

Analysis And Design Of A Multistorey Residential Building (C+ Stilt + 5 Floor) Using Staad Pro

¹Mohammed Shoaib Akthar, ²Mohammed Moiz

¹Student, ²Assistant Professor

Department of Civil Engineering,

Lords Institute of Engineering and Technology, Hyderabad, India

Abstract: Shelter is one of the three basic and most important needs of mankind and deserves much importance. Since the early age man has built structures mainly of stone and brick masonry. After the invention of port land cement in the 19th century later on steel took care of tension, the whole scenario of construction was revolutionized. In the project of “**ANALYSIS AND DESIGN OF MULTISTOREY BUILDING**”, we have adopted Limit state method of analysis and design purpose. The design is in confirmation with IS-456:2000. The analysis of frames has been performed by “**STAAD PRO**” i.e. “**FINITE ELEMENT METHOD**”. In this attempt we use to apply our knowledge acquired in the past four years of study. We are happy that we could complete the work successfully and, in this process, acquired more knowledge. This work posed us many important problems, thus forcing us to have a detailed study in to the subject. This helped to us to have a look towards the practical aspect of our subject even though the project work concerned only to the analysis and design of Multistorey Building.

Index Terms – Construction, analysis, aspect, Limist state method.

I.INTRODUCTION

The rapid industrialization and population explosion has given rise to acute storage of housing especially in urban and metropolitan areas where the density of population increases day by day, demand an eye for housing at a large scale. This problem can be solved by construction of multistoried buildings.

The factors influencing the construction of multistoried buildings are the cost of land, where water supply sanitary schemes are electric power.

1.1 STATEMENT OF PROJECT

Salient Features

1. Utility of Building:	Residential Building	: Residential Building
2. No .of Stones		: G+5
3. Shape of the building		: Rectangular
4. No. of staircase		: One
5. No. of lifts		: One
6. Types of construction		: R.C.C Frames Structure
7. Types of walls		: Brick Wall

Geometric Details

Floor to floor height	:	3.0 m
Height of plinth	:	1.5 m above G.L
Depth of foundation	:	1.2 m below G.L

Materials:

Concrete grade	:	M25
All steel grades	:	FE500
Bearing capacity of soil	:	450 KN/m ²

II DESIGN OF SLABS

2.1 DESIGN CONSTANTS:

Using M25 & Fe500 grade of concrete & steel
 f_{ck} (Characteristics strength for M25) = 25 N/mm²
 f_{y} (Characteristics strength for steel) = 500 N/mm²

2.2 LOAD ON SLABS:

➤ Dead load:

Self-weight of slab: This load acts as UDL and is calculated after assuming the 1m wide square strip & suitable thickness by stiffness consideration.

Floor finish load: This load also acts as UDL and is calculated after assuming suitable intensity over 1m wide strips.

➤ Live load:

This is the temporary load on its intensity depends on type & occupancy of building. As per IS: 875 - Part IV, the intensity of live load is taken.

2.3 DESIGN OF ONE-WAY SLAB (S2)

2.3.1 Preliminary Data

Short span	$L_x = 1.105\text{m}$	
Long span	$L_y = 3.01\text{m}$	3.01
Clear cover to the reinforcement	$d_1 = 25\text{ mm}$	
Diameter of the bar used	$\phi = 10$	
mmAspect ratio $L_y / L_x = 3.01/1.105 = 2.72\text{m}$		1.105m
	$= 2.72\text{m} > 2$	

Hence the slab is to be designed as one-way slab.

Assume thickness of slab as 125mm.

Effective depth = $125 - 25 - 10/2 = 100\text{mm}$

2.3.2 Calculation of Loads

Live Load	$= 3\text{ kN/m}^2$
Weight of slab	$= 0.125 \times 1 \times 25 = 3.125\text{kN/m}^2$
Weight of flooring	$= 1\text{kN/m}^2$
Total Load	$= 7.125/\text{m}^2$
Total Factored Load	$W_u = 1.5 \times 7.125 = 10.68\text{kN/m}^2$
Factored Bending Moment	$M = W_u \times L_y^2 / 8 = 2\text{kn m}$
Depth of slab required	$d = \sqrt{(M / 0.133 \times b \times f_{ck})}$
	$= \sqrt{(2 \times 10^6 / (0.133 \times 1000 \times 25))} = 25\text{ mm} < 100\text{mm}$

