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Abstract 

Modern game design relies heavily on the 

development of intelligent and engaging enemy 

AI, especially in 2D games, where enemy behavior 

largely influences player experience. The 

traditional techniques used in AI scripted behavior 

and Finite State Machines are part of a top-down 

approach and result in a completely predictable, 

thus easily manageable, enemy action. However, 

there is usually no adaption to dynamic player 

behavior in these kinds of approaches, hence 

degrading gameplay depth and replay values 

greatly. On the other hand, adaptive AI techniques, 

such as genetic algorithms following the bottom-

up approach, promise more responsive and 

challenging behaviors from enemies but can also 

be complicated and resource-intensive in their 

implementation. 

This research investigates the practical 

implications, performance differences, and impacts 

on player experience between top-down and 

bottom-up AI approaches. In this study, a 2D game 

prototype with enemies controlled by both AI 

techniques is developed in order to systematically 

evaluate and compare the effectiveness of these 

methods. The aim is to provide insights into the 

strengths and limitations of each AI approach, 

hence guiding game developers in the selection of 

the most appropriate method for different gaming 

contexts. 

Keywords: Game AI, top-down AI, bottom-up AI, 

finite state machines (FSM), genetic algorithms. 

 

1.  INTRODUCTION  

 
 Artificial Intelligence (AI) has been one of the 
most integral parts of modern video game 

development[1]. It plays a pivotal role in enhancing 
interactivity and immersion within game 
environments, allowing for richer, more engaging 
experiences for players. In 2D games, enemy 
behavior significantly impacts player experience, 
often more than graphical quality. Well-designed 
enemy AI is such a core feature: it adds both 
challenge and depth to gameplay but also provides 
dynamic interactions that keep players invested[2]. 
 
 In most games, this is decided by the AI, which 
determines how enemies pursue, attack, and 
otherwise interact with the player—sometimes 
making their actions seem predictable, sometimes 
adaptive—depending on the design. Traditionally, 
enemy AI has been controlled by relatively simple 
techniques such as predefined scripts or Finite State 
Machines (FSMs)[3]. Such traditional methods fall 
under the "top-down" approach to AI design. This 
approach gives developers a sense of control over 
the enemy's actions by setting very distinct rules 
and behaviors for the AI, creating structured 
responses to player actions. However, this kind of 
predictability can detract from the challenge and 
replay value of a game if the AI is always going to 
behave in a certain way. 
 
 More adaptive AI techniques, sometimes called 
"bottom-up" approaches, have gained a lot of 
ground with the evolution of game development[4]. 
Inspired by principles such as natural selection and 
evolution, techniques like genetic algorithms (GAs) 
enable dynamic learning and adaptation in NPCs. 
Adaptive approaches, in that respect, could be said 
to offer less predictable and more emergent 
behavior, keeping players on their toes by changing 
and evolving enemy tactics as the player acts. 
While adaptive AI promises a more engaging 
experience, it also introduces huge complexity in 
terms of implementation, computational resources, 
and balancing the AI so as not to frustrate the 
player. 
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 This research is a probe into, and comparison 
between, a top-down versus a bottom-up approach 
to enemy AI—FSMs and GAs, respectively. The 
output of this project will be a 2D game prototype 
whereby these two types of AI control enemies—
one for the investigation into the impact each has 
on gameplay, performance, and player experience. 
The outcome of this would show the strengths and 
weaknesses of each technique, hence helping the 
game developers make decisions about future game 
AI designs. 
 

1.1 MOTIVATION 

 

The motivation behind this research lies in the 

evolving expectations of the modern gamer. 

Today's players demand more than impressive 

graphics and intricate storylines; they demand 

experience in which the in-game world reacts to 

their actions intelligently and in unexpected ways. 

This is especially true for enemy AI, which must 

present enough of a challenge while remaining fair 

and engaging throughout the game. In 2D games, 

where gameplay mechanics can be simpler than in 

3D titles, AI plays an even more central role in 

providing the challenge and variability that keeps 

players invested over time. 

 

Finite State Machines are a very popular AI 

technique that provides a pragmatic, rule-based 

approach and has been used to great success in 

numerous games for controlling NPC behaviours. 

