IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Semiconductor Innovations for AI-Driven Agricultural Sustainability: A Review of Trends, Challenges, and Market Dynamics

Dr. Jigar A. Soni^{1*}, Dr. Himanshu Amritlal Patel², Rajan B. Patel³

Assistant Professor, Department of Information & Communication Technology, SPCE,

Sankalchand Patel University, Visnagar, India¹

Associate Professor, Department of Information & Communication Technology, SPCE,

Sankalchand Patel University, Visnagar, India²

Assistant Professor, Information Technology Department, SPCE,

Sankalchand Patel University, Visnagar, India³

Abstract: The combination of semiconductor technology and artificial intelligence (AI) is radically changing agriculture. These advancements are enhancing sustainability, improving productivity, and addressing global food security challenges. This review explores the latest trends in semiconductor innovations for AI-driven agriculture, identifies key challenges, and examines market dynamics shaping the industry. We discuss the role of precision farming, autonomous machinery, and edge AI applications, alongside concerns such as energy consumption, material sustainability, and data security. The paper highlights investment growth, policy support, and collaborative efforts as crucial drivers in this domain. By understanding these elements, stakeholders can better navigate the evolving landscape of AI-powered sustainable agriculture.

Keywords: Semiconductor Innovations, AI in Agriculture, Agricultural Sustainability, Precision Farming, Edge Computing, IoT in Agriculture, Generative AI, Smart Farming, Agritech Market Trends, Climate-Resilient Agriculture, Agricultural Robotics, Sustainable Semiconductor Design, Data Privacy in Agritech

I. Introduction

The global agricultural sector is under increasing pressure to produce more food sustainably while addressing environmental concerns such as soil degradation, water scarcity, and climate change. The integration of semiconductor technologies with AI presents an innovative solution, enabling smart farming practices through real-time data processing, automation, and efficient resource management. The Food and Agriculture Organization (FAO) estimates that in order to meet the demands of a growing population, worldwide food production must rise by about 70% by 2050[1]. Traditional agricultural methods are often resource-intensive, requiring high amounts of water, fertilizers, and manual labor. However, advancements in semiconductor-based AI technologies are addressing these inefficiencies by enabling precision farming, automation, and data-driven decision-making[2].

Semiconductor-based sensors are essential to contemporary agriculture since they gather information on crop health, soil conditions, and climate factors. These sensors, coupled with AI algorithms, facilitate predictive analytics and optimize agricultural inputs to maximize yields while minimizing waste[3]. Real-time monitoring and remote administration of farming activities are now possible because to the development of Internet of Things (IoT) devices, which are driven by advancements in semiconductor technology[4].

In addition to precision farming, autonomous machinery is revolutionizing the agricultural sector. High-performance semiconductor processors are being incorporated into AI-driven robots and drones to do activities like planting, weeding, and harvesting[5]. These technologies not only reduce labor costs but also improve operational efficiency and accuracy. Furthermore, edge AI computing is enabling faster decision-making by processing agricultural data on-site rather than relying on cloud-based processing, reducing latency and enhancing data security[6]. This paper reviews recent advancements, challenges, and market dynamics related to AI-driven semiconductor innovations in agriculture. By analyzing the role of semiconductor technologies in addressing key agricultural challenges, we aim to provide insights into their potential to enhance sustainability and productivity in modern farming.

II. Trends in Semiconductor Innovations for Agricultural AI

2.1. Sensor Technologies and IoT Integration

Semiconductor-based sensors (e.g., soil moisture, nutrient, and infrared sensors) enable real-time data collection for precision farming. IoT systems leverage these sensors to automate irrigation, monitor livestock health, and optimize greenhouse conditions. For example, solar-powered IoT sensors reduce water consumption by 70% in smart greenhouses.

