IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Nutritrack – Real Time Foodfuel Monitoring System

Dipak S. Bhad, Pratik V. Choudhary, Swapnil A. Tayde, Shrirang S. Awaghad, Ms. Rani S. Lande,

Information Technology,

Prof Ram Meghe College of Engineering and Management, Badnera-Amravati, India

Abstract: A growing need for effective dietary management tools has arisen due to an increasing prevalence of obesity and diet-related diseases. Here, a novel ML-based approach is introduced for food calorie detection. We leveraged large datasets with images of different types of food, along with the associated caloric value. Using convolutional neural networks (CNNs) and other machine learning algorithms, we trained models to predict food calories based on visual features. We also applied data preprocessing steps like image augmentation and normalization to improve model accuracy. Model accuracy was then tested through established metrics with high accuracy within caloric estimation. These results suggest that our machinelearning framework can help users make better dietary decisions through real-time calorie data from food images. This study adds to the growing body of literature looking at nutritional technology as a means of scaling up calorie tracking and helping people eat healthier. Future research would be directed toward diversifying datasets and modeling to enhance precision and usability across a wide variety of food and culinary classes.

Keywords: Machine Learning, CNN, Prediction, Classification.

I. INTRODUCTION

The importance of a balanced diet and caloric intake management has become an elephant in the room with the global spread of obesity and diet-related health problems in recent years. The need for systematic tools to manage food is ever-growing and people are trying to have healthy food habits. Conventional approaches for monitoring dietary caloric consumption, including manual logging and estimation, are labor-intensive and far from accurate. This work identifies the development of food calorie and nutrient detection.

The rapid adoption of smartphones combined with improvements in computer vision makes this a promising opportunity to make use of technology in helping individuals track their food intake. Through a series of machine learning algorithms, we can create a machine that, when given an image of food, can provide

a rough estimate of the caloric amount present in the food displayed in the image. Real-time analysis is, therefore, this method not only-it is simplifying the calorie tracking system, but also makes it possible to users.

This hands-on project builds a solid framework for predicting food classification and calories and nutrient content of the food using CNN and other ML classification models from images. We will collect in an exhaustive dataset that covers all kinds of food, so the model can be applied to any diet and any culinary tradition.

This research has the potential not only for individual-level applications but also populational-level implications, as our goal of allowing users to know the calories of the menu of stores would lead to better habits, thus contributing towards improving public health and addressing to the issue of obesity and related diseases. This introduction suggests the importance of the problem, personal diet management capabilities also through machine learning and the focus of our project, as a basis for a comprehensive extraction and elaboration of our methods and results.

II. LITERATURE REVIEW

2.1 INDIAN FOOD:

Obesity and overweight are a growing worldwide concern, threatening millions of children and adults, especially in certain regions such as Africa and Asia. According to the latest estimates, 38.2 million children under the age of 5 were overweight or obese worldwide in 2019. Tracking daily food intake and calories can be a mundane and strenuous task when done manually. In order to overcome this issue, a new method is proposed by using a Convolutional Neural Network (CNN) -based technique, which is YOLOv8, to detect food items and to calculate the calories of their values [12].

Whereas InceptionV3 and like models are computationally costly and inaccurate, YOLOv8 performs a single step for real-time object detection, improving speed and efficiency. In this research proposed model would to facilitating the users to identify food calories by feeding images/Videos of food that they are going to eat. Preliminary training results indicate that YOLOv8 was able to identify 30 categories of food images with high accuracy at 93.1% over 48 epochs, marking a significant advancement in dietary tracking technology [3].

Sr.	Paper	Author	Published	Doman	Methodology	Algorithm	Our
No	Name	Name	Year				finding
1.	Indian Food	V.Gayatri	2023	Deep	The CNN-based	CNN, The	Accuracy of
	Recognition	.M.Thanua		Learning	model called	YOLO	the model
	and Calorie	and et. al.			YOLOV8 is	(You Only	using this
	Estimation				used for food	Look Once)	methodology
	using				recognition. It is	algorithm in	is 93.1%.
	Yolov8				trained on the	an	
					dataset from	Object	
					Roboflow.	detection	
						algorithm	
						Used.	
2.	Food	Maganti	2024	Machine	Machine	CNN	The system's
	Recognition	Vasudha,	$-\sqrt{1}$	learning	learning, CNN		99.89%
	and Calorie	D.					accuracy in
	Measureme	Rashmi,					food
	nt Using	and B. A.					detection and
	Machine	Mahalaksh					calorie
	Learning	mi Jain					measurement
				7		10	demonstrates
		13X				$C_{I,I}$	its
		\sim					dependability and
				_			distinguishes
							it from
							competing
							options.
3.	Food	V	2019	Deep	Deep Learning,	Convolutional	Our
	Recognition	Hemalatha		Learning	Convolutional	Neural	experimental
	and Calorie			· ·	Neural Network	Network	results on
		Soumya					food
	nt using	Kumari					recognition
	Image	et.al.					showed
	Processing						78.7% testing
	and						accuracy with
	Convolution						93.29%
	al Neural						training

