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Abstract:   
This survey explores the various vector-indexed and graph-based approaches employed in Retrieval-

Augmented Generation (RAG) systems, a paradigm that enhances large language models (LLMs) by 

incorporating external knowledge through retrieval mechanisms. RAG systems enable LLMs to generate more 

accurate, contextually aware, and informative responses by integrating external documents or structured data 

during the generation process. We delve into two main techniques: vector-indexed retrieval, which leverages 

high-dimensional vector embeddings and methods like Hierarchical Navigable Small World Graphs (HNSW) 

for efficient approximate nearest neighbor search, and graph-based retrieval, which utilizes knowledge graphs 

to store and query relational data. We examine the key stages involved in these approaches, including data 

preprocessing, embedding generation, search algorithms, and integration with LLMs. Furthermore, we address 

the challenges of handling large-scale data and unstructured information. The paper provides a comprehensive 

overview of the current methods, their strengths, and the limitations of RAG. 

 

Index Terms – GenAI , Retrieval-Augmented Generation (RAG) , Large Language Model (LLM) , Graph-

based RAG.  

  

Introduction 

Retrieval-Augmented Generation (RAG) represents a significant advancement in natural language 

processing (NLP) by combining the strengths of generative models and retrieval-based systems. Traditional 

large language models (LLMs) rely on pre-trained knowledge encoded in their parameters, which can be 

limited, especially for knowledge-intensive tasks that require up-to-date or domain-specific information. RAG 

systems address this limitation by incorporating external knowledge sources during the text generation process. 

By retrieving relevant documents or passages from large databases or structured knowledge graphs, RAG 

systems enable LLMs to generate more accurate, contextually informed, and factually grounded responses. 

In this paper, we survey the key approaches to vector-indexed and graph-based retrieval in the context of 

RAG, focusing on how these methods facilitate the integration of external knowledge into generative 

workflows. 

 

The scope of this paper is confined to the retrieval and generation of text-based data.` 

I. RECENT TECHNOLOGICAL ADVANCES 

Recent advances in LLM techniques, such as Chain-of-Thought Prompting [6], have shown that eliciting 

reasoning from the model during the generation process can significantly improve performance, especially on 

complex tasks. These advances have inspired the development of more efficient LLM architectures and 

retrieval mechanisms. Models like GPT-4 [5] and Llama [1,2] have significantly improved their token limits, 

allowing them to process much larger context windows compared to previous models. This enhancement 

enables RAG systems to retrieve and incorporate a larger amount of external text data in a single query, 
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improving the quality and relevance of the generated responses. By handling more context in one pass, these 

models can maintain better coherence across longer documents and more complex retrieval scenarios, thus 

improving the performance of RAG systems, particularly in tasks that require the integration of extensive 

background knowledge. 

 

These models are pivotal in facilitating the integration of large-scale external knowledge sources into 

generative workflows, ensuring that RAG systems remain effective and efficient across a range of knowledge-

intensive applications. 

 

Moreover, cutting-edge models like Gemini [4], which integrate multimodal capabilities, suggest exciting 

new possibilities for expanding RAG's utility beyond traditional text-based applications. Multimodal RAG 

systems could, for example, incorporate images, videos, or other non-textual data alongside traditional text-

based queries, broadening the scope of tasks that RAG systems can handle—from complex visual question 

answering to more sophisticated content generation across modalities. 

 

Despite these advances, challenges remain in integrating structured and unstructured data in real-time, 

which is a central focus of RAG systems. As demonstrated in models like BERT [3], effective handling of 

structured data is possible, thanks to its ability to capture rich, contextualized representations of text. Similarly, 

we should aim to handle unstructured data effectively to maximize data ingestion efficiency and ensure high-

quality retrieval in RAG systems. 

II. FOUNDATIONS OF RETRIEVAL-AUGMENTED GENERATION (RAG) 

RAG Overview: 

Retrieval-augmented generation (RAG) is a paradigm that enhances the capabilities of large language models 

(LLMs) by incorporating external knowledge sources during the generation process. Rather than relying 

solely on pre-trained model weights, RAG systems integrate a retrieval component that fetches relevant 

documents or passages from a large knowledge base and provides these as context for generating responses. 

This hybrid approach enables models to generate more accurate, informative, and contextually aware text, 

especially for knowledge-intensive tasks that require up-to-date or domain-specific information. The core 

mechanics of RAG were introduced and formally defined in prior works, such as the Retrieval-augmented 

Generation for Knowledge-Intensive NLP Tasks paper [7], which laid the groundwork for how retrieval-based 

methods can be coupled with generative models to improve performance across tasks like question answering 

and summarization. 