An FSM separates the enemy's behaviour into 

different states—things like patrolling, chasing, or 

attacking—and the transitions between these states 

are triggered by certain conditions, such as the 

detection of the player. In this regard, this 

approach gives structure, and it is very easy to 

know how an enemy will behave in a given 

situation. While relatively easy to implement and 

manage, the rigidity of FSMs can also make them 

quite predictable; thus, players learn quickly how 

to manipulate the AI, diminishing the challenge of 

the game. 

 

On the other hand, genetic algorithms (GAs) 

provide a more flexible and adaptive approach to 

AI design. Simulating processes of evolution and 

natural selection allows AI-controlled characters to 

"learn" and adapt over time, thus generating 

dynamic responses that evolve with the player's 

behaviour. The potential of GAs to yield emergent, 

unpredictable gameplay experiences is huge, but 

their design and computational requirement 

complexity cannot go unnoticed. Adaptive AI, 

such as GAs, always needs to be tuned carefully to 

make sure the enemy remains a fair challenge 

without becoming too difficult or inefficient in the 

use of computational resources. 

 

This will be the major motivation for 

researching how these two approaches, 

fundamentally different in nature—FSMs and 

GAs—can impact the quality of enemy AI in 2D 

games. While FSMs bring predictability and 

control, GAs bring adaptability and emergent 

gameplay. Comparing both methods will uncover 

the strengths and weaknesses of each, hence 

helping developers in selecting the best AI 

approach to use according to the design goals and 

technical constraints of a game. 

 

1.2 RESEARCH OBJECTIVES 

 
1.2.1 To implement FSM-based enemy AI and 

observe its behavior in a 2D game 
environment: 

 

The aim is to build a 2D game where 

enemies are controlled using a Finite State Machine 

(FSM). By implementing this, the objective is to 

analyze how easy it is to set up and control enemy 

movements using FSMs. The research will focus on 

understanding the strengths of FSMs, like their 

simplicity, predictability, and clear behavior 

patterns, and observe how these factors contribute 

to the overall gameplay. 

 
1.2.2 To implement GA-based enemy AI and 

observe its behavior in a 2D game 
environment: 

 
The goal is to create another 2D game 

prototype with enemies controlled by Genetic 

Algorithms (GAs). This objective focuses on how 

GAs allow enemies to adapt based on player 

behavior and evolve over time. The study will 

examine the advantages of this adaptive nature, as 

well as any challenges, such as increased 

complexity in development or higher 

computational demands. 

 
1.2.3 To compare the behaviors of enemies 

controlled by FSMs and GAs in a 2D game 
environment: 

 

This objective is about directly comparing 

the two AI approaches—FSM and GA—based on 

how enemies behave in the game. The focus will be 

on identifying key differences in how structured 

FSM enemies are versus the more dynamic, 

evolving enemies controlled by GAs. By 

comparing both, the study will aim to highlight 

which approach provides more challenging or 

engaging enemy behavior. 
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1.2.4 To evaluate the technical challenges and 
resource demands of implementing FSMs 
and GAs: 

 

This objective will focus on the technical 

side of AI implementation, such as the difficulty of 

coding, the memory usage, and the processing 

power required for each method. The goal is to 

assess how easy or hard it is to work with FSMs 

and GAs, especially in the context of small, 

resource-limited projects. 

 

1.3 BACKGROUND STUDY 

 
1.3.1 Game Design: 
 

Game design is the process of defining the 

structure, objectives, and overall experience of a 

video game, forming the foundation for its 

mechanics, visuals, narratives, and player 

interactions. The goal is to create an immersive 

and engaging experience that motivates players to 

continue playing. In 2D games, design focuses on 

character movement, enemy behavior, level layout, 

and game flow, ensuring a cohesive and rewarding 

experience for players. 

 

A critical aspect of game design is 

establishing clear player objectives, such as 

solving puzzles, defeating enemies, or exploring 

environments. These objectives must be engaging 

and balanced to match the player’s skill level, 

providing challenges that are neither too easy nor 

overly difficult. Gameplay mechanics, which 

define the rules and systems of the game, dictate 

how players interact with the world. For example, 

platformer games rely on mechanics like jumping 

and avoiding obstacles, while strategy games 

emphasize resource management and decision-

making. 

