = 'white')
plt.show()
Python
```

, , , , ,										
Cement	1.00	-0.28	-0.40	-0.08	0.09	-0.11	-0.22	0.08	0.50	1.0
Blast Furnace Slag	-0.28	1.00	-0.32	0.11	0.04	-0.28	-0.28	-0.04	0.13	0.8
Fly Ash	-0.40	-0.32	1.00	-0.26	0.38	-0.01	0.08	-0.15	-0.11	0.6
Water	-0.08	0.11	-0.26	1.00	-0.66	-0.18	-0.45	0.28	-0.29	0.4
Superplasticizer	0.09	0.04	0.38	-0.66	1.00	-0.27	0.22	-0.19	0.37	0.2
Coarse Aggregate	-0.11	-0.28	-0.01	-0.18	-0.27	1.00	-0.18	-0.00	-0.16	0.0
Fine Aggregate	-0.22	-0.28	0,08	-0.45	0.22	-0.18	1.00	-0.16	-0.17	-0.2
Age (day)	80.0	-0.04	-0.15	0.28	-0.19	-0.00	-0.16	1.00	0.33	-0.4
Concrete compressive strength	0.50	0.13	-0.11	-0.29	0.37	-0.16	-0.17	0.33	1.00	-0.6
	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age (day)	Concrete compressive strength	

sns.pairplot(df, diag_kind='kde')
plt.show()

Python



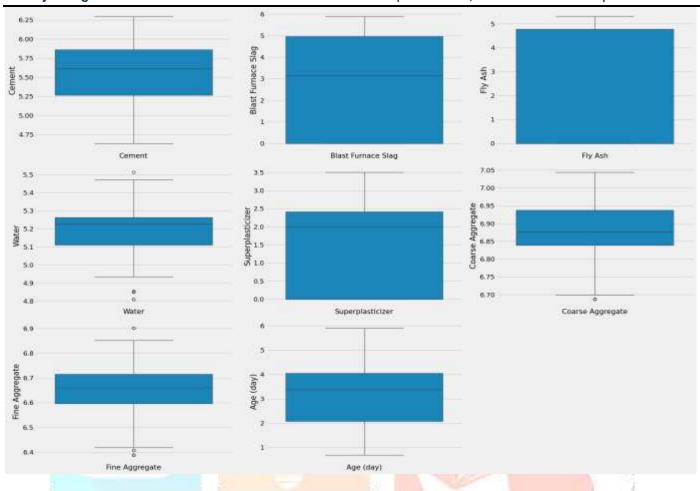


```
plt_figure(figsize = (20, 15))
plotnumber = 1

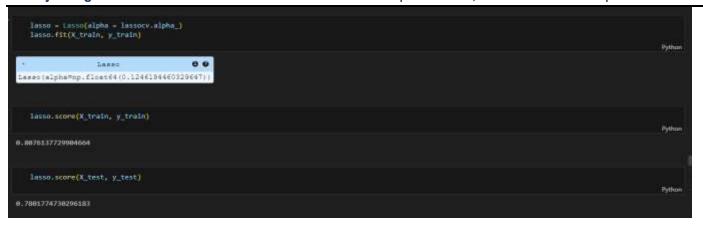
for col in X.columns:
    if plotnumber <= R:
        ax = plt.subplot(3, 2, plotnumber)
        ans.boxplot(X[col])
        plt.xlabel(col, fontsize = 15)

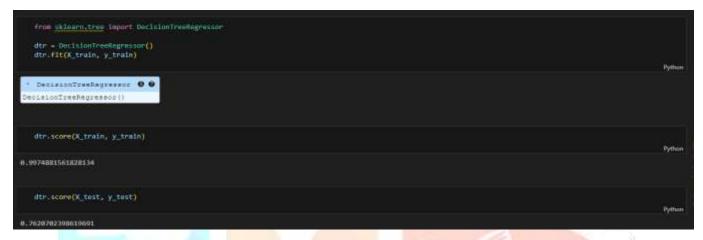
plotnumber += 1
plt.tight_layout()
plt.show()</pre>

