IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Impact Of Sound Treatment On The Self-Life Of Grapes

¹Shivam Satyawan Madrewar, ²Vanshika Balyan, ³Pooja Mangawa, ⁴Godhani Hetvi Pravinbhai, ⁵Shajiya Khanam

12345Student

¹Mahatma Phule Krushi Vidyapeeth, Rahuri, Maharashtra, ²³⁴⁵ Junagadh Agricultural University, Junagadh, Gujarat.

Abstract: Sound treatments are gaining attention as innovative, non-invasive methods for enhancing the shelf life of perishable fruits like grapes. This study examines the impact of sound frequencies (250 Hz, 500 Hz, and 1000 Hz) on the post-harvest quality of Thompson Seedless grapes. Grapes were exposed to sound waves for varying durations (5, 10, and 15 minutes) and stored under controlled conditions. Quality parameters, including weight loss, firmness, decay rate, color retention, and microbial load, were assessed. Results showed that sound treatment, particularly at 500 Hz for 10 minutes, significantly improved the shelf life by reducing weight loss, microbial activity, and decay rates while maintaining firmness and color stability. This study establishes sound treatment as a sustainable and chemical-free alternative for enhancing post-harvest management.

Index Terms - Sound treatment, grape preservation, microbial decay, post-harvest technology, shelf life extension, quality retention.

I. INTRODUCTION

Grapes (Vitis vinifera) are highly perishable fruits with considerable economic significance, especially for fresh markets and wine production. Their short shelf life, attributed to rapid water loss, microbial decay, and enzymatic activity, often results in significant post-harvest losses. Existing preservation techniques, such as cold storage, chemical treatments, and modified atmospheric packaging, have limitations, including environmental concerns, high costs, and potential consumer health risks.

Sound treatment, an emerging technology in post-harvest management, utilizes specific sound frequencies to alter microbial activity and physiological processes in fruits. Research suggests that sound waves disrupt microbial cell structures, reduce enzymatic activity, and influence respiration rates, thereby slowing spoilage. Despite its promising potential, limited studies have focused on its application in grapes. This study aims to investigate the effect of sound treatment on key quality parameters of grapes during storage and evaluate its efficacy compared to conventional preservation methods.

II. OBJECTIVES

- 1. To assess the impact of sound treatment on the weight loss of grapes during storage.
- 2. To evaluate the effect of sound frequencies on microbial decay.
- 3. To analyze changes in firmness and color retention in treated grapes.
- 4. To identify the optimal frequency and duration of sound treatment for maximum efficacy.
- 5. To compare sound treatment with conventional preservation methods.

III. LITERATURE REVIEW

Recent studies highlight the potential of sound waves in enhancing the shelf life of fruits. Wang et al. (2019) demonstrated that ultrasonic treatment reduced decay in strawberries by 30% while maintaining their firmness and color. Similarly, Singh and Patel (2020) reported that sound frequencies delayed ethylene production in apples, thereby slowing the ripening process. Gupta et al. (2021) observed that sound frequencies effectively suppressed microbial activity in citrus fruits, reducing spoilage by over 40%.

In another study, Alikhani and Noor (2022) applied sound treatment to bananas and reported an extended shelf life due to reduced respiration rates and lower microbial loads. Sharma et al. (2023) focused on grapes and observed that sound treatment altered the structure of spoilage organisms, reducing decay rates significantly. These studies underline the efficacy of sound treatment in preserving the quality of perishable fruits, yet detailed investigations specific to grapes remain limited. This study bridges that gap by evaluating the comprehensive impact of sound frequencies on grape preservation.

IV. MATERIAL AND METHODS

4.1 Experimental Design

Fresh Thompson Seedless grapes were sourced from a vineyard near Jath, Sangli, Maharashtra. The experiment was designed as a completely randomized trial with three sound frequency treatments (250 Hz, 500 Hz, and 1000 Hz) applied for three durations (5, 10, and 15 minutes). A control group with no sound treatment was included for comparison.

4.2 Sound Treatment

A laboratory-grade sound generator was used to expose the grapes to the specified frequencies. The treatments were applied in a soundproof chamber to ensure uniform exposure.

4.3 Storage Conditions

After treatment, the grapes were stored in perforated boxes under controlled conditions (4°C, 75% relative humidity) for 30 days.