www.ijcrt.org	© 2025 IJ	© 2025 IJCRT Volume 13, Issue 3 March 2025 ISSN: 2320-2882				
Network			accuracy.			

Table No. 1 – Indian Food

2.2 Fruits and Vegetables:

This study applied a methodology that was composed of three main modules: object detection, image segmentation, and calorie estimation. As the researchers stated, the Faster R-CNN algorithm was used for object detection, which showed its speed in recognizing food particulars. Consequently, the Grab Cut algorithm was chosen for image segmentation to separate the food from its background. In the end, the volume of the marked food was calculated taking into account the shape and then the estimates were derived on the basis of predefined formulas that relate calorie content to the mass and volume of the food. The studies presented a very high level of accuracy in the estimation of calorie, which indicated the validity of the proposed idea [12] [13].

Sr.	Paper	Author	Published	Domain	Methodology	Algorithm	Our	
No	Name	Name	Year				findings	
1.	Food	Wasif Sh <mark>aikh</mark>	2019	Deep	Initially, the	Faster R-	Using	
	calorie	Mohd. et a <mark>l.</mark>	Ţ	Learning	dataset is	CNN	Faster	
	estimation				manually	And Grab	R-CNN	
	using				created.	Cut	and	
	machine				Then the Faster	Algorithm	Grabcut	
	learning				R-CNN model		Algorith	
	and image				is trained for		m	
	processing				food		model	
					detection and		achieved	
					Grabcut for seg-		90%	
					segmentation.		accuracy.	
					After that the			
					calorie lookup			
					table to generate			
					output.			
2.	Food	Narayana	2021	Deep	The model	Mask R-	Use	
	Image	Darapaneni,		Learning	employs Mask	CNN	Mask R-	
	Recogniti	Anwesh			R-CNN deep	Algorithm is	CNN	
	on and	Reddy Paduri			learning	used for	technique	
	Calorie	et.al.			technique for	image	to create	
	Prediction				the mask	recognition	mask and	
IJCI	IJCRT2503504 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e428							

vww.ijc	rt.org		© 20	25 IJCRT Vol	lume 13, Issue 3 Mar	rch 2025 ISSN: 2	320-2882
						and calorie	bounding
						prediction is	boxes.
						done using	
						approximate	
						proportion	
						approach	
						format.	
3.	Lightweig	Rakib Ul	2022	Convolutio	data set	CNN	optimum
	ht and	Haque, Razib		n Neural	selection, data		CNN
	Parameter	Hayat Khan,		Networks	set pre-		model is
	-	A. S. M.		(CNN)	processing, data		develope
	Optimized	Shihavuddin			augmentation,		d,
	Real-Time	et.al.			and model		experime
	Food				construction.		nting with
	Calorie						varied
	Estimation						configura
	from						tions and
	Images						scoring
	Using						around
	CNN-						85% in
	Based						accuracy.
	Approach					01	
							1

Table No. 2 – Fruits and Vegetables

2.3 Fast food:

This study is focusing on a new method which improves the segmentation of images for the purpose of speeding up the process for a better recognition and classification of the food items that are available in various dishes, a process that is used in the educational program for learning to eat healthier. Data from the UNIMIB database is collected then pre-processing is done before the analysis is done. The research is gaining ground in the use of a mix of sophisticated methods that include Faster R-CNN which is good in detecting foods and RefineNet which is another method good for precise segmentation of food components. By using these ways, the use of machine learning algorithms and their capability to identify and analyze food products automatically are the better. Such an approach is a worthwhile avenue for promoting nutrition and health monitoring, making it possible to be more accurate in dietary assessment and intervention strategies [9].