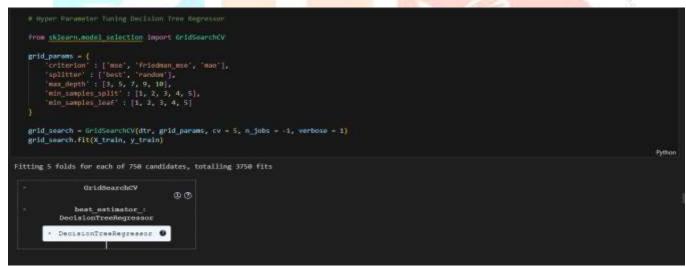
Python
```



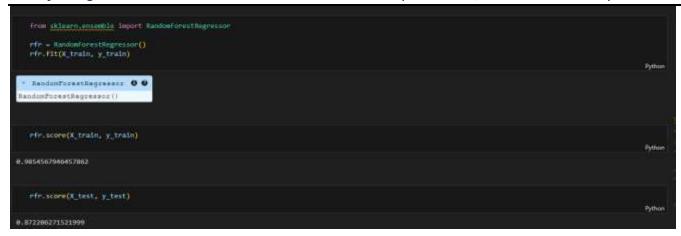






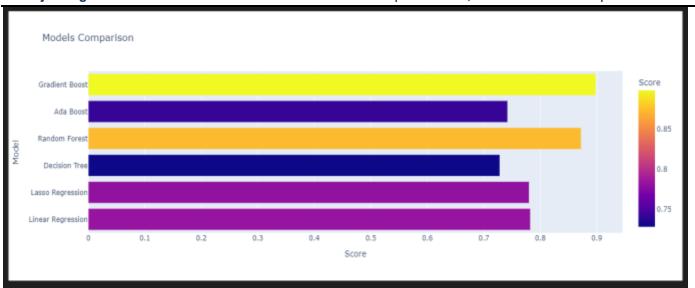


```
print(grid_search.best_params_)
   print(grid_search_best_score_)
('criterion': 'friedwan_mse', 'max_depth': 10, 'min_samples_leaf': 1, 'min_samples_split': 4, 'splitter': 'best'}
   dtr = DecisionTreeRegressor(criterion = "friedman_mon", max_depth = 10, min_samples_leaf = 1, min_samples_split = 2, splitter = "random") dtr.fit(X_train, y_train)
                               DecisionTreeRegressor
                                                                                     ...
DecisionTreeRegressor(criterion='friedman_mse', max_depth=10, splitter='rando
```




```
px.bar(data_frame = models, x = 'Score', y = 'Model', color = 'Score', title = 'Models Comparison')

Python
```



5. Conclusion

Based on the results, the **Gradient Boosting Regressor** achieved the highest accuracy (0.9285), making it the most effective model for predicting cement strength. Among all models tested, **Gradient Boosting outperformed Random Forest and Decision Tree**, highlighting its superiority in this application. These models can be further optimized through **feature engineering**, **hyperparameter tuning**, **or deep learning approaches** to enhance prediction accuracy.

This analysis underscores the crucial role of machine learning in predicting concrete strength, offering valuable insights for the construction industry. Additionally, integrating IoT and AI/ML in cement production enables real-time monitoring, predictive maintenance, and energy efficiency optimization. By leveraging smart sensors, predictive analytics, and reinforcement learning, manufacturers can reduce operational costs and carbon emissions.

Future research should focus on AI-driven carbon capture, alternative fuels, and self-regulating production systems to advance sustainable cement technology and drive the industry toward greater efficiency and environmental responsibility.

6. Reference

- 1. **IEEE Xplore** *Prediction of Cement Strength using Machine Learning Approach*. This paper discusses various machine learning models, including Gradient Boosting, for predicting cement strength. <u>Read here (Prediction of Cement Strength using Machine Learning Approach | IEEE Conference Publication | IEEE Xplore).</u>
- 2. **SpringerLink** *Machine Learning for Predicting Concrete Compressive Strength*. This research examines different ML techniques for improving prediction accuracy.
- 3. **ScienceDirect** *AI in Sustainable Cement Manufacturing*. Focuses on IoT, predictive maintenance, and AI-driven optimization in cement production.