 

Storytelling adds depth and context to the 

player’s actions, making objectives more 

meaningful. Even in 2D games, where mechanics 

often take center stage, a simple narrative can 

enhance the experience by giving purpose to the 

player’s journey. Visual and auditory design also 

play a significant role in shaping the game’s tone 

and atmosphere. Art styles, such as pixel art or 

hand-drawn graphics, influence the game’s 

aesthetic, while sound effects and music enhance 

immersion and provide important gameplay cues. 

 

Enemy behavior is another crucial 

component, particularly in action or adventure 

games. Non-player characters (NPCs) challenge 

the player and create conflict within the game. 

Effective enemy design balances predictability and 

unpredictability, ensuring encounters remain 

engaging without becoming frustrating. Artificial 

intelligence (AI) models, such as Finite State 

Machines (FSM) or Genetic Algorithms (GA), 

drive enemy behavior. FSMs provide structured, 

scripted actions, while GAs enable adaptive, 

dynamic responses that evolve based on player 

actions, increasing replayability and challenge. 

 

Ultimately, game design integrates these 

elements—objectives, mechanics, storytelling, 

visuals, sound, and AI-driven behavior—to create 

a compelling and immersive experience. The 

choice of AI models, in particular, significantly 

impacts the player’s engagement and the game’s 

overall challenge, ensuring the experience remains 

enjoyable and rewarding throughout. 

 
1.3.2 Game Types (2D vs. 3D): 
 

Games can broadly be categorized based on 

their graphical representation and the dimensions 

in which gameplay occurs: 2D (two-dimensional) 

and 3D (three-dimensional). These two types 

define the structure, visual style, and complexity of 

both the game world and its mechanics, 

influencing how players interact with the game 

environment and how developers design elements 

such as AI, level layout, and physics. 

 

a) 2D Games: 

 

In 2D games, all actions and interactions 

take place on a flat plane, limited to two axes: 

horizontal (X) and vertical (Y). Visual elements in 

these games are typically represented as sprites—

two-dimensional images or animations used to 

depict characters, objects, and backgrounds. The 

simplicity of this design space often results in a 

more streamlined development process, making 

2D games a popular choice for beginner 

developers and smaller studios. 

 

One of the strengths of 2D games lies in 

their clear visual presentation and straightforward 

gameplay mechanics. With movement restricted to 

two axes, players can focus on core activities like 

platforming, combat, or puzzle-solving without the 

added complexity of navigating a third dimension. 

Iconic game genres such as platformers (e.g., 

Super Mario Bros.), side-scrollers (e.g., Sonic the 

Hedgehog), and top-down games (e.g., The 

Legend of Zelda) have flourished in 2D 

environments due to their intuitive mechanics and 

visual simplicity. 
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From a game AI perspective, designing 

enemy behavior in 2D games is less complex 

compared to 3D environments[5]. Since there is no 

need to account for depth (Z-axis) movement, 

challenges like pathfinding, targeting, and 

interaction systems are simplified. Techniques 

such as Finite State Machines (FSM) and Genetic 

Algorithms (GA) can be effectively implemented 

in 2D games to create dynamic and engaging 

enemy behavior without the added complexity of 

managing three-dimensional space. This simplicity 

makes 2D games an excellent platform for 

experimenting with various AI models, as the 

environment is easier to control and modify. 

 

Additionally, 2D games generally have 

lower computational and resource requirements. 

With fewer demands on graphics, animations, and 

physics simulations compared to 3D games, they 

can run smoothly on less powerful hardware, 

broadening their accessibility to a wider audience. 

For developers, this means less time spent on 

performance optimization and more focus on 

refining gameplay mechanics and AI behavior, 

ultimately enhancing the player experience. 

 

b) 3D Games: 

 

Unlike 2D games, 3D games take place in a 

three-dimensional space, with three axes: 

horizontal (X), vertical (Y), and depth (Z). This 

added dimension allows for more intricate 

movement and interactions, as players and enemies 

can move freely in all directions. This freedom 

enhances the realism and immersion of the 

gameplay experience. 3D video games are 

visualized using advanced techniques such as 

texture mapping, lighting, and shading on their 3D 

models. 