A convolutional neural network (CNN) is a feed-forward algorithm for food detection and calorie estimation, based on Inception V3 and ResNet models. It is one of the systems that can recognize multiple foods in one image with a high accuracy rate with a group comprised of 23 categories of food and probably over 23,000 images. The system's evaluations performed well as it showed probabilities for foods such as

hamburgers (99.69%) and donuts (99.88%). The future the idea of creating an app with an embedded calorie counter according to the medical data of the user. The limitations are visual confusion between similar-looking foods and the affectation of the accuracy of detection by differences in image angles [8].

Sr.	Paper	Author	Published	Domain	Methodology	Algorith	Our
No	Name	Name	Year			m	finding
1.	Refined	Parth	2021	Deep	First, data is	Faster R-	After
	Image Seg-	Poply,		Learnin	collected from the	CNN and	training
	Segmentati	J. Angel		g	UNIMIB	RefineNet	model on
	on for	Arul			database and data		UNIMIB
	Calorie	Jothi,			pre-processing is		2016
	Estimation	and et.			done. For food		database
	of Multi-	al.			detection and		accuracy
	plet Dish				segmentation		obtained
	Food Items.				the Faster R-		for single
					CNN and		food items
					RefineNet are		is
					used resetively.		90.80%,
							and for
							whole meal
	1 2					101	it is
		*				Citta	93.06%.
2.	FoodieCal:	Shahri	2021	Deep	Initially con-	Inception V3 a	For certain
	A	ar		Learnin	structing da-	convo-	fast food
	Convolu-	Ahme		g	taset,then Data	lutional	items the
	tional	d			pre-processing.	neural	model was
	Neural	Ayon,			After that train-	network	96%
	Network	Abir			ing the Inception	(CNN)	accurate
	Based	Bin			V3	model	and for
	Food	Yousu			model and ana-		some less
	Detection	f and			lyzing outputs.		than that.
	and						
	Calorie es-	et. al.					
	timation						
	system						
					Foot Food		

Table No. 3 – Fast Food

Methodology	Purpose	Techniques	Advantages	Limitations	Example Use
		Used			Case
Image	Classify food items	CNNs, Transfer	Fast, simple for	Cannot handle	Identifying
Classification	from images	Learning	single-item	multiple food	"Pizza" or
		(VGG16,	images	items	"Burger" from
		ResNet)			an image
Object	Detect and locate	YOLO, Faster	Handles	Requires large	Detecting
Detection	multiple foods	R-CNN	multiple food	datasets,	"Apple" and
			items, real-time	complex models	"Sandwich" on
					a plate
Regression	Predict calorie	Linear	Easy to	Requires	Predicting "200
Models	values	Regression,	interpret,	accurate feature	kcal" for a
		XGBoost,	efficient for	extraction	banana
		Random Forest	numeric		
			predictions		
Semantic	Identify food	U-Net,	Pixel-wise	Computationally	Distinguishing
Segmentation	portions and shape	DeepLab	accuracy, useful	expensive,	rice from curry
			for mixed	n <mark>eeds precise</mark>	on a plate
هو ا	6		dishes	labeling	
Mult <mark>imo</mark> dal	Combine images	Vision	Improves	Complex	Using image
Learning	and text	Transformers	accuracy by	implementation,	and description
		(ViT), BERT	using multiple	needs multi-	for calorie
			data types	format data	estimation
Generative	Simulate food	GANs	Data	High training	Generating food
Models	characteristics	(Generative	augmentation,	time, complex	images to
		Adversarial	improves model	to fine-tune	enhance
		Networks)	generalization		prediction
					models

Table No. 4- Different Methodology Available for food classification with strength and Limitations

Methodology	Purpose	Techniques Used	Strengths	Limitations
Image-Based	Predict calories	CNNs, YOLO,	- Works well with	- Requires large
Prediction	from food images	Faster R-CNN, U-	visual food	labeled image
		Net, and DeepLab	identification	datasets
			- Useful for real-	
			time applications	
Ingredient-Based	Estimate calories	NLP models	- Accurate for	- Requires detailed
Prediction	from ingredient lists	(BERT),	known ingredient	and accurate
		Regression (Linear,	compositions	ingredient input
		RF)	- Handles textual	- Struggles with
			data effectively	portion size
				estimation
Volume and Portion	Measure food	Depth Estimation	- Improves	- Needs specialized
Estimation	portions to calculate	(Stereo Vision,	accuracy by	hardware (3D
	calories	LiDAR), Geometric	assessing portion	cameras)
		Models	size	- Difficult for
			- Useful for multi-	irregular food
			item meals	shapes
Multimodal	Combine multiple	Vision-Transformer	- More accurate by	- Computationally
Learning	data sources (image	(ViT), BERT, and	integrating diverse	intensive
	+ text)	Fusion Models	data	- Requires
		-11	- Handles both	advanced models
	3		image and textual	and large datasets
			input	
Regression Models	Predict calories	Linear Regression,	- Fast and	- Limited in
	from quantitative	XGBoost, Random	computationally	capturing complex
	features	Forest	efficient	food patterns
Deep Learning	Model complex	Feedforward Neural	- Captures complex,	- Requires
Models	patterns for calorie	Networks (FNN),	non-linear	extensive training
	prediction	RNN	relationships	and large data
	l	1	1	1