As $d_{reqd} < d_{prov}$, the section is **SAFE**

Adopt overall depth $D = 125\text{ mm}$

2.3.3 Area of Steel Required

$$A_{st} = 0.5 f_{ck} b d / f_y [1 - \sqrt{1 - 4.6 M / (f_{ck} b d^2)}]$$

$$= 47\text{ mm}^2$$

As per clause 26.5.2.1, $\min A_{st} = 0.12\% \text{ of } bD$

$$= 0.12 \times 1000 \times 125 / 100 = 150\text{mm}^2$$

$A_{st} < A_{st \text{ min}}$

Therefore $A_{st} = A_{st \text{ min}} = 150\text{mm}^2$

Spacing of 10mm diameter bars is given

$$S = (a_{st} / A_{st}) * 1000 = \pi * 10 * 1000 / 4 * 150 = 523\text{ mm}$$

As per clause 2.3.3 b, spacing should be least of the following:

2.7.1.1 $3 \times$ effective depth

$$= 3 \times 100 = 300\text{mm}$$

3. 523mm

Provide 10 mm diameter (main steel) at spacing of 300 mm c/c.

$$Asr \text{ provided} = \pi * 10 * 10 * 1000 / (4 * 300) = 262 \text{ mm}^2$$

2.3.4 Distribution reinforcement:

Assume 10mm dia bars

$$\text{Min } Ast = 0.12\% bD$$

$$= 0.12 * 1000 * 125 / 100 = 150 \text{ mm}^2$$

Spacing of 10 mm diameter bars is given by

$$S = (ast / Ast) * 1000 = 50.24 * 1000 / 140 = 140 \text{ mm}$$

As per clause 26.3.3b, spacing should be least of the following;

2.3.4.1 $3 \times \text{effective depth} = 3 \times 100 = 300 \text{ mm}^2$.

Provide 10 mm diameter bars (distribution steel) at spacing of 140mm c/c.

2.3.5 Check for Shear:

$$\text{Shear force } V_{cr} = (2 * 2.72 / 2) * ((2.72 * 0.5) - (0.23 * 0.5) + 0.124) / (0.5 * 2.72) = 3 \text{ kN}$$

$$\text{Nominal Shear Force } \tau_v = V_u / bd = 3.01 * 1000 / 1000 * 100 = 0.030$$

$$\text{N/mm}^2 \text{ Percentage of Steel } Pt = Ast * 100 / b * d$$

$$= 561 * 100 / 1000 * 100 = 0.561\%$$

For M25 grade concrete, $\tau_c = 0.51 \text{ N/mm}^2$ Since $\tau_v < \tau_c$

So, **SAFE** in Shear.

2.3.6 Check for deflection:

$$L/d = 2.72 * 1000 / (40 * 0.8) = 9.68$$

$$f_s = 0.58 * f_y * \text{Ast required} / \text{Ast provided}$$

$$= 0.58 * 500 * 180 / 194 = 270 \text{ N/mm}^2$$

Based on P_t and f_s , modification factor

$$= 1.63 \text{ Max } L/d = 0.8 * 20 * 1.63 = 26.08 > 9.68$$

So, **SAFE** in deflection

2.4 DESIGN OF TWO-WAY SLAB (S1)

2.4.1 Preliminary Data

Grade of concrete M20 = $f_{ck} = 25 \text{ N/mm}^2$ Grade of steel Fe500 = $f_y = 500 \text{ N/mm}^2$

Short span $L_x = 3.178 \text{ m}$

Long span $L_y = 3.772 \text{ m}$

Clear cover to the reinforcement $= 20 \text{ mm}$

Diameter of the bar used $\phi = 10 \text{ mm}$

Aspect ratio $L_y / L_x = 3.772 / 3.178$

$$= 1.19 < 2$$

Hence the slab is to be designed as two-way slab.

End condition: Two Adjacent Edges Discontinuous.

2.4.2 Step 2: Thickness Of Slab

For continuous slab, Span/depth = $40 * (0.8)$, depth

$$= 3.772 * 1000 / 40 * 0.8 \text{ depth} = 100 \text{ mm}$$

Taking Clear cover = 20mm Overall

depth = $100 + 20 + 10 / 2 = 125$ Assuming

overall depth as 125mm

$$\text{Effective depth } d = 125 - 20 - 10 / 2 = 100 \text{ mm}$$

2.4.3 Step 3: Calculation of

Loads: Dead load:

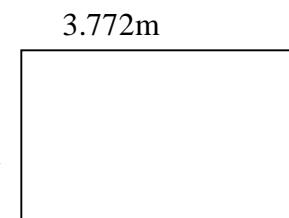
$$\text{Self weight of slab} = 25 * 0.125 = 3.125 \text{ kN/m}^2$$

$$\text{Floor finish} = 1 \text{ kN/m}^2$$

Live load:

$$\text{Live load} = 2 \text{ KN/m}^2$$

$$\text{Accidental load} = 1 \text{ KN/m}^2$$


$$\text{Total load} = 3.125 + 1 + 2 + 1 = 7.125 \text{ kN/m}^2$$

$$\text{Total Factored Load } W_u = 1.5 \times 7.125 = 10.69 \text{ kN/m}^2$$

2.4.4 Step 4: Bending Moment Calculations:

For $l_y/l_x = 1.19$, Two Adjacent Edges Discontinuous

From page 91 of IS 456:2000 clause 24.4.1.