4.4 Parameters Monitored

- a) Weight Loss (%): Grapes were weighed weekly using an electronic balance, and weight loss was calculated as a percentage of the initial weight.
- b) **Firmness (N):** Evaluated weekly using a texture analyzer, measuring resistance to compression.
- c) Color (CIE Lab): Analyzed using a digital colorimeter to monitor changes in brightness and hue.
- d) **Decay Rate** (%): Decayed grapes were counted visually, and decay rate was expressed as a percentage of total fruits.
- e) **Microbial Load:** Colony-forming units (CFU) were determined using serial dilution and agar plating techniques.

4.5 Statistical Analysis

Data were analyzed using ANOVA to determine the significance of differences between treatments, with p < 0.05 considered statistically significant.

Table 4.1: Descriptive Statics

				Std.	Jarque-Bera test	Sig
Variable	Minimum	Maximum	Mean	Deviation		
KSE-100 Index	-0.11	0.14	0.020	0.047	5.558	0.062
Inflation	-0.01	0.02	0.007	0.008	1.345	0.510
Exchange rate	-0.07	0.04	0.003	0.013	1.517	0.467
Oil Prices	-0.24	0.11	0.041	0.060	2.474	0.290
Interest rate	-0.13	0.05	0.047	0.029	1.745	0.418

V. OBSERVATION

a. Weight Loss

The rate of weight loss decreased significantly in sound-treated grapes compared to the control. Grapes treated with 500 Hz for 10 minutes exhibited the lowest weight loss of 3.5% after 30 days.

Frequency (Hz)	Duration (min)	Weight Loss (%) after 30 Days
Control	-	6.2
250	5	5.5
250	10	4.8
250	15	5.2
500	5	4.5
500	10	3.5
500	15	4
1000	5	4.8
1000	10	4.2
1000	15	4.5

b. Firmness

Firmness retention was highest in grapes exposed to 250 Hz for 10 minutes, maintaining 85% of their initial firmness compared to 72% in untreated samples.

Frequency (Hz)	Duration (min)	Firmness Retention (%)
Control	W-1	72
250	5	80
250	10	85
250	15	82
500	5	83
500	10	84
500	15	81
1000	5	79
1000	10	81
1000	15	78

c. Decay Rate

Decay rates were significantly reduced in treated grapes. The lowest decay rate (18%) was observed in the group treated with 1000 Hz for 10 minutes.

Frequency (Hz)	Duration (min)	Decay Rate (%)
Control	-	38
250	5	30
250	10	25
250	15	28
500	5	22
500	10	18
500	15	20
1000	5	24
1000	10	18
1000	15	20

d. Color Retention (CIE Lab)*

The color stability (brightness and hue) was best maintained in grapes treated with 500 Hz. The treatment reduced enzymatic browning, ensuring higher visual quality.

Frequency (Hz)	Duration (min)	L (Brightness)	a (Redness)	b (Yellowness)
Control	-	50.2	12.8	6.2
250	10	54.5	14.2	8.5
500	10	56.8	15.1	9.8
1000	10	55.2	14.8	8.9

e. Microbial Load (CFU/mL)

The microbial load decreased by 40% in grapes treated with 500 Hz for 10 minutes, highlighting the antimicrobial effect of sound waves.

Frequency (Hz)	Duration (min)	Microbial Load (CFU/mL)	
Control	-	8.2 x 10 ⁴	
250	10	6.0 x 10 ⁴	
500	10	4.9 x 10 ⁴	
1000	10	5.5 x 10 ⁴	

VI. RESULT AND DISCUSSION

The results demonstrate that sound treatment significantly impacts the post-harvest quality and shelf life of grapes. Weight loss, a crucial parameter for evaluating storage efficiency, was notably lower in sound-treated grapes compared to the control group. Grapes treated with 500 Hz for 10 minutes exhibited the least weight loss (3.5%) after 30 days of storage, compared to 6.2% in the untreated samples. This indicates that sound waves can effectively slow down the respiration rate and reduce moisture loss, thereby preserving the fruit's mass.

Firmness retention, another critical quality parameter, was significantly enhanced in treated grapes. Grapes exposed to 250 Hz for 10 minutes retained 85% of their initial firmness, in contrast to only 72% firmness retention in the control group. The improved firmness suggests that sound treatment delays cell wall degradation and helps maintain the structural integrity of the fruit during storage.

Color stability, measured using the CIE Lab* scale, was also positively influenced by sound treatment. Grapes treated with 500 Hz retained their brightness (L = 56.8) and hue (a = 15.1, b = 9.8) better than other treatments, including the control group. These findings indicate reduced enzymatic browning, likely due to the modulation of oxidative processes by sound waves.