Here is a structured review table summarizing key sensor technologies and IoT integration topics from the provided search results, along with links to the relevant papers:

Paper Title	Sensor	IoT Integration	Key Contributions	
	Technology	Application		
-0-0	Focus			
"A Review on Emerging	IoT sensors,	Industry 4.0, smart	Discusses advancements in IoT-	
Applications of IoT and	edge	warehouses,	enabled Industry 4.0, challenges	
Sensor Technology for	computing, 5G	inventory	(security, privacy), and trends like	
Industry 4.0"[7].		management	edge computing and 5G networks.	
			Highlights smart warehouse	
			architectures and railway IoT	
			systems.	
"Challenges,	Wireless sensor	Environmental	Reviews security challenges (e.g.,	
Applications, and Future	networks	monitoring,	eavesdropping, jamming) and	
of Wireless Sensors in	(WSNs)	industrial	proposes machine learning	
IoT"[8].		automation	solutions for IoT-integrated WSNs.	
			Explores scalability and energy	
			efficiency in industrial IoT.	
"Smart Sensors: Analysis	RFID, pressure,	Healthcare,	Classifies IoT sensor types and their	
of Different Types of IoT	temperature,	agriculture, smart	applications. Emphasizes RFID	
Sensors"[9]	motion sensors	cities	integration for real-time data	
			collection and challenges in sensor	
			interoperability.	
"Security Challenges in	WSNs,	Critical	Identifies security vulnerabilities	
Wireless Sensor	intrusion	infrastructure,	(e.g., spoofing, node replication)	
Networks for IoT"[10]	detection	healthcare	and proposes blockchain and	
	systems		machine learning-based mitigation	
			strategies.	
"Internet of Things:	Multi-layer IoT	Smart cities,	Proposes a generic IoT architecture,	
Architectures,	architectures	transportation,	discusses market opportunities, and	
Challenges, and		energy	highlights challenges in scalability	
Applications"[11]			and data management. Covers	

			applications in traffic monitoring and healthcare.
"IoT Sensing	RFID sensors,	Wearable tech,	Analyzes analog/digital RFID sensing, energy harvesting challenges, and anti-collision protocols. Explores hybrid RFID-WSN integration for long-range monitoring.
Applications Using RFID	wearable	supply chain	
and WSN"[12]	devices	management	

2.2. AI-Driven Analytics and Edge Computing

AI algorithms process sensor data to predict crop yields, detect pests, and simulate climate scenarios. Edge AI reduces latency by processing data locally on farms, enhancing decision-making speed. Innovations like MEMS (Micro-Electro-Mechanical Systems) enable low-cost, scalable soil monitoring solutions[13].

Paper Title	Technology Focus	Application	Key Contributions
"AI-based Fog and Edge Computing: A Systematic Review, Taxonomy and Future Directions"[14]	AI in 'Fog' and 'Edge' Computing	Smart cities, healthcare, IoT	Systematic review, taxonomy of AI models, future research directions.
"AI Augmented Edge and Fog Computing: Trends and Challenges"[15]	Federated Learning, Edge AI Optimization	Industrial automation, real- time decision- making	Discusses AI-driven optimizations, federated learning, emerging challenges.
"Edge Intelligence: Paving the Last Mile of AI with Edge Computing"[16]	Edge Intelligence	IoT, Smart Healthcare, Intelligent Transportation	Defines "Edge Intelligence," classifies approaches, and explores future research gaps.
"Edge Intelligence: The Confluence of Edge Computing and AI"[17]	AI-Edge Integration, Reinforcement Learning	Robotics, Autonomous Vehicles	Surveys AI techniques for edge computing, focusing on reinforcement learning and deep learning.
"AI on the Edge: A Comprehensive Review"[18]	AI Deployment on Edge Devices	Real-time AI Applications, AI Hardware	Discusses AI model deployment strategies, hardware constraints, and real-world applications.

2.3. Generative AI for Predictive Modeling

AI, ML, DL, and conversational models like ChatGPT are transforming agriculture by enhancing productivity, optimizing resource use, and improving decision-making. These technologies address key challenges such as crop monitoring, pest detection, weather forecasting, and soil analysis. AI-driven predictive analytics help optimize planting schedules and prevent disease outbreaks, while DL-powered image processing enables real-time crop and livestock monitoring for precision farming. Conversational AI, like ChatGPT, provides real-time advisory support, streamlining tasks such as supply chain management and market analysis. Future advancements include AI integration with IoT, blockchain for traceability, and edge computing for localized decision-making[19].