 

Key Techniques: 

 

The retrieval component of RAG systems typically employs two main methods for sourcing relevant 

information: nearest neighbor search and token-based retrieval. Nearest neighbor search involves finding 

documents or passages that are closest in semantic space to the query, often based on vector embeddings 

derived from pre-trained language models. These embeddings are compared using similarity metrics, such as 

cosine similarity, to identify the most relevant information. Token-based retrieval methods, on the other hand, 

select documents based on direct matching of query tokens to indexed document tokens, making it a more 

traditional keyword-based retrieval approach. For large-scale retrieval, methods such as approximate nearest 

neighbor (ANN) search are commonly used to accelerate the process of finding the closest matching 

documents, as demonstrated in works like Efficient and Robust Approximate Nearest Neighbor Search 

Using Hierarchical Navigable Small World Graphs [9]. In RAG, the retrieved documents or passages are 

then passed to the generative model, which produces contextually relevant text by conditioning the generation 

process on both the input query and the retrieved information. 
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III. VECTOR-INDEXED APPROACHES IN RAG 

Key Steps: 
1. Data Storage: Convert and store text data as vector embeddings. 

2. Preprocessing: Standard NLP preprocessing (tokenization, stop word removal, etc.). 

3. Vector Search: Use HNSW to perform efficient approximate nearest neighbor search in high-

dimensional vector space. 

4. Obtain Associated Data: Retrieve the relevant text associated with the closest embedding. 

5. Send to LLM: Pass the retrieved text and user query to an LLM for response generation. 

 

 

This is the most common approach to building a RAG application. In this approach, we store the data that 

the user wants the LLM (Large Language Model) to read and answer in the form of vector embeddings. We 

then use vector-indexed search to retrieve the relevant text from the database. 

 

Data Storage 

The text data provided by the user must be converted into text embeddings for efficient storage. Text 

embeddings are generated by passing the text through embedding models, such as Ada-002. The model’s output 

consists of vector embeddings—dense, real-valued numerical arrays that capture semantic information about 

the objects they represent. 

Vector embeddings are essentially ordered collections of numbers, and they store semantic relationships 

between words. These vectors exist in high-dimensional space, typically ranging from several hundred to a 

few thousand dimensions. In such a high-dimensional space, text data is stored in a way that words with similar 

meanings are positioned close to each other, while words with different meanings are positioned farther apart.  

For example, words like "car," "vehicle," and "taxi" will be close in this vector space, while words like 

"and" or "the" will be far apart. 

 
Preprocessing 
Preprocessing consists of standard natural language processing (NLP) operations, such as tokenization, 

lowercasing, stop word removal, and special character handling. 

 Tokenization: Breaking a larger text into smaller units (tokens). 

 Lowercasing: Converting text to lowercase to ensure uniformity. 

 Stop Word Removal: Eliminating irrelevant words (such as "is," "the," etc.) that don’t 

contribute much to the meaning. 

 Special Character Handling: Removing symbols, markup language formatting, etc. 

 

Once the text is preprocessed, we convert it into vector embeddings using a suitable model. Embedding 

generator models typically handle tokenization, encoding, and embedding generation. 

 Tokenization: The text is split into smaller units (tokens). 

 Self-attention Mechanism: The model determines the strength of the relationship between 

each word and every other word in the sequence, allowing it to capture dependencies regardless of their 
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distance in the text. This mechanism, introduced in the Transformer model by Vaswani et al. [8], is key 

to enabling parallel computation and long-range context understanding. 

 Encoding: A transformer-based model creates the text encoding using neural networks. BERT, 

in particular, introduced highly effective bidirectional encoders, significantly improving the quality of 

contextual understanding in language models [3]. 

The output of the embedding model is a vector embedding that captures the semantic meaning of the text 

in a high-dimensional space. 
 
Storage of Vector Embeddings 
These vector embeddings need to be stored in a specific database designed to handle the storage and 

retrieval of high-dimensional vectors. Popular databases for storing vector embeddings include FAISS, 

Pinecone, and ChromaDB, among others. 

 
Vector Search 
During vector search, we retrieve the most relevant pieces of information (stored as text embeddings) from 

the high-dimensional vector space. The process involves finding the nearest neighbors of the query vector in 

this embedding space. 

As the number of vectors grows, the search time can become exponentially expensive. In this case, one of 

the most popular, effective, and efficient Approximate Nearest Neighbor Search (ANNS) techniques is 

HNSW (Hierarchical Navigable Small World), introduced in the paper "Efficient and Robust Approximate 

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs" [9]. 

