JCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Sm³⁺ Incorporation Effects On The **Microstructure And Optical Performance Of Phosphate Glasses**

¹ Dr. Samadam Damodaraiah, ² C. Chandrasekhar Reddy, 3. B. Sreenivasa Kumar Reddy³

^{1,2,3}Assistant Professor(A) ¹Department of Physics, ^{2,3}Department of Mechanical Engineering,

1,2,3 JNTUA College of Engineering, Pulivendula, Andhra Pradesh, India

Abstract: A series of Sm³⁺-doped phosphate glasses were synthesized using the melt-quenching technique. The base composition of the glass system was (mol%): 50P₂O₅-5Bi₂O₃-25Li₂O-20Na₂O₃, where 1 mol% of Bi₂O₃ was replaced by Sm₂O₃. Although the host matrix melts near 650 °C, all samples were melted at 900 °C to reduce viscosity and eliminate entrapped bubbles. The resulting glasses exhibited excellent optical transparency and structural homogeneity, enabling efficient visible and near-infrared (NIR) luminescence. Structural and optical investigations confirmed the amorphous nature of the samples, strong Sm³⁺ emission in the orange-red region, and potential for use in photonic device applications.

Index Terms - phosphate glass; Sm³⁺ doping; Structural characterization; Absorption; Photoluminescence;

I. INTRODUCTION

Phosphate glasses have attracted significant attention for optical and photonic applications due to their wide transmission range, high rare-earth solubility, and relatively low melting temperature [1, 2]. These features make them excellent host matrices for rare-earth ions such as Sm³⁺, Eu³⁺, and Nd³⁺, which exhibit sharp 4f–4f transitions resulting in distinctive emission colors [3–5].

Among these ions, samarium (Sm³⁺) is particularly important because of its intense orange-red emission, primarily arising from the ${}^4G_{5/2} \rightarrow {}^6H_{7/2}$ transition, which makes it highly suitable for display, lighting, and optical marking technologies [6–8].

The inclusion of Bi₂O₃ in phosphate glass matrices significantly improves the refractive index, optical basicity, and radiative transition probabilities [9]. It also enhances glass stability and reduces non-radiative losses by lowering phonon energy, leading to increased luminescence efficiency [10]. However, achieving optical homogeneity and preventing rare-earth clustering remains a challenge when working at moderate melting temperatures [11].

In this study, Sm³⁺-doped phosphate glasses with the base composition 50P₂O₅-5Bi₂O₃-25Li₂O-20Na₂O were prepared using the melt-quenching method. The structural, absorption, and luminescence characteristics were examined using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, UV-Vis absorption, and photoluminescence (PL) spectroscopy. The main objective is to understand how Sm³⁺ ions influence the phosphate network structure and optical performance of the glass.

II. EXPERIMENTAL METHODS

Glass samples were prepared using high-purity reagents: NH₄H₂PO₄, Bi₂O₃, Li₂CO₃, Na₂CO₃, and Sm₂O₃. The raw materials were weighed stoichiometrically, thoroughly mixed, and preheated at 350 °C for 1 hour to remove volatile components. The mixture was then melted in a silica crucible at 900 °C for 1 hour and quickly quenched on a preheated stainless-steel plate. The glasses were annealed at 350 °C for 2 hours to relieve internal stress and prevent cracking.

The amorphous nature of the samples was confirmed using X-ray diffraction (XRD) with Cu K α radiation (λ = 1.5406 Å). FTIR spectra were recorded using a Bruker Vertex 70 spectrometer over the 400–4000 cm⁻¹ range. Optical absorption spectra were obtained using a JASCO V-660 spectrophotometer, and photoluminescence measurements were carried out using an Edinburgh Instruments FLS-920 spectrofluorimeter with 405 nm excitation.

III. RESULTS AND DISCUSSION

X-RAY DIFFRACTION (XRD):

The XRD patterns of both undoped and Sm^{3+} -doped phosphate glasses display two broad halos centered around $2\theta = 17^{\circ}$ and 32° , confirming their amorphous nature. The absence of sharp peaks indicates that Sm^{3+} incorporation does not cause crystallization or devitrification [12].