Bending Moment Coefficients are:

$$\alpha_x(+)=0.049 \quad \alpha_x(-)=0.068$$

$$\alpha_y(+)=0.035 \quad \alpha_y(-)=0.047$$

Calculation of Bending Moments

$$M_x \text{ (-ve)} = \alpha_x \times w_u \times x^2 = 0.035 \times 10.69 \times 3.77^2 = 5.35 \text{ kN-m}$$

$$M_x \text{ (+ve)} = 0.049 \times 10.69 \times 3.77^2 = 5.351 \text{ kN-m}$$

$$M_y \text{ (-ve)} = 0.047 \times 10.69 \times 3.77^2 = 5.07 \text{ kN-m}$$

$$M_y \text{ (+ve)} = 0.068 \times 10.69 \times 3.77^2 = 3.78 \text{ kN-m}$$

Bending Moment = 8 kN-m

$$\text{Shear Force} = W_u \times L_x / 2 = 10.69 \times 3.77 / 2 = 20.15 \text{ kN}$$

2.4.5 Check for depth:

$$d(\text{eff}) = \sqrt{8 \times 10^6 / 0.133 \times 25 \times 1000} = 50 < 100 \text{ mm.}$$

It is Safe.

2.4.6 Area of Steel:

$$\begin{aligned} A_{st}(-x) &= 0.5 f_{ck} b d / f_y [1 - \sqrt{1 - 4.6 M / (f_{ck} b d^2)}] \\ &= 0.5 \times 25 \times 1000 \times 100 / 500 [1 - \sqrt{1 - 4.6 \times 8 \times 10^6 / 25 \times 1000 \times 100^2}] \\ &= 176 \text{ mm}^2 \end{aligned}$$

$$A_{st}(+x) = 127 \text{ mm}^2$$

$$A_{st}(-y) = 120 \text{ mm}^2$$

$$A_{st}(+y) = 89 \text{ mm}^2$$

Minimum A_{st} as per clause 26.5.2.1, = 0.12% bD

$$A_{st} = 0.12 / 100 \times 1000 \times 125 = 150 \text{ mm}^2$$

2.4.7 Spacing for Reinforcement:

$$\text{Spacing } x(+\text{ve}) = A\varnothing / A_{st} \times 1000 = \pi \times 10 \times 10 \times 1000 / (4 \times 150) = 523 \text{ mm}$$

Maximum spacing should be less than $3d$ or $300 = 3 \times 100$ or 300 mm

Provide 10mm \varnothing bars at 300 mm c/c spacing

$$\text{Spacing } x(-\text{ve}) = 446 \text{ mm}$$

Provide 10 mm \varnothing bars at 300 mm c/c spacing

$$\text{Spacing } y(+\text{ve}) = 127 \text{ mm}$$

Provide 10 mm \varnothing bars at 300 mm c/c spacing

Spacing y(-ve) = 523mm,

Provide 10 mm Ø bars at 300 mm c/c spacing.

Ast Provided:

$$Ast \text{ provided} = A\varnothing * b/\text{spacing}$$

$$Ast(-x) = (\pi/4 * 8^2) * 1000 / 230 = 176 \text{ mm}^2$$

$$Ast(+x) = 127 \text{ mm}^2$$

$$Ast(-y) = 150 \text{ mm}^2$$

$$Ast(+y) = 150 \text{ mm}^2$$

2.4.8 Check for Shear:

$$\text{Shear force } V_{cr} = (10.69 * 3.77 / 2) * ((3.77 * 0.5) - (0.23 + 0.1)) / (0.5 * 3.772) = 17 \text{ KN}$$

$$\text{Nominal Shear Force } T_v = V_u / bd = 17 * 10^3 / 1000 * 100 = 0.17 \text{ N/mm}^2$$

$$\text{Percentage of Steel (Pt)} = 100 * \text{Ast provided} / b * d = 100 * 262 / (1000 * 100) = 0.262$$

From table 19 to IS 456:2000

$$T_c \text{ max} = 0.366$$

$$T_v < T_c \text{ max}$$

It is **SAFE** in Shear.