www.ijcrt.org	© 2020 1001	T Volume 10, 10000	1 January 2023 15514. 2520-2002	
Paper Title	Technology Focus	Application	Key Contributions	
"Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues"[20]	Machine Learning (ML), Deep Learning (DL)	Crop yield prediction, soil quality analysis	Provides an overview of ML/DL techniques in agriculture, identifies research gaps, and suggests future directions	
"Generative Adversarial Networks for Image Augmentation in Agriculture: A Systematic Review"[21]	Generative Adversarial Networks (GANs)	Crop disease detection, remote sensing	Explores how GANs improve agricultural datasets for better model accuracy in predictive analysis	
"Revolutionizing Agrifood Systems with Artificial Intelligence: A Survey"[22]	AI, Generative AI, Predictive Analytics	Smart farming, precision agriculture	Discusses the role of AI in optimizing food production, reducing waste, and enhancing sustainability	
"A Comprehensive Modeling Approach for Crop Yield Forecasts using AI-based Methods and Crop Simulation Models"[23]	AI-based Crop Simulation, ML Models	Crop yield forecasting, climate impact analysis	Combines AI models with traditional crop simulation for improved forecasting accuracy	
"Generative AI in Smart Agriculture: Opportunities and Challenges"[24]	Generative AI, Neural Networks	Automated pest detection, soil moisture monitoring	Identifies how generative AI enhances data augmentation and predictive modeling in agriculture	
"Artificial Intelligence in Agriculture: A Review"[25]	AI, ML, DL, IoT Integration	Smart irrigation, automated monitoring	Provides a comprehensive review of AI applications in agriculture, focusing on automation and real-time monitoring	

2.4. Robotics and Autonomous Systems

AI-powered drones and robotic harvesters rely on semiconductor components for navigation and data processing. For instance, agricultural robots reduce pesticide use by 80% while addressing labor shortages[26].

Paper Title	Technology Focus	Application	Key Contributions	
"Artificial	AI Techniques for	Service	Discusses AI techniques enabling robots to	
Intelligence for	Long-Term	Robotics, Field	operate autonomously over extended	
Long-Term Robot	Autonomy	Robotics	periods in complex environments. Includes	
Autonomy: A			navigation, mapping, perception,	
Survey"[27]			knowledge representation, reasoning,	
			planning, interaction, and learning.	
			Emphasizes the combination of these	
			methods for sustained independence and	
			outlines forthcoming challenges and	
			prospects in AI within the field of robotics.	
"Deep Learning in Robotics: A Review of Recent Research"[28]	Deep Learning Applications in Robotics	Various Robotic Systems	Examines the utilization of deep learning in robotic systems that are physical. Discusses benefits and limitations of deep learning in robotics, using contemporary research as examples. Aims to communicate recent advances to the robotics community and inspire further application of deep learning in robotic systems.	
"A	Autonomous	Mobile Robots,	Offers an extensive overview of	
Comprehensive	Navigation	Autonomous	autonomous mobile robots, including	

Review on Autonomous Navigation"[29]	Systems	Vehicles	various sensor types, platforms, simulation software, pathfinding methods, sensor integration, obstacle detection and avoidance, and simultaneous localization and mapping (SLAM). Highlights the importance of deep learning in self-driving navigation and explores potential future research avenues and obstacles in this area.
"Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities"[30]	Security in AI-Robotics Systems	Service Robots, Autonomous Vehicles	Surveys potential attack surfaces in AIrobotics systems and provides defensive strategies. Discusses ethical and legal concerns, including accountability and psychological impacts. Explores security aspects of Human-Robot Interaction (HRI), focusing on privacy, integrity, safety, trustworthiness, and explainability. Presents future research directions to enhance AI-robotics system security.
"A Systematic Literature Review of Decision- Making and Control Systems for Autonomous and Social Robots"[31]	Decision-Making and Control Architectures	Social Robots, Autonomous Assistive Devices	Examines the progression of decision-making frameworks and control systems for autonomous and social robots over the last thirty years. Examines patterns in the combination of biologically inspired models and machine learning. Discusses challenges in software architectures for action selection and presents future directions for enhancing autonomous and social robot capabilities.
"Artificial Intelligence for Robotics and Autonomous Systems Applications"[32]	AI Integration in Robotics	Unmanned Vehicles, Cooperative Robots, Remote Sensing	Addresses applications of AI in robotics, focusing on visual and motion input processing. Discusses the role of machine learning, including deep learning and reinforcement learning, in enhancing robotic capabilities. Covers practical applications in remote sensing and explores emerging approaches like tiny-ML in robotics.

2.5. Sustainable Semiconductor Design

Energy-efficient semiconductor packaging and materials (e.g., biodegradable sensors) minimize environmental impact. Simulation and AI optimize chip manufacturing processes, aligning with sustainability goals. Here's a structured review paper table summarizing key insights on Sustainable Semiconductor Design.