 
HNSW: Hierarchical Navigable Small World Graphs 
HNSW takes advantage of the small-world property of graphs, which has two key characteristics: 

1. Local Clustering: Nodes are connected to a small number of neighbors that are close in the 

graph. 

2. Long-range Connections: Despite having only a few neighbors, each node has a small number 

of long-range connections that enable fast "shortcuts" to distant parts of the graph. 

 

Hierarchical Structure 

HNSW uses a multi-layered graph structure: 

 The lower layers are denser, while the upper layers become more sparse. 

 The bottom-most layer contains all the vectors, and each higher layer contains a subset of the 

previous layer, allowing for faster navigation. 

 

Performing the Search 

Each node in the multi-layer graph represents a data point with a text embedding. The search begins at the 

topmost layer and moves downwards until reaching the lowest layer. 

At each layer: 

 The algorithm greedily moves towards the most similar node to the query. 

 Once the best candidate is found at the current layer, the search moves downward to the next 

layer. 

 As we move down, the graph becomes denser, and the search becomes more precise. 

This process is described as the zoom-out phase (moving through lower-density layers) and the zoom-in 

phase (navigating through higher-density layers) in the HNSW paper [9]. 
 
Obtain Associated Data 
Once the closest embedding is found, it typically corresponds to a document or text chunk in a large corpus. 

The next step is to retrieve the actual text data associated with the closest embedding. 

This can include a full document, a passage, or a section of text relevant to the user query. 
 
Send Retrieved Data to the LLM 
The retrieved text is then passed, along with the user’s original query, to the LLM (Large Language 

Model). The LLM reads both the user query and the relevant associated text and responds in the designated 

question-answer format or other task-specific formats (e.g., summarization, completion, etc.). 
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IV.  RETRIEVAL-AUGMENTED GENERATION (RAG) WITH KNOWLEDGE GRAPHS 

Key Steps: 
1. Query the Knowledge Graph to fetch relevant entities and relationships. 

2. Process the retrieved data (either by forwarding all results or selecting the best matches). 

3. Integrate the retrieved data into the prompt for the LLM. 

4. Generate a response using the LLM, now augmented with relevant external knowledge. 

 

In a retrieval-augmented generation (RAG) system, two main components are at play: 

1. The Retrieval Mechanism, which retrieves external data that the language model (LLM) has 

not been pre-trained on. 

2. The LLM, which generates responses based on the retrieved data and the user's query. 

 

 

 

The system operates by feeding relevant portions of this external data to the LLM during the prompt phase. 

For instance, in a question-answering  scenario, the retrieved information supplements the LLM's knowledge, 

providing it with up-to-date, domain-specific, or factual knowledge that the model may not inherently possess. 

 

Knowledge Graphs for Data Storage and Retrieval 

A knowledge graph is a data structure that stores information in the form of nodes and edges. Each node 

represents an entity (such as an object, person, or concept), while the edges define the relationships between 

these entities. 

For example: 

 Entity 1: Gold (Node) 

 Entity 2: Jewellery (Node) 

 Relationship: "Used in" (Edge) 

Thus, the knowledge graph could represent the relationship between these two entities as follows: 

 Node 1: Gold 

 Node 2: Jewellery 

 Edge: "Used in" 

The main advantage of using a knowledge graph for storage is that it reflects how humans store and recall 

information. Just as we relate concepts and recall facts based on their associations (e.g., "Gold is used in 

Jewellery"), a knowledge graph captures this relational structure, making it easier to traverse and retrieve 

related data. 

By storing related data together and connecting it via edges, knowledge graphs enable efficient traversal. 

When a particular piece of information is needed, it is usually located in close proximity to the relevant entity 

within the graph, reducing the computational cost of search queries. 
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Retrieving Data from the Knowledge Graph 
The retrieval phase in a RAG system involves querying the knowledge graph to fetch relevant information. 

This is done using graph query languages or graph databases, which are designed to perform pattern 

matching and pathfinding across nodes and edges. Examples of graph query languages include Cypher (used 

in Neo4j), SPARQL (used in RDF-based systems), and other query systems tailored for graph-based data. 

The process of query execution typically involves: 

1. Pattern Matching: Identifying nodes and edges that match the query’s conditions. 

2. Pathfinding: Traversing the graph to find relationships between entities, particularly when the 

query involves multiple nodes and edges. 

3. Returning Results: The result of a query can be a list of matching nodes, a set of relationships 

between entities, or a subgraph representing a pattern of connections. The data returned is usually 

structured in a machine-readable format such as JSON or RDF. 

For instance, a query asking for "What is gold used in?" might return a list of related entities like "Jewellery", 

"Electronics", and "Coins", along with their associated relationships (e.g., "Gold is used in Jewellery"). 

