www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

APy, 'NTERNATIONAL JOURNAL OF CREATIVE
@99 RESEARCH THOUGHTS (1JCRT)

& An International Open Access, Peer-reviewed, Refereed Journal

Assessing Coding Efficiency Cocomo-lii Methods
And Object Orientated Metrics Are Used. Enhance
Software Defects

Neeta Mourya, Shanu K Rakesh Department of computer science and Engineering, Chouksey Engineering
College, Bilaspur Chhattisgarh 495004, INDIA

Abstract: Software development has gotten increasingly sophisticated and demanding, necessitating attention
to even minor details. Problems in software development include quality degradation, cost, and schedule
overruns.

Software organizations rely on measurement programs to control quality, evaluate errors, and manage costs
during development. To measure effectively, software metrics must be continuously evaluated and integrated
into the development process. Object-oriented design metrics quantify the quality of a class and its attributes.

This paper recommends using a combination of methods to improve coding efficiency and accuracy when
evaluating projects using object-oriented approaches, including MOOD Metrics, CK metrics, and COCOMO-
I1l. Using object-oriented ways to evaluate code helps identify certain factors. This directly addresses the
software's quality. These findings can help enhance software estimation, quality training, and research, leading
to more accurate project milestone estimates and fault-free software systems.

Index Terms - Object-oriented, mood, CK, COCOMO, Defects, measurement, code, etc.
. INTRODUCTION

Software engineering creates a strategy for software development within a specific scope. Schedule and effort,
with the necessary quality. Object-oriented design metrics are vital in the software environment. Analyzing
metrics aims to improve software quality.

Software metrics have become crucial in software engineering. Software developers assess software
characteristics to ensure consistent and full requirements, high-quality design, and testable code. Effective
project managers evaluate process and product attributes to determine when software is ready for delivery and
if budget has been exceeded.

Regular feedback from the development process helps determine the progress of tasks and projects. Tracking
allows project managers to address unanticipated situations.

I1. PROJECT MANAGEMENT
Project management involves organizing and managing a team to perform work within a set scope, quality,

schedule, and cost restrictions. Project management involves identifying necessary activities and allocating
resources accordingly.

IJCRT2502835 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | h96

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

I1l. Cocomo Il MODEL

The COCOMO Il model is an update on the popular COCOMO |1 Software Cost Estimation Model.
* A draft version of the model has been formulated and the next step is to calibrate the model to real-world
data.

* The updates to the new model include

— functional size inputs

— a new Software Security parameter

— removal of a couple of COCOMO Il parameters

— an update to some of the pre-existing COCOMO Il parameters

— “Pre-Sets” to cost driver values based on application domain

0 Real-Time

0 Engineering

0 Automated Information Systems

lv. ComPARISON OF THE CocomMO MODEL

The "Cocomo 3 tools™ generally refer to the three levels of the COCOMO model in software engineering: Basic
COCOMO, Intermediate COCOMO, and Detailed COCOMO,; each increasing in complexity by incorporating
more detailed cost drivers, allowing for more accurate estimations based on project attributes like product
complexity, hardware constraints, and team experience, making the Detailed COCOMO the most precise but
also the most time-consuming to use.

Key Differences between the COCOMO levels:
Basic COCOMO:
Simplest model, only considering the size of the software (lines of code) to estimate effort and development
time.
Useful for quick, rough estimations on small projects.
Intermediate COCOMO:
Introduces a set of “cost drivers™ (e.g., product reliability, developer experience, platform complexity) which
are used to adjust the effort estimate based on project characteristics.
Provides a more accurate estimate for medium-sized projects with moderate complexity.
Detailed COCOMO:
Most complex model, further breaking down the project into modules and applying cost drivers to each module
individually.
Offers the most precise estimation but requires extensive project details and is best suited for large, complex
projects with diverse components.