Paper Title	Technology Focus	Application	Key Contributions
"Power Density and	Advanced	Compact devices,	Enhanced device functionality
Sustainability Shaping	packaging (SiP, 3D),	AI chips, thermal	via 3D packaging; reduced
Semiconductor Landscape	AI integration, and	management	carbon footprint through
(2025)"[33]	eco-friendly		renewable energy adoption in
	manufacturing		production.
"Sustainable Electronics and	Biodegradable PCB	PCB/IC	Introduced recyclable
Semiconductor	substrates, low-	manufacturing,	materials (e.g., Soluboard,
Manufacturing (2025–	temperature	waste reduction	Recyclad1G); strategies to
2035)"[34]	processing,		reduce water usage by 8%
	water/energy		CAGR and chemical waste.
	optimization		
"Cost-Saving Strategies for	Total Cost of	Manufacturing	Minimized energy use via fan-

www.joraorg			1 outlaary 2020 100111 2020 2002
Sustainable Semiconductor Manufacturing (2025)"[35]	Ownership (TCO), predictive maintenance, energy-efficient equipment	cost reduction, operational efficiency	speed optimization; reduced downtime through low-vibration robots and predictive maintenance.
"Eco-Friendly Smart Design Strategy for Integrated Semiconductor Processes (2023)"[36]	Resource-to- demand allocation, process integration	Fabrication sequence optimization	Achieved 20% resource efficiency gains via integrated fabrication workflows; reduced waste in end-to-end processes.
"Semiconductor Attributes for Sustainable System Design (2024)"[37]	Low-power ICs, high-reliability packaging (VQFN/TQFP), SiC/GaN power modules	Renewable energy systems, EVs, IoT devices	Enabled miniaturized power converters using SiC/GaN; extended device lifespan via secure boot and authentication features.

III. **Key Challenges**

3.1. High Implementation Costs

Small-scale farmers face barriers due to the expense of IoT infrastructure and AI systems[37].

- ➤ Upfront Expenses: IoT sensors, AI analytics platforms, and automation infrastructure require significant initial investments (e.g., soil moisture sensors cost 50–50–200 per unit, while AI systems demand annual licensing fees).
- Maintenance Costs: Energy consumption, sensor recalibration, and software updates add recurring expenses.
- Accessibility Gap: Smallholder farmers in less developed areas frequently face challenges in obtaining subsidies or funding, which exacerbates the disparity in technology adoption.
- **ROI Uncertainty:** While long-term savings (e.g., 40% water reduction) are proven, short-term financial risks deter adoption.

3.2. Data Privacy and Security

Collecting farm-specific data raises concerns about cyberattacks and misuse, necessitating robust encryption frameworks[38].

- **Vulnerable IoT Networks:** Unencrypted sensor data transmissions are prone to interception, risking farm layout details or crop yield data.
- **Ownership Conflicts**: Disputes arise over who owns farm data—farmers, tech providers, or governments.
- **Regulatory Gaps**: Few policies address agricultural data governance, leaving loopholes for misuse.
- **Edge AI Limitations**: While local data processing (e.g., on-farm servers) reduces cloud dependency, it requires robust hardware security.

3.3. Technical Limitations

Data Scarcity: Limited datasets hinder AI model training for niche crops.

- Niche Crop Challenges: AI models for crops like quinoa or millet lack training data, reducing prediction accuracy.
- **Regional Biases**: Most datasets focus on temperate climates, marginalizing tropical or arid regions.
- Labeling Costs: Manual annotation of pest imagery or soil types is labor-intensive and expensive [39].

Interoperability: Fragmented IoT platforms complicate integration.

- ➤ Protocol Fragmentation: Competing IoT communication standards (e.g., LoRaWAN vs. Zigbee) hinder cross-platform integration.
- **Legacy Systems**: Older farm machinery cannot interface with modern AI tools without costly retrofitting [39].

3.4. Rural Digital Divide

Lack of connectivity and technical training limits adoption in developing regions.

- **Connectivity Gaps**: Only 35% of rural areas in sub-Saharan Africa have reliable internet, limiting cloudbased AI access.
- **Power Infrastructure**: Semiconductor sensors and edge devices require stable electricity, which is absent in 60% of Indian farms.
- > Skill Deficits: Farmers lack training to interpret AI recommendations (e.g., generative crop rotation plans).
- Language Barriers: Most AI tools support only dominant languages, excluding local dialects [40].