 
Integrating Retrieved Data into the LLM for Response Generation 
Once the query results are returned from the knowledge graph, the next step is to decide how to utilise this 

information in the prompting process for the LLM. The retrieved data can be processed in a few different 

ways: 

 Forwarding All Retrieved Results: You could send the entire result set (e.g., a list of nodes 

and relationships) along with the user's query to the LLM. This ensures the model has access to all the 

information, though it may increase complexity or noise in the prompt. 

 Selecting the Best Matches: Alternatively, the system could select the most relevant or highly 

ranked results from the knowledge graph based on a scoring mechanism, ensuring that only the most 

relevant information is provided to the LLM. 

 
Generating Responses with the LLM 
Once the LLM receives the user's query along with the relevant retrieved data, it can use this external 

knowledge—information that was previously unknown to the model—to generate a response. The retrieval-

augmented approach allows the LLM to generate more contextually accurate and knowledge-rich responses 

than it would otherwise be able to generate based on its pre-trained knowledge alone. 

The LLM, now equipped with relevant factual data from the knowledge graph, uses this context to produce 

an output. The generated answer can then be a more precise, contextually informed response to the user's query.  

 

V. CHALLENGES IN DATA HANDLING FOR RAG SYSTEMS 

Large Data Intake 
One of the key challenges in implementing a Retrieval-Augmented Generation (RAG) system is handling 

large volumes of data. The system may struggle to ingest large datasets quickly, particularly when those 

datasets must be processed in real-time. The process of embedding creation—which transforms raw data into 

vector embeddings—can be computationally expensive and time-consuming. 

When large datasets are suddenly ingested: 

 The system's performance may degrade, with slower ingestion times and increased 

processing overhead. 

 Batch processing may be required to mitigate the performance impact, but this may introduce 

additional delays. 

 Overall system efficiency may decline due to the increased load on the ingestion pipeline and 

the resource-intensive process of embedding generation. 

To manage this challenge, scalable systems are needed to efficiently handle large data volumes while 

maintaining a balance between data intake speed and computational resources. 

 

 
Handling Unstructured Data 
Another major challenge in RAG systems is working with unstructured data. Unstructured data, such as 

PDFs, emails, and web pages, often contains a variety of complex elements—tables, charts, images, and 

different formatting—that make it difficult to store and retrieve efficiently. The challenges include: 
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 Data Storage: Unstructured data may not be stored in a structured format, causing issues with 

organizing and indexing. 

 Semantic Loss: When the data is not properly structured, the original order and context of 

the information may be lost. This can lead to incomplete or inaccurate retrievals, especially if the 

relationships between different pieces of information (e.g., tables, figures, and accompanying text) are 

not preserved. 

 Formatting Complexity: Unstructured data comes in varied formats, and processing it requires 

additional steps like text extraction, cleaning, and standardization to make it suitable for the RAG 

system. 

The difficulty of preserving semantic meaning, dealing with noisy or complex data formats, and ensuring 

that relevant context is captured during retrieval presents significant obstacles in building robust RAG systems. 

Overcoming these challenges is crucial for improving the overall efficiency and effectiveness of RAG, 

particularly in real-time knowledge retrieval and response generation. 

 

 
VI. Conclusion 

Retrieval-Augmented Generation (RAG) systems represent a significant advancement in natural language 

processing by enhancing large language models (LLMs) with external knowledge retrieval. By integrating 

relevant, up-to-date, and domain-specific information, RAG systems enable LLMs to generate more accurate, 

informative, and contextually aware responses, particularly for knowledge-intensive tasks. Techniques such as 

vector-indexed search, approximate nearest neighbor algorithms like HNSW, and the integration of knowledge 

graphs are fundamental to improving the efficiency and quality of data retrieval in RAG systems. 

Despite their powerful capabilities, RAG systems face challenges in handling large-scale data intake, 

especially with unstructured data like PDFs, web pages, and images. Addressing these challenges requires 

ongoing improvements in data preprocessing, storage solutions, and retrieval mechanisms. Moreover, 

advancements in LLMs, including techniques like chain-of-thought prompting and multimodal integration, 

continue to expand the potential of RAG systems, making them more efficient and capable of solving complex 

tasks across diverse domains. 

Future research in RAG systems will likely focus on optimizing data retrieval and integration processes, 

handling real-time data ingestion, and improving the scalability of systems to manage large datasets. As these 

systems evolve, they are poised to become even more powerful tools for a wide range of applications, including 

question answering, summarization, and complex reasoning tasks, driving advancements in both academic 

research and practical applications. 
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