Table No. 5 - Different methodologies available for food classification with strengths and limitations

III. MATHEMATICAL MODEL FOR FOOD CALORIE PREDICTION

A mathematical model for food calorie detection generally involves identifying the nutritional content of a food item (especially its macronutrient breakdown: carbohydrates, proteins, and fats) and calculating the total caloric content based on these macronutrients.

1. Caloric Values for Macronutrients:

Every food we eat gets its calories from three main macronutrients — carbohydrates, proteins, and fats — each contributing a different amount of energy:

- Carbohydrates: 4 calories per gram
- Proteins: 4 calories per gram
- Fats: 9 calories per gram

Calculating Total Calories:

To figure out the total number of calories in a food item, we use a simple formula:

Calories from food=(Carbs $(g)\times 4$)+(Proteins $(g)\times 4$)+(Fats $(g)\times 9$)

2. Estimating Calories Using Nutritional Data:

We can build a food calorie detection model using machine learning, trained on data that links food items to their calorie counts.

This data usually includes details about the nutritional content of each food — like the amount of carbs, proteins, fats, and even micronutrients.

By learning from this information, the model can predict the calorie content of a food item based on its nutritional makeup, giving a more accurate estimate of its energy content.

3. Using a Regression Model:

Regression models, a type of machine learning technique, can be used to estimate the calorie content of food items.

A simple linear regression model can predict the total calories by taking the grams of macronutrients (carbs, proteins, and fats) as input. For more complex datasets, we can use advanced methods like multiple linear regression, decision trees, or even neural networks to capture deeper patterns in the data.

These models help create more accurate calorie predictions by learning how different nutrients contribute to the overall energy content of food.

4. Example of Simple Linear Regression Model:

Food Item	Carbs (g)	Proteins (g)	Fats (g)	Calories (kcal)
Apple	25	0.5	0.2	95
Chicken (100g	0	30	3.5	165
Avocado (100g)	9	2	15	240

From this data, a simple regression model could be trained to predict calories based on the input macronutrients.

5. Advanced Approaches (Using Computer Vision):

For more advanced approaches — like in mobile apps or food detection systems — we can use computer vision (CV) models to estimate calories directly from food images.

Here's how it works:

- 1. **Food Detection:** The model analyzes the image to identify the food item.
- 2. **Nutrient Estimation:** It then estimates the macronutrient content (like carbs, proteins, and fats), often by referencing a food database.
- 3. **Calorie Calculation:** Finally, the model uses this nutritional information to calculate the total calories.

These deep learning models — especially convolutional neural networks (CNNs) — are powerful tools for recognizing food items and predicting their calorie content with impressive accuracy.

For example:

Predicted Calories=f(Detected Food Item)

Where f() is a mapping function learned from historical data.

6. Food Database Integration:

A crucial part of advanced calorie detection models is integrating a comprehensive food database — like the USDA Food Database or similar resources.

These databases store nutritional details for thousands of foods, including the amounts of carbs, proteins, fats, and other nutrients. Once the model identifies a food item, it can quickly pull the relevant nutritional data from the database. This allows for more accurate calorie estimates by combining real-world food information with the model's predictions.

Fig 1. Block Diagram

IV. FUTURE SCOPE

AI-powered food recognition holds the future of the technology in the staggered graphics with some of the possibilities being enhanced nutritional analysis, food allergen, and seamless integration with kitchen appliances. These steps forward are right at the edge of changing the way of perception and handling of nutrition and controlling dietary habits.

We designed a food model that can be used to describe, detect, and identify several food types from multiple regions and cuisines. Moreover, we plan to make our dataset that has a large number of food types.