Important points to consider when comparing COCOMO tools:
Accuracy: Detailed COCOMO generally provides the most accurate estimations, followed by Intermediate and
then Basic.
Complexity: Basic COCOMO is the easiest to use, while Detailed COCOMO requires a significant amount of
project information to be effective.
Application: Use Basic COCOMO for quick estimations, Intermediate for most projects, and detailed for highly
complex projects with diverse requirements.

V. INTERNAL QUALITY OF O0OD

Internal quality of Object-Oriented Design (OOD) refers to characteristics like maintainability, readability,
and testability. Here are some other things to consider when evaluating the quality of OOD:

Inheritance: While inheritance is useful for reusing code, it can go against the goal of decoupled classes.
Composition: Composition is another way to achieve code reuse.

Type versus class: A type is an interface, which is a collection of methods that an object responds to.
Design for change: Patterns can help address changes that might otherwise require redesign.

IJCRT2502835 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | h97

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

e Application framework: An application framework is a set of libraries or classes that can be used to
implement the standard structure of an application. This can save time for developers by reducing the
amount of code they need to rewrite for each new application.

e Persistent objects: Identify objects that need to last longer than a single application runtime.

e Remote objects: Identify and define remote objects and their variations.

V1. MooD METRICS

Application quality is critical to the development of software systems, especially large-scale ones. High quality
software would reduce the cost of software maintenance, and it enhances the potential software reuse.

In order to measure the software quality more quantitatively and objectively, software metrics (MOOD) give
impression to be a powerful and effective methodology that decide a grade to an object-oriented application.
So, in this section, we will discuss the mood factors to assess an object-oriented application.

The MOOD set includes the Method Hiding Factor (MHF), Attribute Hiding Factor (AHF), Method Inheritance
Factor (MIF), Attribute Inheritance Factor (AIF), Polymorphism Factor (POF) and Coupling Factor (COF).
These metrics are defined at the system or subsystem3 level while in other approaches, such as the well know
set proposed in [Chidamber94], the metrics are defined at the class level. Each MOOD metric is associated
with such basic structural mechanisms of the object-oriented paradigm as encapsulation (MHF and AHF),
inheritance (MIF and AIF), polymorphism (POF) or message-passing and association (COF). The
mathematical definition of each MOOD metric will be introduced after the underlying basic concepts are made
clear. Each metric is expressed as a quotient where the numerator represents the actual use of one of those
mechanisms for a given design.

The denominator, acting as a normalizer, represents the hypothetical maximum achievable use for the same
mechanism within the same universe of discourse that is, considering the same classes and inheritance relations.
As a consequence, these metrics are expressed as percentages, ranging from 0% (no use) to 100% (maximum
use) and thus are dimensionless. This avoids the misleading, subjective or "artificial” units that are often found
in the metrics literature. Being formally defined, the MOOD metrics avoid subjectivity of measurement and
thus allow replicability. In other words, different people at different times or places can yield the same values
when measuring the same systems.

VIIl. CK METRICS

The CK Metrics Suite comprises six metrics, each providing insights into different aspects of software
design and implementation. These metrics serve as invaluable indicators for various dimensions of software
quality:

7.1 Weighted Methods per Class (WMC):
Measures the complexity of a class by assessing the sum of complexities of its methods.
Identifies potential code smells and helps in evaluating maintainability.

7.2 Depth of Inheritance Tree (DIT):
Indicates the maximum length from the node to the root of the inheritance tree.
Offers insights into the hierarchical structure of the classes and potential complexity.

7.3 Number of Children (NOC):
Represents the number of immediate subclasses a class has.
Provides an understanding of class reuse and potential dependencies.

7.4 Coupling Between Object Classes (CBO):
Measures the number of classes to which a class is coupled.
Helps in evaluating the level of interdependence among classes.

7.5 Response for a Class (RFC):
Counts the number of methods that can potentially be executed in response to a message received by an
object of the class.

IJCRT2502835 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | h98

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

Highlights the potential interactions and responsibilities of a class.

7.6 Lack of Cohesion in Methods (LCOM):
Measures the lack of cohesion among methods in a class.
Indicates how closely related or unrelated the methods within a class are.