 

However, the involvement of the third 

dimension makes things complicated for a game 

developer as he has to work with much more 

complex advanced physics systems along with 

accurate collision detection and in-depth 

environmental interaction. This leads to an 

increased time and expense in the production 

stage. The designing of AI for 3D games will be 

much harder, as there will be considerations for 

movement and decision-making in three 

dimensions. Techniques such as Finite State 

Machines (FSM) and Genetic Algorithms (GA) 

can be applied, but in this case, more sophisticated 

implementations are required due to the increased 

complexity of the navigation in a three-

dimensional space. 

 

One of the most important benefits of 3D 

games is that they can provide a very immersive 

and realistic experience. Players can explore 

environments in a more natural and dynamic way, 

with interactions feeling more varied and lifelike. 

Many popular modern genres, such as first-person 

shooters (FPS), open-world adventures, and 

simulation games, depend on 3D environments to 

create expansive and detailed worlds that meet the 

expectations of today's gamers. 

 

However, the technical and graphical 

demands of 3D games are significantly higher than 

those of 2D games. Developers must optimize their 

games to perform well across a variety of hardware 

configurations, often targeting multiple platforms 

with different performance capabilities. Advanced 

tools and engines, such as Unreal Engine and 

Unity, are commonly used in 3D game 

development, adding another layer of complexity 

to the process. Despite these problems, 3D games 

offer immersive and engaging experiences that 

form the core of modern gaming. 

 
1.3.3 AI in Game Development: 
 

The development of artificial intelligence 

(AI) in gaming has a rich history, evolving 

alongside advancements in computer science and 

video game technology[6]. From the earliest days 

of simple programmed behaviors to today’s 

adaptive, learning systems, AI in gaming has 

played a crucial role in creating more immersive 

and challenging experiences for players 

 

The roots of AI in gaming date back to the 

1950s and 1960s, when early experiments focused 

on board games like chess and checkers[7]. Arthur 

Samuel’s checkers-playing AI in the late 1950s 

was groundbreaking, as it could learn from 

experience. Similarly, Christopher Strachey 

developed a checkers program for the Ferranti 

Mark 1 computer in 1952, while Claude Shannon 

and Alan Turing explored AI in chess. These early 

efforts laid the foundation for AI in gaming, 

though they were limited to turn-based, strategic 

games. 

 

The 1970s and 1980s saw the rise of arcade 

and console games, introducing real-time AI 

challenges. "Pong" (1972) featured a basic AI 

opponent, while "Pac-Man" (1980) showcased 

more advanced AI with its ghost enemies, each 

following distinct behavioral patterns. These early 

examples demonstrated how simple AI rules could 

create engaging and emergent gameplay. 
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By the 1990s, advances in computing 

power enabled more sophisticated AI in games. 

Strategy titles like "Civilization" (1991) and 

"Warcraft" (1994) featured AI opponents capable 

of resource management and strategic decision-

making. First-person shooters like "Doom" (1993) 

and "Quake" (1996) introduced AI enemies that 

could navigate 3D spaces and attack players. 

"Half-Life" (1998) set a new standard with 

enemies that worked as teams, flanking players 

and using cover, requiring tactical thinking from 

players. 

 

The 2000s brought even greater realism 

and complexity to game AI. "The Sims" (2000) 

simulated virtual characters with needs, desires, 

and personalities, creating intricate behavioral 

systems. "F.E.A.R." (2005) stood out for its 

advanced enemy AI, where soldiers coordinated, 

communicated, and adapted to player actions, 

delivering a highly dynamic and immersive 

experience. These advancements marked 

significant milestones in the evolution of AI in 

gaming. 

 
1.3.4 AI Approaches: 
 

In 1948, Alan Turing distinguished two different 

approaches to artificial intelligence (AI), which we 

now call top-down and bottom-up. The top-down 

approach treats thinking or intelligence as a high-

level process that doesn’t depend on the details of 

how it’s carried out, whether it’s in the human 

brain or a computer. In contrast, the bottom-up 

approach tries to simulate networks of artificial 

neurons, which are designed to work like the 

neurons in the human brain, to see if this can 

recreate certain thinking processes. 