Market Dynamics IV.

Market Segment	Growth Drivers	Key Players	Projected Value (2030+)
Precision	Demand for yield optimization	Semios, CropX,	USD 35.23 billion[41]
Farming	and water conservation	MicaSense	
Generative AI	Need for predictive analytics	Farmer.Chat, Kissan AI	USD 14.5 billion (2032
	and disease modeling		estimate) [42]
Smart	Energy-efficient automation	Agri-Talk, John Deere	15% energy savings[39]
Greenhouses	and IoT integration	(Blue River Tech)	
Livestock	Wearable sensors and AI	Smart collars, IoT tags	20% labor cost
Monitoring	collars for health tracking		reduction[41]

Case Studies

- CropX: Uses semiconductor soil sensors with AI to optimize irrigation, reducing water waste by 40% [41].
- Semios: Combines wireless sensors and AI for pest management, boosting crop yields by 25% [41].
- Generative AI in India: The Ama KrushAI bot assists farmers in Odisha with real-time advisories, improving access to subsidies[42].

VI. Conclusion

Semiconductor innovations are revolutionizing AI-driven agriculture, enhancing productivity, sustainability, and resource efficiency. The integration of AI with semiconductor technologies has enabled precision farming, automation, and real-time data analysis, significantly reducing waste and operational costs. However, challenges such as high energy consumption, material sustainability concerns, and data security risks must be addressed through ongoing research and technological advancements. Heightened investments, favorable policies, and cooperation among key players will be vital in addressing these obstacles. By leveraging the capabilities of AI applications powered by semiconductors, the agricultural industry can move toward a more sustainable and robust future, guaranteeing food security for the increasing global population.

VII. **Future Directions**

- ➤ Low-Power Edge AI: Develop energy-efficient chips for remote farming[38].
- ➤ Blockchain Integration: Enhance data transparency in supply chains[39].
- Policy Frameworks: Governments must subsidize IoT adoption and address digital inequities[13][39].
- ➤ Hybrid AI Models: Combine generative and regenerative AI for climate-resilient crops[24].

References

- [1] F. S. Statistics and A. Economics, "The future of food and agriculture," *Agrifood Economics and Policy Division (ESA), FAO*, 2022. https://www.fao.org/global-perspectives-studies/en/.
- [2] V. Ramamurthy, G. P. O. Reddy, and N. Kumar, "Assessment of land suitability for maize (Zea mays L) in semi-arid ecosystem of southern India using integrated AHP and GIS approach," *Comput. Electron. Agric.*, vol. 179, p. 105806, 2020, doi: https://doi.org/10.1016/j.compag.2020.105806.
- [3] Y. Faqir, A. Qayoom, E. Erasmus, M. Schutte-Smith, and H. G. Visser, "A review on the application of advanced soil and plant sensors in the agriculture sector," *Comput. Electron. Agric.*, vol. 226, no. December 2023, p. 109385, 2024, doi: 10.1016/j.compag.2024.109385.
- [4] P. Rajak, A. Ganguly, S. Adhikary, and S. Bhattacharya, "Internet of Things and smart sensors in agriculture: Scopes and challenges," *J. Agric. Food Res.*, vol. 14, no. June, p. 100776, 2023, doi: 10.1016/j.jafr.2023.100776.
- [5] A. J. Moshayedi, A. Sohail Khan, Y. Yang, J. Hu, and A. Kolahdooz, "Robots in Agriculture: Revolutionizing Farming Practices," *EAI Endorsed Trans. AI Robot.*, vol. 3, 2024, doi: 10.4108/airo.5855.
- [6] K. Sharma and S. K. Shivandu, "Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture," *Sensors Int.*, vol. 5, no. August, p. 100292, 2024, doi: 10.1016/j.sintl.2024.100292.
- [7] K. Bhatt, C. Agrawal, and A. M. Bisen, "A Review on Emerging Applications of IoT and Sensor Technology for Industry 4.0," *Wirel. Pers. Commun.*, vol. 134, no. 4, pp. 2371–2389, 2024, doi: 10.1007/s11277-024-11054-x.
- [8] M. A. Jamshed, K. Ali, Q. H. Abbasi, M. A. Imran, and M. Ur-Rehman, "Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review," *IEEE Sens. J.*, vol. 22, no. 6, pp. 5482–5494, 2022, doi: 10.1109/JSEN.2022.3148128.
- [9] D. Sehrawat and N. S. Gill, "Smart Sensors: Analysis of Different Types of IoT Sensors," in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019, pp. 523–528, doi: 10.1109/ICOEI.2019.8862778.
- [10] L. Prusty, P. K. Swain, S. Satpathy, and S. Mahapatra, "Comprehensive Review of Security Challenges and Issues in Wireless Sensor Networks Integrated with IoT," in *Explainable IoT Applications: A Demystification*, S. N. Mohanty, S. Satpathy, X. Cheng, and S. K. Pani, Eds. Cham: Springer Nature Switzerland, 2025, pp. 467–485.
- [11] A. Choudhary, *Internet of Things: a comprehensive overview, architectures, applications, simulation tools, challenges and future directions*, vol. 4, no. 1. Springer International Publishing, 2024.
- [12] H. Landaluce, L. Arjona, A. Perallos, F. Falcone, I. Angulo, and F. Muralter, "A review of iot sensing applications and challenges using RFID and wireless sensor networks," *Sensors (Switzerland)*, vol. 20, no. 9, pp. 1–18, 2020, doi: 10.3390/s20092495.
- [13] H. Digital, "Artificial intelligence innovations in precision farming: Enhancing climate- resilient crop management Artificial intelligence innovations in precision farming: Enhancing climate-resilient crop management Dimple Patil," no. November, 2024.
- [14] S. Iftikhar *et al.*, "AI-based fog and edge computing: A systematic review, taxonomy and future directions," *Internet of Things (Netherlands)*, vol. 21, pp. 0–2, 2023, doi: 10.1016/j.iot.2022.100674.
- [15] S. Tuli *et al.*, "AI augmented Edge and Fog computing: Trends and challenges," *J. Netw. Comput. Appl.*, vol. 216, 2023, doi: 10.1016/j.jnca.2023.103648.
- [16] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," *Proc. IEEE*, vol. 107, no. 8, pp. 1738–1762, 2019, doi: 10.1109/JPROC.2019.2918951.
- [17] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, "Edge Intelligence: The Confluence of