VIII. FACTOR CALCULATION

8.1 Method Hiding Factor (MHF)
MHF can be calculates by using the following mathematical formula:

TC
wip = ZELMA (G
i=1 Mﬂ‘ {Ei)
Where,
Mh(Ci) = hidden Methods in class Ci
Ma(Ci) = My(Ci) + My(Ci): Methods defined in C;
M,(Ci): visible Methods in class C;
TC: Total number of Classes

8.2 Attribute Hiding Factors (AHF)
AHF can be calculates by using the following mathematical formula:

_ h{ca)
AHF =St 6

Where,

An(Ci) = hidden attributes in class C;

Ad(Ci) = Ay(Ci) + An(Ci): attributes defined in C;
Ay(Ci): visible attributes in class Ci

TC: Total number of classes

8.3 Inheritance Factor (MIF)
MIF can be calculated by using the following mathematical formula:

i m(cy)

MIF =
J,Tfl Mu{ﬂi)

Where,

Mi: inherited methods

Ma(Ci) = My(Ci) + Mi(Ci): attributes defined in C;
Mad(Ci): defined methods

TC: Total number of classes

At first sight, we might be tempted to think that inheritance should be used extensively. However, the
composition of several inheritance relations builds a directed acyclic graph (inheritance hierarchy tree), whose
depth and width make understandability and testability fade away quickly [1,2,3,4].

8.4 Attribute Inheritance Factor (AlF)
AIF can be calculated by using the following mathematical formula:

X5 Alc)

AIF =
¥ A.(C)

Where,

An(Ci) = hidden attributes in class Ci

Ad(Ci) = Av(Cj) + An(Cj): attributes defined in C;

IJCRT2502835 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | h99

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

Av(Ci): visible attributes in class C;
TC: Total number of classes

8.5 Coupling Factor (COF)
It measures the coupling between classes.
COF can be calculated by using the following mathematical formula:

Eﬁ\z is_client (C' Q‘

IC*-1C

Where,
Is client (C¢,Cs) =| 1 if (Cc=>Cs)N(Cc#Cs) , 0 otherwise
TC: It denotes the total number of classes.

8.6 Polymorphism Factor (POF)
Polymorphism means having the ability to take several forms. In OO systems, polymorphism allows the
implementation of a given operation to be dependent on the object that "contains" the operation 2, 3, 4, and
6.

I¢
" ()

POF = Ic
Y M(CXDC(C)

Where,

Mo(Ci): overriding Methods in class Ci

Mn(Ci): new Methods in class Ci

Dc(Ci): number of Descendants of Class Ci (derived classes)
TC: Total number of Classes

IX. PROGRAMMER CODING EVALUATION AND PERFORMANCE MEASUREMENT

Our strategy prioritized programmer efficiency and skill. This tool evaluates and analyses software metrics
using Chidamber & Kemerer and MOOD metrics for typical Java libraries and applications. It also adds Java
bindings for these metrics. Examining the results provides insights into how different technologies execute
object-oriented approaches. Combining this knowledge with validation studies from other academics helps
optimize software design and save costly maintenance duties, resulting in higher-quality software. The tool
was created for the project management team, who are responsible for completing the project.

Programmer2 | Programmer..n

Programmerl

OBJECT ORIENTED
CALIBRATION TOOL (OOCT)

l

DECTECT OBIECT ORIENTED
FEATURE’S

DATA BASE

COLLECT
ALL OBJECT
ORIENTED

FEATURES

FOR EACH
PROGRAMMER
INDIVIDUALLY

Fig 9.1 programmer coding key evaluation

IJCRT2502835 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | h100

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

Metric-based examination of programming language libraries can reveal structural and design similarities
between them. Thus, we can get a more generalized picture of

Software design heuristics. Analysis data can expose the intrinsic complexity of standard libraries, which may
be inherited by software applications that use them. Additional future research directions.