 

a) Top-down Approach: 

The top-down approach to artificial 

intelligence views intelligence as a high-level 

phenomenon, focusing on abstract rules, logic, and 

symbolic reasoning rather than the physical details 

of cognitive processes. It assumes intelligence can 

be replicated by defining behavior through human-

created rules and descriptions. For example, an AI 

designed to recognize the letter "W" might use 

rules about line intersections, angles, and lengths, 

all based on predefined symbolic representations. 

 

In top-down AI, tasks are stored in memory 

as symbols, such as lists or trees, which represent 

states and decisions. This method, known as 

symbolic AI, was championed by researchers like 

Newell and Simon in the 1970s, who proposed the 

Physical Symbol System Hypothesis. This 

hypothesis argues that intelligence emerges from 

manipulating symbols based on logical rules, 

whether in computers or the human brain. 

 

While symbolic AI was foundational in early 

AI research, it has limitations. It often struggles in 

complex, real-world environments where rigid 

rules and symbols may lack the flexibility to 

handle unpredictable situations, leading to less 

adaptive systems. Despite these challenges, the 

top-down approach remains a key concept in 

understanding AI development. 

 

b) Bottom-up Approach: 

 

The top-down approach to artificial 

intelligence views intelligence as a high-level 

phenomenon, focusing on abstract rules, logic, and 

symbolic reasoning rather than the physical details 

of cognitive processes. It assumes intelligence can 

be replicated by defining behavior through human-

created rules and descriptions. For example, an AI 

designed to recognize the letter "W" might use 

rules about line intersections, angles, and lengths, 

all based on predefined symbolic representations. 

 

In top-down AI, tasks are stored in memory 

as symbols, such as lists or trees, which represent 

states and decisions. This method, known as 

symbolic AI, was championed by researchers like 

Newell and Simon in the 1970s, who proposed the 

Physical Symbol System Hypothesis. This 

hypothesis argues that intelligence emerges from 

manipulating symbols based on logical rules, 

whether in computers or the human brain. 

 

While symbolic AI was foundational in early 

AI research, it has limitations. It often struggles in 

complex, real-world environments where rigid 

rules and symbols may lack the flexibility to 

handle unpredictable situations, leading to less 

adaptive systems. Despite these challenges, the 

top-down approach remains a key concept in 

understanding AI development. 

 

2. METHODOLOGY 

 

This research employs a qualitative 

methodology, focusing on the development of a 

prototype game that incorporates both FSM and 

GA for enemy AI. The study utilizes gameplay 

observations, player feedback, and analysis of 

NPC behavior to draw conclusions about the 

effectiveness of each AI technique. 
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2.1 GAME DEVELOPMENT PROCESS 

 

The game development process followed a 

structured approach to create a simple 2D 

prototype for testing and comparing AI techniques. 

The key steps were: 

 
2.1.1 Concept Design: 
 

A top-down 2D game was designed where 

the player navigates a level while avoiding or 

confronting enemies. The goal was to create a 

controlled environment to compare FSM (Finite 

State Machine) and GA (Genetic Algorithm) in 

enemy behavior. 

 
2.1.2 Prototyping: 
 

A basic prototype was built using the 

Godot engine. It included a single level with two 

enemies—one using FSM and the other using GA. 

The environment was kept simple to focus on the 

AI comparison. 

 
2.1.3 Testing: 
 

The prototype was tested to ensure FSM 

enemies followed predefined rules and GA 

enemies adapted over time, validating the 

functionality of both AI systems. 

 

2.2 AI TECHNIQUES (FSM AND GENETIC 

ALGORITHM) 

 

The primary focus of the project was to 

implement two distinct AI techniques—Finite 

State Machines (FSM) and Genetic Algorithms 

(GA)—and evaluate their impact on enemy 

behavior in the game. 

 

Finite State Machines (FSM): FSM is a rule-

based AI approach where enemies transition 

between predefined states[8]. For this prototype, 

the FSM enemy was programmed with states such 

as "Idle," "Chase," and "Attack." 