V. CONCLUSION

There are existing models out there that can only calculate calories for a single food item at a time, and the project will be to propose a model of a new one that can approximately estimate the calories of various items in a single dish. The model will be the ML model. These methods developed will facilitate accurate estimates and data sharing for this pilot study.

With hands-on experience and development opportunities, even otherwise unengaged students would be motivated and engaged for higher grades combined with social benefits that follow "newcomer" behavior. By including the meals and their interactions and combinations, our real-world model not only will give a more realistic calculation but will also help you to stay on track and consume well-balanced meals.

REFERENCES

- [1]. Automated Food Prediction Using Deep Learning with Calorie Estimation Algorithm | R. SAMUNDI, G. S. GUNANIDHI, R. KARTHIKEYAN | In March 2024 From IRE Journals | Volume 7
- [2]. A Study on Food Value Estimation from Images: Taxonomies, Datasets, and Techniques | JAMALIA SULTANA1, BENZIR MD AHMED1,3, MOHAMMAD MEHEDY MASUD2, A.K. OBIDUL HUQ4, MOHAMMEDEUNUSALI1, ANDMAHMUDANAZNIN1(Member, IEEE) | in 2023 | IEEE Acess.
- [3]. INDIAN FOOD RECOGNITION AND CALORIE ESTIMATION USING YOLOV8, |1V.Gayatri, 2M.Thanuja | In 2023 | IJCRT Journal volume 11.
- [4]. Food Recognition and Calorie Measurement Using Machine Learning | Maganti Vasudha, D. Rashmi, and B. A. Mahalakshmi Jain | in 2023 | Proceedings fifth internation conference on computer and communication technology IC3T 2023 volume1.
- [5]. Food Calorie Estimation Using Convolutional Neural Network | Mrs. Srilatha Puli, Mrs. S. Sunitha Surarapu, K. Prajitha, A. Shreshta, G. Nikhil Reddy, K. Vijay Simha Reddy | in 2023 | Journal of Survey in Fisheries Sciences.
- [6]. Food Image Recognition and Calorie Estimation Using Object Detection Algorithms | Manoj Kumar Yuganathan | in 2023 | National College of Ireland research paper.
- [7] FoodieCal: A Convolutional Neural Network-Based Food Detection and Calorie Estimation System | Shahriar Ahmed Ayon,

Chowdhury Zerif Mashraf, Abir Bin Yousuf | 2021 National Computing Colleges Conference (NCCC).

[8]. Food Image Recognition and Calorie Prediction | Narayana Darapaneni, Subhav Kataria, Anwesh Reddy Paduri, Vishal Singh,

Nayana Bansal | in 2021 | 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS).

- [9]. Refined image segmentation for calorie estimation of multiple-dish food items | parth poply, J.Angel, Arul Jothi | in 2021 | Research paper.
- [10]. Study for Food Recognition System Using Deep Learning | Nareen O. M.Salim, Subhi R. M. Zeebaree, Mohammed A. M.Sadeeq, A. H. Radie, Hanan M. Shukur, Zryan Najat Rashid | in 2021 | 2nd International Conference on Physics and Applied Sciences (ICPAS 2021).
- [11]. Food calorie estimation using machine learning and image processing | Shaikh Mohd. Wasif, Swapnil Thakery, Amir Nagauri, Sheetal Ignatius Pereira | in 2019 | International Journal of Advance Research, Ideas and Innovations in Technology (IJARIIT 2019).
- [12]. Food Recognition and Calorie Measurement using Image Processing and Convolutional Neural Network | V. Hemalatha Reddy; Soumya Kumari; Vinitha Muralidharan | 2019 4th International Conference on Recent Trends on Electronics, Information,

Communication & Technology (RTEICT) | 2019

[13]. Lightweight and Parameter-Optimized Real-Time Food Calorie Estimation from Images Using CNN-Based Approach \mid Rakib Ul Haque 1,2 , Razib Hayat Khan 1,2 A. S. M. Shihavuddin \mid MDPI \mid 27 September 2022

[14]. Food Recognition and Calorie Measurement Using Machine Learning | Maganti Vasudha, D. Rashmi, and B. A. Mahalakshmi Jain | Proceedings of Fifth International Conference on Computer and Communication Technologies | IC3T 2023, Volume 1 www.ijcrt.org

[15]. FOOD IMAGE RECOGNITION AND CALORIE PREDICTION | Nisha P.K1, Basil Kunjumon 2, Ajin Johnson3, Abhiram K Rajan4, Adams Jacob 5 | International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 04 | Apr 2024