Edge Computing and Artificial Intelligence," *IEEE Internet Things J.*, vol. 7, no. 8, pp. 7457–7469, 2020, doi: 10.1109/JIOT.2020.2984887.

- W. Su, L. Li, F. Liu, M. He, and X. Liang, "AI on the edge: a comprehensive review," Artif. Intell. Rev., vol. [18] 55, no. 8, pp. 6125–6183, 2022, doi: 10.1007/s10462-022-10141-4.
- S. Chaudhary, A. Jagarlapudi, and M. S. Raval, "Proceedings of National Conference on 'GeneRative AI for [19] Nurturing National Conference on 'GeneRative AI for Nurturing Sustainable Agriculture Jointly organised by Indian Society of Agricultural Information Technology (INSAIT) and Edited By J. Adinar," no. January, 2025, doi: 10.13140/RG.2.2.36079.34725.
- Aashu, K. Rajwar, M. Pant, and K. Deep, "Application of Machine Learning in Agriculture: Recent Trends [20] and Future Research Avenues," 2024, [Online]. Available: http://arxiv.org/abs/2405.17465.
- Y. Lu, D. Chen, E. Olaniyi, and Y. Huang, "Generative adversarial networks (GANs) for image augmentation [21] agriculture: A systematic review," Comput. Electron. Agric., vol. 10.1016/j.compag.2022.107208.
- T. Chen et al., "Revolutionizing Agrifood Systems with Artificial Intelligence: A Survey," pp. 1-40, 2023, [22] [Online]. Available: http://arxiv.org/abs/2305.01899.
- R. L. de F. Cunha, B. Silva, and P. B. Avegliano, "A Comprehensive Modeling Approach for Crop Yield [23] Forecasts using AI-based Methods and Crop Simulation Models," pp. 1–41, 2023, [Online]. Available: http://arxiv.org/abs/2306.10121.
- A. G.S, "Generative AI in Smart Agriculture: Opportunities and Challenges," Int. J. Innov. Sci. Res. Technol., pp. 90–92, 2024, doi: 10.38124/ijisrt/IJISRT24NOV232.
- R. Sharma, "Artificial Intelligence in Agriculture: A Review," 2021, pp. [25] 10.1109/ICICCS51141.2021.9432187.
- G. Nagaraja, H. Shoba, S. Ms, and K. Pn, "The impact of robotics and drones on agricultural efficiency and [26] productivity," vol. 7, no. 9, pp. 1001-1009, 2024.
- L. Kunze, N. Hawes, T. Duckett, M. Hanheide, and T. Krajnik, "Artificial Intelligence for Long-Term Robot [27] Autonomy: A Survey," IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4023-4030, 2018, doi: 10.1109/LRA.2018.2860628.
- H. A. Pierson and M. S. Gashler, "Deep learning in robotics: a review of recent research," Adv. Robot., vol. [28] 31, no. 16, pp. 821–835, 2017, doi: 10.1080/01691864.2017.1365009.
- S. Nahavandi et al., "A Comprehensive Review on Autonomous Navigation," vol. 1, no. 1, 2022, [Online]. [29] Available: http://arxiv.org/abs/2212.12808.
- [30] S. Neupane et al., "Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities," *IEEE Access*, vol. 12, no. Ml, pp. 22072–22097, 2024, doi: 10.1109/ACCESS.2024.3363657.