DATA BASE

COLLECT ALL
OBJECT

ORIENTED
FEATURES

FOR EACH
PROGRAMMER
INDIVIDUALLY

MOOD COCOMO-
MATRICES MODEL

1L 1L

INTEGRATED CALIBRATION J
TOOL (ICT)

SOFTWARE J |’ - -
DEFECT (BAR GRAPH, PIE :: SOFTWARE DEFECT]

CHART) COMPARING

CODING STUDY
EFFICENCY

Fig 9.2 coding evaluation & performance measurement.

PROJECT
ESTIMATION

DEFECT EVALUATION

Defect evaluation is the process of assessing the quality of a product or material to identify and characterize
any defects. It can involve collecting and analysing data, creating defect evaluation lists, and developing
defect pattern libraries.

Applications:

1. Pharmaceutical manufacturing

Defect evaluation lists and defect pattern libraries are used to assess the quality of batches of pharmaceutical
products.

2. Packaging

Defect evaluation lists help manufacturers and suppliers deal with customers and ensure quality assurance.
3. Composite materials

Defect evaluation can involve using ultrasonic reflections to detect defects in complex microstructures.

4. Pipelines

Defect evaluation can involve assessing the geometry of corrosion defects to determine residual strength and
failure pressure.

Steps

1. Identify and list potential defects

2. Categorize potential defects

3. Create a defect pattern library

4. Create a defect evaluation list

5. Analise data to determine defect frequency and behaviour

6. Compare defect evaluation results to other methods, such as X-ray CT scans.

Related terms Defect detection, Defect assessment, Defect evaluation lists, and Defect pattern libraries.

IJCRT2502835 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | h101

http://www.ijcrt.org/

XI.

XII.

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

FUTURE WORK

Analysis a specific set of object-oriented metrics for various Java technology libraries. A similar analysis can
be performed for other competing technologies such as .NET C++ etc. CK and MOOD belong to the class of
structural and complexity metrics. We can also evaluate the efficiency with the help of Al technology.

e Programmer coding evaluation using multimedia data.

e Training and Research area.

¢ Reduce execution time and space complexity.

e Better report generation of the project which can be a blueprint for forwarding engineering process.
¢ Better HR management.

e Better result of the program efficiency.

e Better to explain the project execution time.

REFERENCES

[1] Jaechang Nam , Wei Fu, Student Member, IEEE, Sunghun Kim, Member, IEEE, Tim Menzies , Member,
IEEE, and Lin Tan, Member, IEEE "Heterogeneous Defect Prediction” IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 44, NO. 9, SEPTEMBER 2018.

[2] Ping Cao a , Ke Yang b, Ke Liu ¢ "Optimal selection and release problem in software testing process: A
continuous time stochastic control approach" European Journal of Operational Research March 2, 2019.

[3] Magne Jorgensen and Martin Shepperd, "A Systematic Review of Software development Cost
Estimation Studies," IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 1,
JANUARY 2007.

[4] Tirimula Rao Benalaa, Rajib Mallb "DABE: Differential evolution in analogy-based software
development effort estimation “Swarm and Evolutionary Computation 38 (2018) 158—172.

[5] Manish Agrawal and Kaushal Chari "Software Effort, Quality, and Cycle Time: A Study of CMM Level
5 Projects" IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 3, MARCH 2007.
[6] Barbara A. Kitchenham, Robert T. Hughes, and Stephen G. Linkman, "Modelling Software
Measurement Data," IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 9,
SEPTEMBER 2001.

[7] Alexander Egyed, Member, IEEE "Automatically Detecting and Tracking Inconsistencies in Software
Design Models" IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2,
MARCH/APRIL 2011.

[8] Ning Nan and Donald E. Harter, Member, IEEE "Impact of Budget and Schedule Pressure on Software
Development Cycle Time and Effort" IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.
35, NO. 5, SEPTEMBER/OCTOBER 2009.

IJCRT2502835 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | h102

http://www.ijcrt.org/