2.4.9 Check for Deflection:

$$L/d = 3.178 * 1000 / 100 = 31.78$$

$$f_s = 0.58 * f_y * \text{Ast required} / \text{Ast provided}$$

$$= 0.58 * 500 * 218 / 219 = 289 \text{ N/mm}^2$$

Based on Pt and fs, modification factor = 1.828

Max L/d

$$= 0.8 * 40 * 1.828 = 58.496 > 38.18$$

So, **SAFE** in deflection.

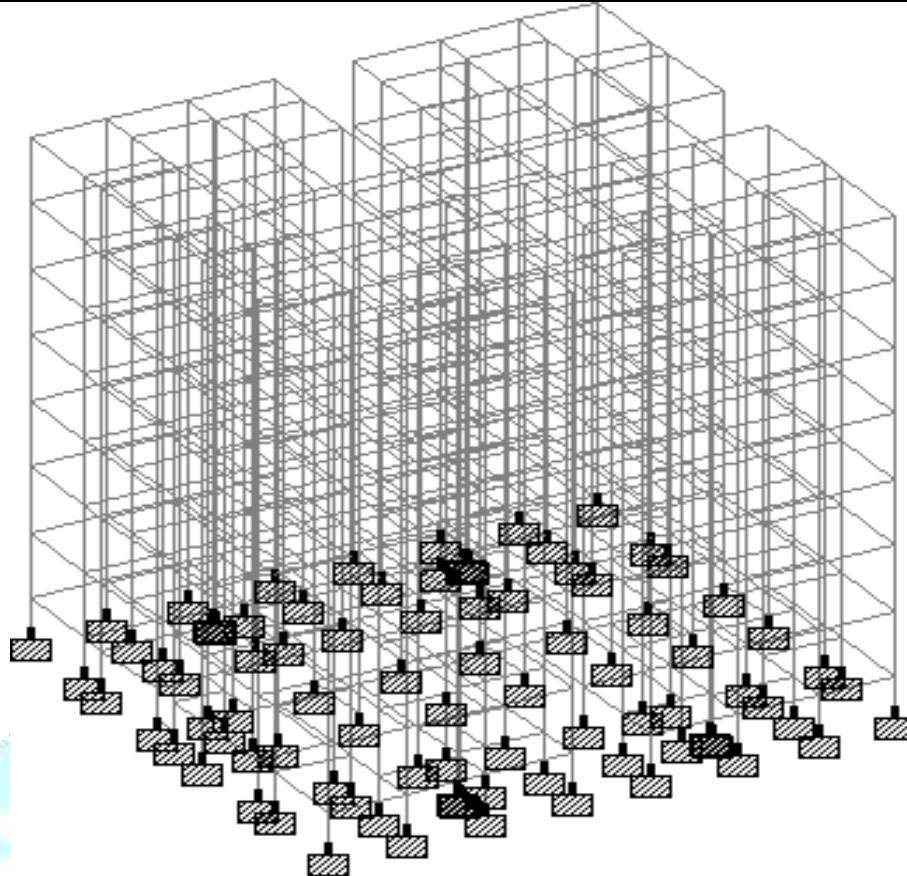