 

The transitions between these states were 

triggered based on specific conditions, such as the 

player entering a certain range or proximity. The 

FSM enemy provided a predictable and structured 

challenge, with clear behavior patterns. 

 

Genetic Algorithm (GA): In contrast to FSM, 

the GA enemy used an adaptive approach[9]. The 

GA enemy's behavior evolved over time through a 

process of selection, mutation, and crossover. The 

initial behaviors were random, but as the game 

progressed, the enemy adapted to the player's 

strategies. The "fittest" enemies—those that 

performed better in chasing or attacking the 

player—were selected to pass their behavior traits 

to the next generation of enemies. This resulted in 

a dynamic, evolving challenge for the player. 

 

 

 

 

 

2.3 EXPERIMENTAL SETUP 

 

 

 
Figure 1. Layout of the experimental setup in the game environment. 
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The experimental setup is illustrated in Figure 

1, where the player (P) must navigate through the 

maze, avoiding the enemies controlled by FSM 

and GA algorithms. 

 

 Prototype Design: A 2D game prototype was 

built with two enemies, each controlled by one 

of the AI techniques. The FSM enemy 

followed a structured set of predefined rules, 

while the GA enemy adapted its behavior over 

time based on player interactions. 

 

 Enemy Behavior: The FSM enemy was 

programmed with fixed states, reacting 

predictably to the player's movements. The GA 

enemy, on the other hand, started with random 

behavior traits and evolved by "learning" from 

its performance in chasing the player. 

 

 Player Interaction: The player's objective in the 

prototype was to avoid or defeat both enemies. 

Observations were made regarding how the 

player interacted with each enemy type, how 

predictable or adaptive the enemies were, and 

which enemy presented a greater challenge as 

the game progressed. 

 

 Data Collection: The experiment was primarily 

observational. The behavior of the FSM and 

GA enemies was compared to determine which 

approach provided a more dynamic and 

engaging gameplay experience. Simple metrics 

such as enemy predictability, adaptability, and 

challenge level were considered. 

 

 

 

 

3. RESULT DISCUSSION 

 

3.1 DATA AND ANALYSIS 

 

The data collected from the experiments 

focused on several key aspects: the behavior of 

each enemy, the average time it took for them to 

catch the player, and the overall challenge posed to 

the player. By comparing these factors, the 

differences between FSM-based and GA-based 

enemy AI were analyzed. 

 

 

 

 

 

 

 

Table 1. Time Taken by FSM and GA Enemies to 

Catch the Player (Note: both enemies are in 

different positions) 
 

Rounds FSM 

(Seconds) 

GA 

(Seconds) 

1 2.90 66.33 

2 2.90 59.36 

3 2.88 93.99 

4 2.90 244.15 

5 2.89 87.50 

6 2.89 67.59 

7 2.89 48.61 

8 2.89 127.58 

9 2.90 65.09 

10 2.88 55.63 

11 2.89 107.42 

 

3.1.1 FSM Enemy Behavior 
 

 Predictability: The FSM-controlled enemy 

followed predefined states like "Idle," 

"Chase," and "Attack." It transitioned between 

these states based on player proximity, 

making its behavior highly predictable. 

Players quickly learned its patterns, reducing 

the challenge over time. This is reflected in 

the table 1, where the FSM enemy 

consistently catches the player in 2.8–2.9 

seconds across all rounds, showing minimal 

variability. 

 

 Average Time to Catch the Player: The FSM 

enemy caught the player in a consistent 

timeframe (2.8–2.9 seconds), with little 

variability. This predictability allowed players 

to anticipate and manipulate its behavior, 

balancing gameplay but reducing long-term 

difficulty. The table 1 clearly demonstrates 

this consistency, with all rounds showing 

nearly identical times.  

 

 Challenge Level: Initially, the FSM enemy 

posed a moderate challenge, creating urgency 

with its quick transitions. However, as players 

memorized its patterns, the challenge 

diminished, making it easier to avoid. 