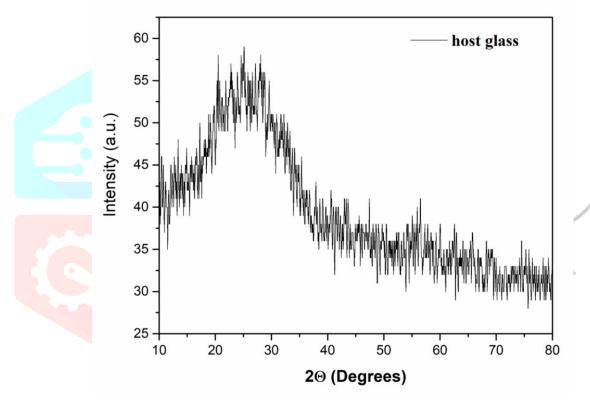


Fig. 1. XRD pattern of phosphate glass matrices for host glass matrix.

3.2. FTIR SPECTROSCOPY:

FTIR spectra exhibit characteristic phosphate network vibrations, including:

- Symmetric and asymmetric P–O–P stretching in the 740–880 cm⁻¹ region,
- (PO₃)²⁻ group vibrations around 1050 cm⁻¹, and
- $(PO_2)^-$ terminal group modes near 1250 cm⁻¹ [13,14].

Changes in the band intensities with Sm³⁺ doping indicate modification of the phosphate network, possibly due to the substitution of Bi³⁺ or Na⁺ ions by Sm³⁺, forming new Sm–O–P linkages that enhance the glass network's connectivity and stability.

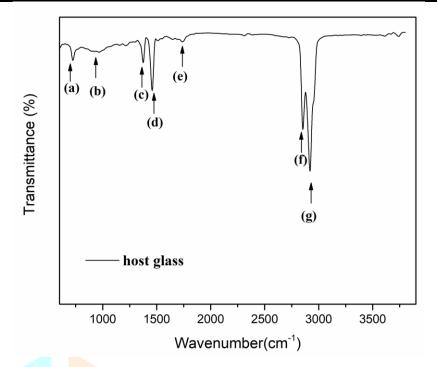


Fig. 2. FTIR spectra of phosphate glasses for host glass matrix.

UV-VIS ABSORPTION SPECTRA

The UV-Vis absorption spectra (Fig. 3) display several narrow peaks corresponding to intraconfigurational 4f-4f transitions of Sm³⁺ ions:

 $^6\text{H}_5/_2 \rightarrow ^6\text{P}_3/_2$ (404 nm), $^6\text{H}_5/_2 \rightarrow ^6\text{P}_5/_2$ (416 nm), $^6\text{H}_5/_2 \rightarrow ^4\text{G}_7/_2$ (450 nm), and $^6\text{H}_5/_2 \rightarrow ^4\text{G}_5/_2$ (478 nm) [15–17]. These peaks are sharp, confirming that Sm³+ ions occupy well-defined local environments with minimal phonon coupling, which is beneficial for radiative transitions. The most of the transitions in the spectra originated from induced electric dipole interactions with selection rule $\Delta J \leq 6$. . 6H5/2 \rightarrow 6F1/2 and 6H5/2 \rightarrow 6F3/2 transitions are hypersensitive transitions in nature, which obeys the selection rules $|\Delta S|$ =0, $|\Delta J| \leq 2$ and $|\Delta L| \leq 2$. The position, shape and intensity of these transitions are found to be very sensitive to the ligand coordination. The transitions in the NIR region are spin allowed (ΔS =0) and hence they show the high intensity.

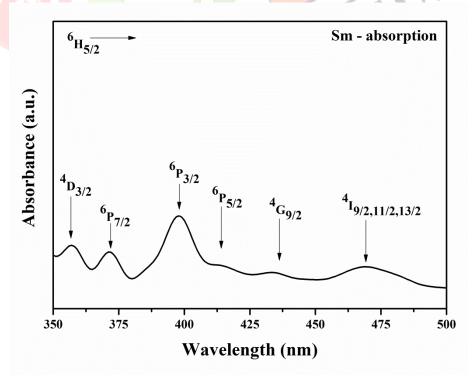


Fig. 3. Optical absorption spectra of phosphate glasses for 1mol% Sm2O3

PHOTOLUMINESCENCE (PL) SPECTRA

Under 405 nm excitation, the photoluminescence spectra (Fig. 4) reveal four emission bands at:

- 563 nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$),
- 597 nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$),
- 644 nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$), and
- 705 nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$).