Fig 1 Isometric View of Building

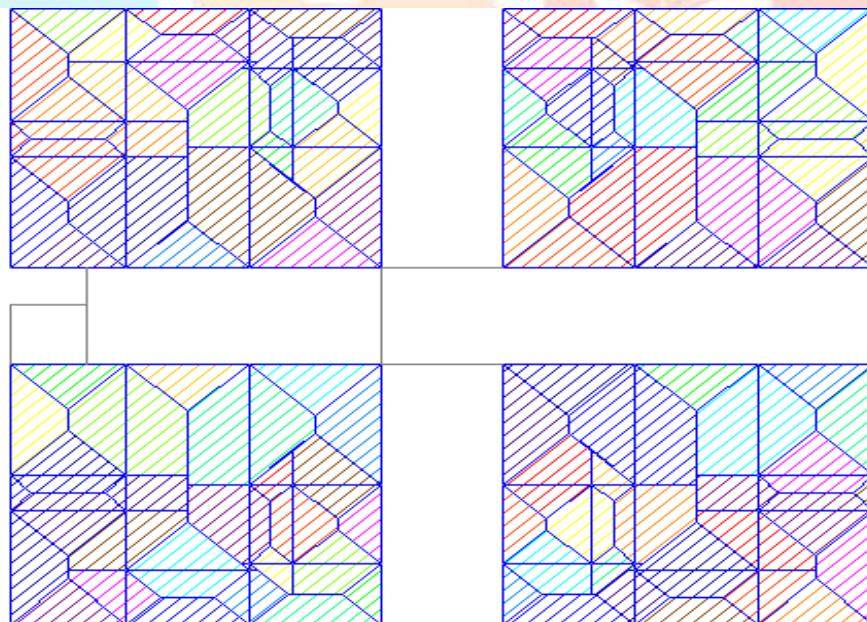
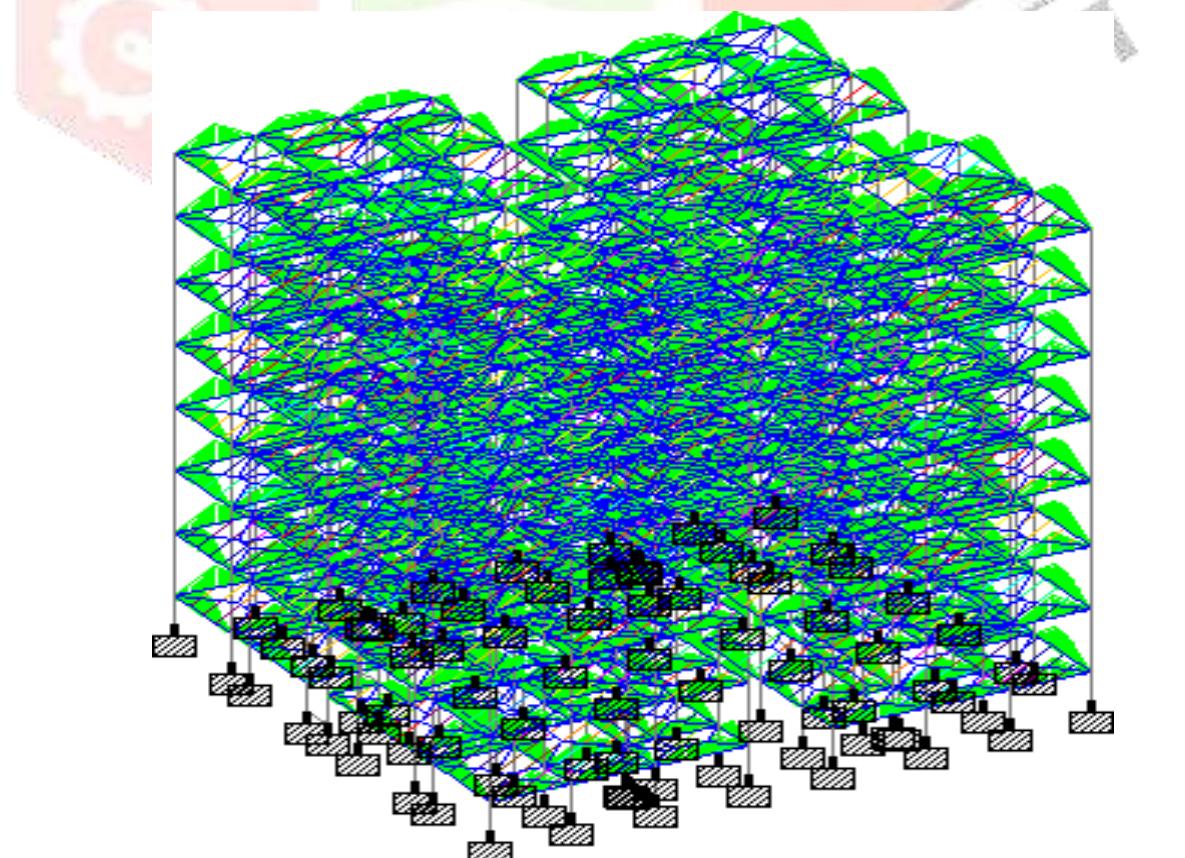
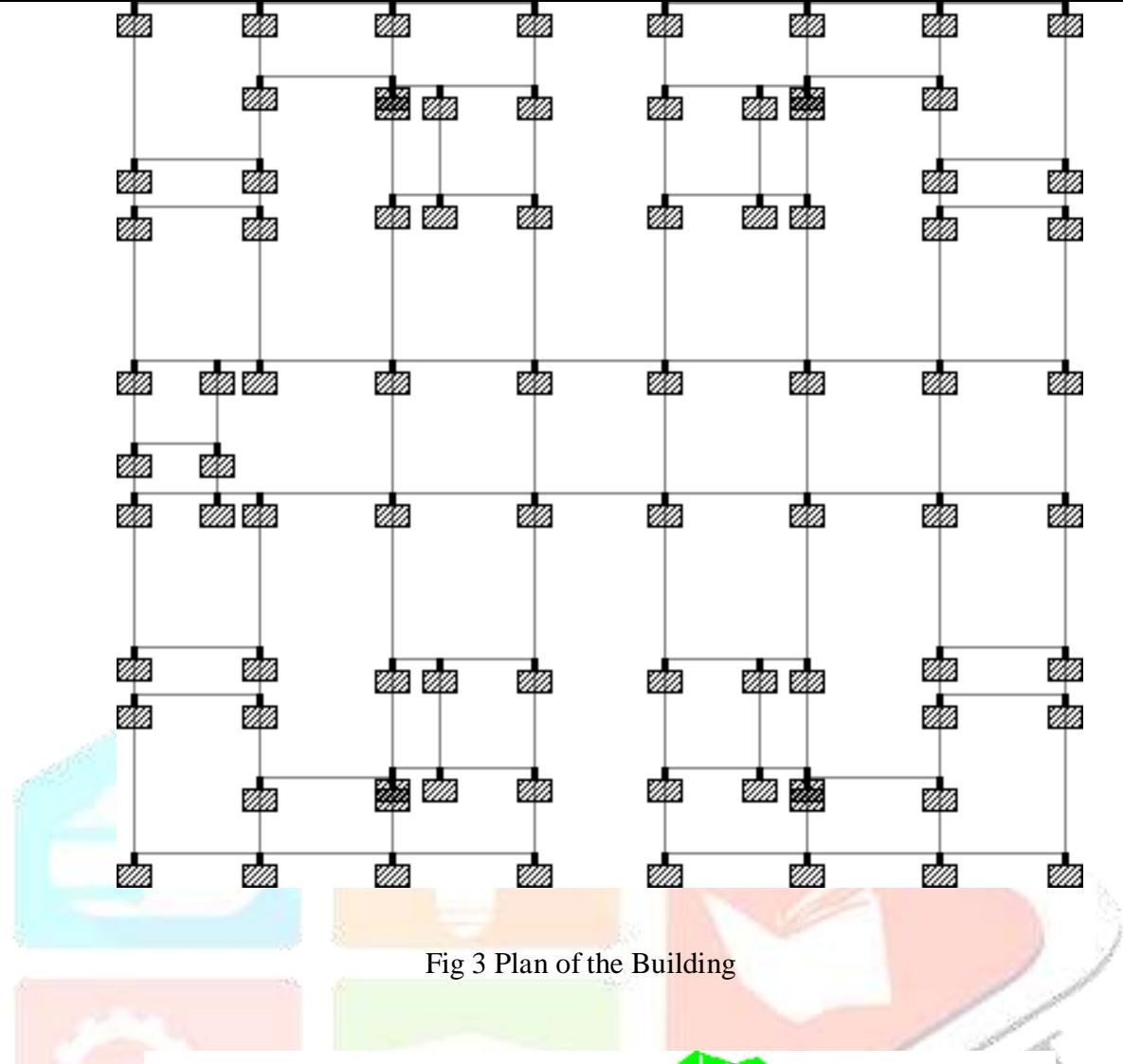