 

 Adaptability: The FSM enemy lacked 

adaptability, following fixed rules regardless 

of player actions. This static behavior led to 

repetitive gameplay, as players could exploit 

its predictable patterns. The table 1 reinforces 

this, as the FSM's times remain constant, 

showing no evolution. 
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3.1.2 GA Enemy Behavior 
 

 Adaptability: The GA-controlled enemy 

evolved over time using genetic algorithms. It 

learned from successes (e.g., effective chase 

angles) and discarded failures, becoming more 

efficient at catching the player. This 

adaptability made its behavior dynamic and 

harder to predict. 

 

 Average Time to Catch the Player: Initially, 

the GA enemy took longer to catch the player 

(90–93 seconds), but as it evolved, the time 

decreased, reflecting its improved strategies. 

 

 Unpredictability: The GA enemy’s behavior 

became increasingly unpredictable. It 

approached from new angles or changed 

speed unexpectedly, forcing players to stay 

alert and adapt their strategies. The table 1 

supports this, as the GA's times vary widely, 

indicating unpredictable behavior. 

 

 Challenge Level: The GA enemy’s challenge 

increased over time as it refined its tactics. 

Players couldn’t rely on past strategies, 

ensuring the gameplay remained engaging and 

dynamic. 

 

4.  COMPARISON OF AI APPROACHES 

 

The choice of AI techniques in game 

development significantly impacts how NPCs 

interact with players and their environments. This 

section compares Finite State Machines (FSM) and 

Genetic Algorithms (GA) in 2D games, focusing 

on design complexity, adaptability, predictability, 

performance, and suitability. 

 

4.1 DESIGN COMPLEXITY 

 

 FSM: FSMs use predefined states (e.g., 

"Idle," "Chase," "Attack") and transitions, 

making them simple to design and debug. 

However, managing multiple enemies with 

distinct behaviors can lead to code 

duplication and increased complexity. 

 

 GA: GAs rely on evolutionary principles, 

requiring developers to define fitness 

criteria, crossover, and mutation 

parameters. This approach is more complex 

but enables adaptive and diverse AI 

behaviors. 

 

4.2 ADAPTABILITY AND LEARNING 

 

 FSM: FSMs lack adaptability, operating on 

static rules. Players can exploit predictable 

patterns, reducing long-term challenge and 

engagement. 

 

 GA: GAs adapt dynamically, evolving 

behaviors based on player actions. This 

creates unique, unpredictable encounters, 

enhancing replayability and immersion. 

 

4.3 PREDICTABILITY AND CHALLENGE 

 

 FSM: FSMs provide predictable, 
structured behavior, ideal for games 
where mastering mechanics is key. 
However, this predictability can lead to 
monotony over time. 

 

 GA: GAs introduce unpredictability, 
forcing players to adapt to evolving 
enemy strategies. This maintains 
challenge and excitement, especially in 
dynamic gameplay scenarios[10]. 

 

4.4 PERFORMANCE AND RESOURCE 

USAGE 

 

 FSM: FSMs are computationally efficient, 

making them suitable for games with many 

NPCs or limited hardware resources. Their 

deterministic nature simplifies debugging 

and optimization. 

 

 GA: GAs are resource-intensive due to 

evolutionary processes. Optimization 

strategies, such as reducing population size 

or parallel processing, are often needed to 

manage performance. 

 

4.5 APPLICATION SUITABILITY 

 

 FSM: FSMs excel in games requiring 

predictable, rule-based behaviors, such as 

platformers or puzzle games. They provide 

controlled, manageable challenges for 

players. 

 

 GA: GAs are ideal for games needing 

adaptive, complex AI, such as action-

adventure or competitive multiplayer 

games. They ensure dynamic, evolving 

challenges that keep players engaged. 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                  © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882 

IJCRT2502737 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g312 
 

5. CHALLENGES AND LIMITATIONS 

 

5.1 CHALLENGES WITH FINITE STATE 

MACHINES (FSM) 

 

i) Complexity in Large Systems: 

FSMs become unwieldy in large systems 

with many NPCs and states, leading to intricate 

designs that are hard to manage and debug. 

 

ii) Limited Adaptability: 

FSMs are static and cannot adapt to 

changing game dynamics or player strategies, 

resulting in predictable and repetitive enemy 

behavior[8]. 

 

iii) Difficulty in Implementing Complex 

Behaviors: 

Representing nuanced behaviors (e.g., 

context-aware reactions) often requires extensive 

modifications, increasing system complexity. 