- M. Maroto-Gómez, F. Alonso-Martín, M. Malfaz, Á. Castro-González, J. C. Castillo, and M. Á. Salichs, A [31] Systematic Literature Review of Decision-Making and Control Systems for Autonomous and Social Robots, vol. 15, no. 5. Springer Netherlands, 2023.
- A. T. Azar and A. Koubâa, Artificial intelligence for robotics and autonomous systems applications, 1st ed., [32] vol. 1093. Springer Cham, 2023.
- P. Singer, "2025: Power Density and Sustainability Shaping Semiconductor Landscape," 2025. [33] https://www.semiconductor-digest.com/2025-power-density-and-sustainability-shaping-semiconductorlandscape/.
- H. F. This, S. Europa, F. Ics, and F. Pcbs, "Sustainable electronics and semiconductor manufacturing 2025-[34] 2025. 2035 □." https://www.electronicspecifier.com/news/analysis/sustainable-electronics-andsemiconductor-manufacturing-2025-2035.
- J. Park, S. Y. Baek, J. Kim, S. J. Park, C. Lee, and C. Choi, "Practical Approaches on Cost Saving Strategies [35] for Sustainable Semiconductor Manufacturing," Int. J. Precis. Eng. Manuf. Technol., 2025, doi:

IJCR

10.1007/s40684-024-00685-x.

- [36] C.-Y. Lin and P.-R. Chen, "Eco-friendly smart design strategy for integrated semiconductor processes," *J. Intell. Manuf.*, vol. 36, no. 1, pp. 243–257, 2025, doi: 10.1007/s10845-023-02226-w.
- [37] J. Nagle, "Semiconductor Attributes for Sustainable System Design," 2024. https://www.electronicdesign.com/technologies/power/article/21281448/semiconductor-attributes-for-sustainable-system-design.
- [38] M. El Jarroudi *et al.*, "Leveraging edge artificial intelligence for sustainable agriculture," *Nat. Sustain.*, vol. 7, no. 7, pp. 846–854, 2024, doi: 10.1038/s41893-024-01352-4.
- [39] D. Spiliotopoulos, "AI and Related Technologies in the Fields of Smart Agriculture: A Review," no. Figure 1, 2025.
- [40] W. T. Osowiecki, M. J. Coogans, S. Sriraman, R. Ranjan, Y. Joe Lu, and D. M. Fried, "Achieving Sustainability in the Semiconductor Industry: The Impact of Simulation and AI," *IEEE Trans. Semicond. Manuf.*, vol. 37, no. 4, pp. 464–474, 2024, doi: 10.1109/TSM.2024.3438622.
- [41] P. Singer, "Semiconductor Innovations in the Agriculture Market Semiconductor Digest," *Semiconductor Digest*, 2024. https://www.semiconductor-digest.com/semiconductor-innovations-in-the-agriculture-market/ (accessed Feb. 15, 2024).
- [42] S. Sai, S. Kumar, A. Gaur, S. Goyal, V. Chamola, and A. Hussain, "Unleashing the Power of Generative AI in Agriculture 4.0 for Smart and Sustainable Farming," *Cognit. Comput.*, vol. 17, no. 1, p. 63, 2025, doi: 10.1007/s12559-025-10420-6.