Fig 2 Floor Loading Diagram

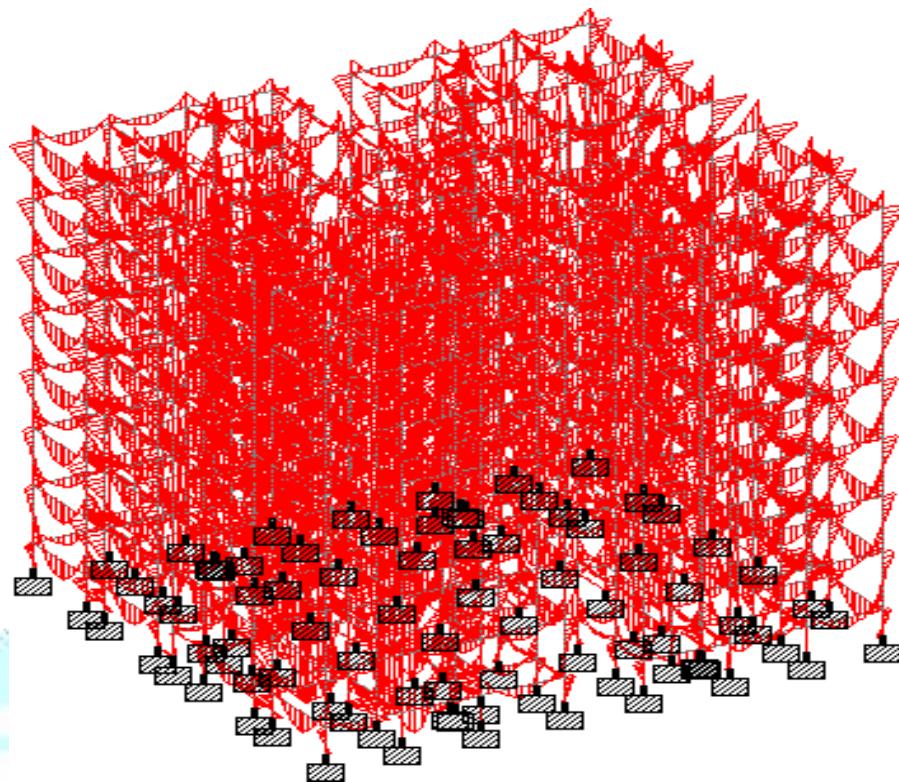


Fig 5 Bending Moment Diagram of Building

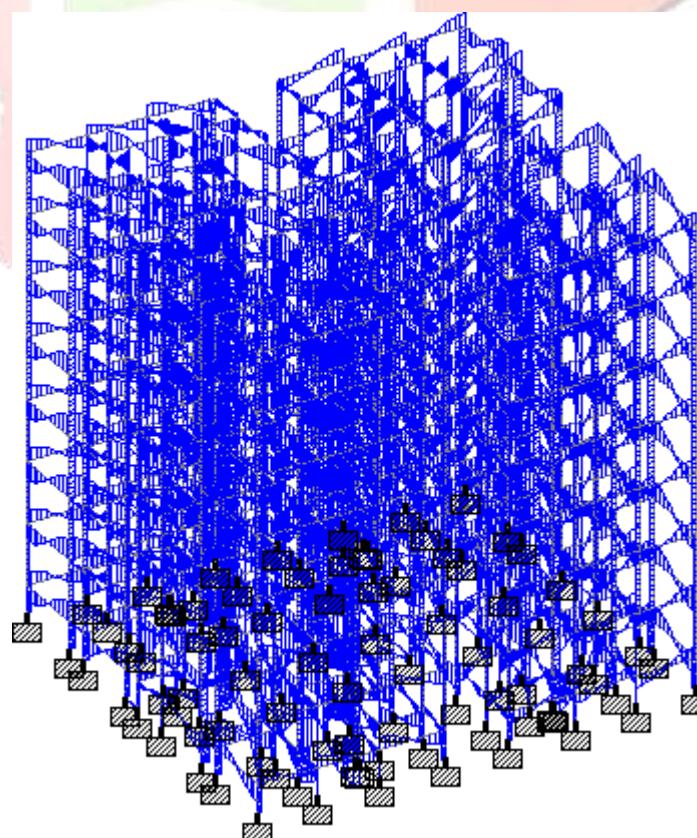


Fig 6 Shear Force Diagram of Building

III. DESIGN FOR FLEXURE (BEAM: - C1C2)

3.1 End span section

Length of beam $L = 3.772$ mt

For Fe 500 Steel $f_y = 500\text{N/mm}^2$

For M20 Concrete $f_{ck} = 25 \text{ N/mm}^2$

For M20 & Fe 500 $X_{\text{umax}} / d = 0.46$

Width of the beam $b = 230 \text{ mm}$

Nominal cover to reinforcement = 30 mm

Using 20 mm dia bars

Effective depth of beam, $d = 565 - 30 - 20 = 305 \text{ mm}$

Design bending moment of the section $M_u = 86.53\text{KNm}$

Limiting moment of resistance $M_{u\text{ lim}} = 0.133 \times f_{ck} \times b \times d \times d$

$$= 0.133 \times 25 \times 230 \times 305 \times 305 \\ = 96 \text{ KNm}$$

As M_u is less than $M_{u\text{ lim}}$, the section is to be designed as singly reinforced beam

3.2 Left End Section

Design bending moment $M_u = 86.53\text{KNm}$

$$86.53 \times 10^6 = 0.87 \times 500 \times A_{st} \times 305 \times (1 - (500 \times A_{st} / 25 \times 230 \times 305)) A_{st} = 866.665 \text{ mm}^2$$

$$A_{st} (\text{min}) = (0.85 \times b \times d) / f_y = 0.85 \times 230 \times 305 / 500 = 119.25 \text{ mm}^2$$

Provide 2 bars of 12mm dia & 3 bars of 20 mm dia at the left end section of beam C1C3.