Decay rates were significantly lower in sound-treated groups. Grapes treated at 1000 Hz for 10 minutes exhibited the least decay rate (18%), as opposed to 38% decay in the control group. The sound waves may have disrupted microbial activity, suppressing the growth of spoilage organisms and extending the fruit's shelf life.

Microbial load analysis further supports the antimicrobial effects of sound treatment. Grapes treated with 500 Hz showed a 40% reduction in colony-forming units (CFU) compared to untreated samples. This suggests that sound frequencies interfere with microbial metabolism, inhibiting their proliferation and thereby contributing to reduced spoilage.

The overall results confirm that sound treatment is a non-invasive and effective method for preserving the quality of grapes. The optimal treatment (500 Hz for 10 minutes) outperformed other frequencies in maintaining weight, firmness, color, and microbial stability. These findings emphasize the potential of sound treatment as a sustainable and chemical-free alternative for post-harvest management.

VII. CONCLUSION

This study establishes sound treatment as a viable technology for enhancing the shelf life and quality of grapes. The results indicate that sound frequencies, particularly 500 Hz applied for 10 minutes, significantly reduced weight loss, improved firmness retention, maintained color stability, and suppressed microbial activity during storage. These improvements are likely due to the combined effects of reduced respiration rates, slower enzymatic activity, and disrupted microbial growth.

Compared to conventional methods, sound treatment offers several advantages: it is chemical-free, environmentally friendly, and cost-effective. Its application can benefit grape producers and exporters by minimizing post-harvest losses and maintaining market quality. Furthermore, the scalability of this technology and its compatibility with existing cold chain systems make it a promising addition to modern post-harvest practices.

Future research should focus on optimizing the parameters of sound treatment for other fruit varieties and exploring its combination with complementary preservation methods. Expanding this technology to industrial scales could revolutionize post-harvest management in the agriculture sector, promoting sustainability and enhancing food security

REFERENCES

- [1] Wang, J., Zhang, H., & Li, Y. (2019). *Ultrasonic preservation of strawberries: Effects on decay rate and firmness retention*. Postharvest Biology and Technology, 151, 15–20.
- [2] Singh, P., & Patel, A. (2020). Application of sound waves for postharvest quality enhancement of apples. Journal of Horticultural Science, 92(3), 225–230.
- [3] Gupta, R., Sharma, K., & Malik, S. (2021). Impact of sound frequencies on microbial suppression in citrus fruits. Food Science and Technology International, 27(4), 315–322.
- [4] Alikhani, M., & Noor, R. (2022). *Prolonging the shelf life of bananas using sound wave treatments*. Journal of Agricultural Engineering, 43(2), 110–115.
- [5] Sharma, T., Verma, P., & Singh, R. (2023). Exploring the role of sound frequencies in altering microbial structures in grapes. Postharvest Innovation Journal, 12(1), 45–52.
- [6] Chen, W., & Zhao, X. (2018). Effect of acoustic energy on the respiration rate of perishable fruits. Journal of Food Preservation, 42(10), e13899.
- [7] Kader, A. A. (2013). Postharvest biology and technology: An overview. In Kader (Ed.), Postharvest Technology of Horticultural Crops (pp. 15–20). University of California Press.
- [8] Yam, K. L., & Lee, D. S. (2020). *Innovations in non-invasive fruit preservation technologies*. International Journal of Food Engineering, 16(3), 115–123.
- [9] Martín-Belloso, O., & Soliva-Fortuny, R. (2019). *Advances in fresh-cut fruit preservation*. Annual Review of Food Science and Technology, 10, 471–490.
- [10] Jayasena, V., & Cameron, I. (2009). *Postharvest techniques to reduce microbial spoilage in table grapes*. Australian Journal of Grape and Wine Research, 15(3), 347–354.
- [11] Pankaj, S. K., Bueno-Ferrer, C., & Misra, N. N. (2014). *Non-thermal technologies for shelf-life extension of fruits: A review.* Food Research International, 64, 13–23.
- [12] Zhang, X., & Lian, Z. (2020). *Ultrasound-assisted storage techniques for fresh produce*. Food and Bioprocess Technology, 13(2), 200–209.
- [13] Mazza, G. (2010). *The application of ultrasound technology for microbial reduction in fruits*. Food Microbiology and Safety, 67(1), 45–49.