The intense orange-red band at 597 nm, corresponding to the ${}^4G_5/{}^2 \rightarrow {}^6H_7/{}^2$ transition, dominates the spectrum. This transition is hypersensitive, making it strongly dependent on the local symmetry and bond covalency around Sm³+ ions [18,19]. The ratio R = I(${}^6H_7/{}^2$) / I(${}^6H_5/{}^2$), known as the asymmetry ratio, increases with Sm³+ incorporation, indicating a non-centrosymmetric local environment.

The measured radiative lifetime of the ${}^4G_{5/2}$ excited level is approximately 2.5 ms, implying efficient radiative decay and minimal non-radiative relaxation. These results suggest a uniform distribution of Sm³⁺ ions in the glass matrix without clustering, making the material suitable for photonic and display devices [20].

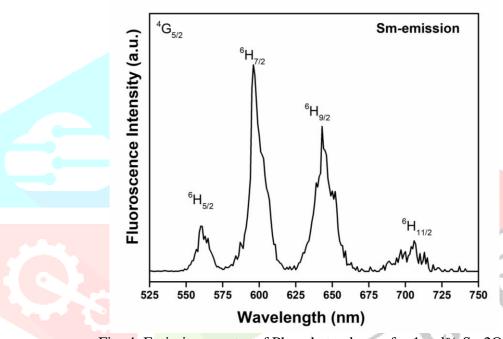


Fig. 4. Emission spectra of Phosphate glasses for 1mol% Sm2O3

IV. CONCLUSIONS

Sm³+-doped phosphate glasses with composition 50P₂O₅–5Bi₂O₃–25Li₂O–20Na₂O were successfully synthesized by the melt-quenching method. The samples are amorphous, transparent, and structurally homogeneous.

FTIR and XRD analyses confirmed that Sm³⁺ ions form Sm–O–P bonds, which strengthen the phosphate network. Optical absorption spectra exhibited well-defined 4f–4f transitions, while PL spectra showed intense orange-red luminescence dominated by the ${}^4G_{5/2} \rightarrow {}^6H_{7/2}$ transition.

The excellent luminescence efficiency and spectral stability demonstrate that these materials are promising candidates for solid-state lighting, photonic amplifiers, and optical marking applications.

V. REFERENCES

- Reisfeld, R., J. Non-Cryst. Solids, 123 (1990) 1-13. 1.
- 2. Ehrt, D., J. Non-Cryst. Solids, 352 (2006) 5154-5160.
- Tanabe, S., J. Mater. Sci., 42 (2007) 191–204. 3.
- Pisarski, W. A., Opt. Mater., 27 (2005) 693–698. 4.
- Poulain, M., Phys. Chem. Glasses, 35 (1994) 128–133. 5.
- Lakshminarayana, G., Qiu, J., J. Non-Cryst. Solids, 354 (2008) 401–409. 6.
- Weber, M. J., Handbook of Laser Wavelengths, CRC Press, 1998. 7.
- 8. Mahata, T., J. Lumin., 131 (2011) 2231–2237.
- 9. Chen, D., J. Alloys Compd., 509 (2011) 4721–4725.
- 10. Rao, K. J., Structural Chemistry of Glasses, Elsevier, 2002.
- 11. Doweidar, H., J. Non-Cryst. Solids, 382 (2013) 88–95.
- 12. Rüssel, C., J. Am. Ceram. Soc., 88 (2005) 2679–2684.
- 13. Shelby, J. E., Introduction to Glass Science and Technology, RSC, 2005.
- 14. Yamashita, Y., J. Appl. Phys., 101 (2007) 093107.
- 15. Seshadri, M., J. Lumin., 129 (2009) 1123–1130.
- 16. Binnemans, K., Coord. Chem. Rev., 295 (2015) 1–45.
- 17. Kaminskii, A. A., Laser Crystals, Springer, 2013.
- 18. Gupta, P. K., Opt. Mater., 30 (2008) 753–760.
- 19. Sato, S., Opt. Mater., 29 (2007) 1168–1174.
- 20. Pecharromán, C., Ceram. Int., 51 (2025) 1–10.