3.3 Right End Section

Design bending Moment $M_u = 87.28\text{KNm}$

$$87.28 \times 10^6 = 0.87 \times 500 \times A_{st} \times 305 \times (1 - (500 \times A_{st} / 25 \times 230 \times 305)) A_{st} = 877.917 \text{ mm}^2$$

$$A_{st} (\text{min}) = (0.85 \times b \times d) / f_y = 0.85 \times 230 \times 305 / 500 = 119.255 \text{ mm}^2$$

Provide 2 bars of 12mm dia & 3 bars of 20mm dia at the right end section of beam C1C3.

Mid Span section

Design bending Moment $M_u = 44.027 \text{ KNm}$

$$447.027 \times 10^6 = 0.87 \times 500 \times A_{st} \times 305 \times (1 - (500 \times A_{st} / 25 \times 230 \times 305))$$

$$A_{st} = 371.316 \text{ mm}^2$$

$$A_{st} (\text{min}) = (0.85 \times b \times d) / f_y = 0.85 \times 230 \times 305 / 500 = 119.25 \text{ mm}^2$$

Provide 3 bars of 12 mm dia & 2 bars of 12mm dia at the mid span section of beam C1C3

3.4 Design for shear

Ultimate shear force, $V_u = V_{cu} = 132.4 \text{ KN}$

$$\begin{aligned} \text{Nominal shear stress } \tau_V &= V_{uc} / bd \\ &= 132.4 \times 1000 / (230 \times 535) \\ &= 1.383 \text{ N/mm}^2 \end{aligned}$$

As per IS 456:2000 should not be more than max i.e $\tau_{Cmax} = 3.1 \text{ N/mm}^2$

$$\begin{aligned} \text{Percentage steel reinforcement at end span section } (A_{st}/bd) \times 100 &= 1281.76 \times 100 / (230 \times 305) \\ &= 1.486 \end{aligned}$$

As per IS 456 table 19, $\tau_C = 0.738 \text{ N/mm}^2$

$\tau_V > \tau_C$ and $\tau_V < \tau_{Cmax}$

Shear capacity of concrete section $V_{uc1} = \tau_C \times b \times d = 0.738 \times 230 \times 305$

$$= 51.77 \text{ KN}$$

Shear to be resisted by stirrups $V_{us} = 96.16 \text{ KN}$

Using 8mm 2 legged HYSD bars as stirrups

Spacing is given by $S_v = 0.87 \times f_y \times A_{sv} \times d / V_{us}$

$$\begin{aligned} &= 0.87 \times 500 \times 2 \times 50.26 \times 305 / 96.16 \times 1000 \\ &= 170.48 \text{ mm} \end{aligned}$$

Spacing of stirrups should not be more than least of the following

- 1) $S_v = 170.48 \text{ mm}$
- 2) $S_v = (A_{sv} \times f_y \times 0.87) / 0.4 \times b$
 $= 2 \times 50.26 \times 500 \times 0.87 / 0.4 \times 230 = 475.28 \text{ mm}$
- 3) $S_v = 0.75 \times d = 0.75 \times 305 = 228.75 \text{ mm}$
- 4) $S_v = 300 \text{ mm}$

Therefore, provide 8mm dia 2-legged stirrups at 170 mm/c throughout its length.

IV. Conclusion

Structural Aided Design is easy and also time effective whereas the manual calculations are tedious and time consuming. For structural Analysis and design of different structural items such as Footings, Columns, Beams, Slabs, Staircases etc. in this proposed Multistory Building Design project different load combinations were considered and the deflection shape of the building was studied. The bending moment and shear force were calculated and presented graphically. One critical beam case and column case was shown in detail. The slabs, footings and stair case were designed manually and the details of reinforcement were shown in auto-cad drawings. Through this project we understood about what is Architecture, how the building is planned, Structural analysis and design is done, consideration of different loads, codes etc.

The various methods in analysis and design of structures, and in addition to this we understood the basics to be followed during analysis and designing a structure both manually and through STAAD Pro Software.

- We were able to successfully analyze and design the structural elements of multistorey building.
- STAAD PRO was found to be useful for analysis.
- This GROUP PROJECT enables us to go into the market with an excellent background regarding design of R.C.C.

V. Reference

1. S. Ramarutham “Design of Reinforced concrete structures”.
2. S. Ramarutham “Analysis of structures”.
3. N.Subramanian “Design of Reinforced concrete structures”.
4. Dr.B.C Punmia “Comprehensive R.C.C design”.

Code of Practice:

- Steel Design - IS:800-2007
- Concrete Design - IS:456-2000
- Dead load - IS:875 part 1-1987
- Live load - IS:875 part 2-1987

Software used:

- AUTOCAD
- STAAD PRO
- MS OFFICE