 

iv) Memory Consumption: 

Large-scale FSM implementations can 

consume significant memory, potentially 

degrading performance on resource-constrained 

hardware. 

 

v) Balancing and Tuning: 

Tuning FSM parameters for balanced 

gameplay is time-consuming, requiring extensive 

playtesting and iteration. 

 

5.2 CHALLENGES WITH GENETIC 

ALGORITHMS (GA) 

 

i) Computational Resource Intensity: 

GAs are resource-intensive due to 

evolutionary processes like fitness evaluations and 

mutations, posing challenges for real-time 

applications or low-power devices[11]. 

 

ii) Initial Setup and Configuration: 

Configuring GA parameters (e.g., 

population size, mutation rates) requires significant 

trial and error, increasing development complexity. 

 

iii) Stability and Convergence Issues: 

GAs may converge prematurely on 

suboptimal solutions, requiring mechanisms to 

maintain behavioral diversity. 

 

iv) Debugging Complexity: 

Debugging evolving GA behaviors is 

challenging due to their dynamic nature, 

complicating issue tracing and resolution. 

 

v) Balancing Exploration and Exploitation: 

Maintaining a balance between exploring 

new behaviors and refining successful ones is 

critical but difficult to achieve. 

 

vi) Player Experience and Learning Curve: 

Unpredictable GA behaviors can frustrate 

players if the learning curve is too steep, risking 

player disengagement. 

 

6. CONCLUSION 

 

This research explored the application of Finite 

State Machines (FSM) and Genetic Algorithms 

(GA) in game development, highlighting their 

distinct strengths and challenges. FSMs provide 

predictable, structured enemy behavior, making 

them ideal for games requiring simplicity and 

control. However, their lack of adaptability can 

lead to repetitive gameplay over time.   

 

In contrast, GAs introduce dynamic, adaptive 

AI, evolving enemy behaviors based on player 

interactions. This unpredictability enhances 

replayability and immersion but comes with higher 

computational demands, setup complexity, and 

potential convergence issues.   

 

The choice between FSM and GA depends on 

the game’s goals, desired player experience, and 

available resources. FSMs suit structured, 

controlled environments, while GAs excel in 

adaptive, challenging gameplay. As AI continues 

to advance, understanding these techniques will 

enable developers to create innovative and 

engaging gaming experiences, pushing the 

boundaries of game design. 

 

7. FUTURE WORK 

 

This study provides a foundational 

understanding of Finite State Machines (FSM) and 

Genetic Algorithms (GA) in AI-driven gameplay. 

However, several avenues for future research can 

expand on these findings and enhance game design 

practices: 

 

A. Hybrid AI Models: 

Explore combining FSM and GA to 

leverage the predictability of FSMs and the 

adaptability of GAs, creating a balanced and 

dynamic gameplay experience.[5] 

 

B. Advanced AI Techniques: 

Investigate other AI methods, such as 

Behavior Trees or Reinforcement Learning, to 

compare their effectiveness with FSM and GA in 

various game contexts.[9] 
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C. Player Feedback Mechanisms: 

Incorporate real-time player feedback to 

refine AI behaviors, ensuring balanced difficulty 

and enhancing player engagement. 

 

D. Broader Game Environments: 

Extend research to 3D environments and 

diverse genres to study the impact of spatial 

awareness, pathfinding, and multi-agent 

interactions on AI performance. 

 

E. Performance Optimization: 

Develop strategies to reduce the 

computational overhead of complex AI techniques 

like GA, ensuring optimal performance in 

resource-limited environments. 

 

F. User Studies: 

Conduct studies to evaluate player 

engagement, satisfaction, and perceived challenge 

when interacting with different AI models, 

informing better AI design and game balancing. 

 

G. Scalability Of Ai Techniques: 

Research methods to scale AI for larger 

game environments with numerous NPCs, 

ensuring efficiency and responsiveness as game 

complexity increases. 

 

H. Ai In Other Game Aspects: 

Explore AI applications beyond enemy 

behavior, such as procedural content generation, 

dynamic storytelling, or player behavior 

prediction, to create more immersive and 

personalized gameplay experiences. 
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