
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411360 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d192

A Survey Of Vector-Indexed And Graph-Based

Approaches To Retrieval-Augmented Generation

(RAG)

1Aryan Dhalpe, 2Dr. Vina M. Lomte, 3Piyush Savale, 4Aditya Diwakar, 5Gaurav Kantak

1Student, 2Head of Department, 3Student, 4Student,5Student,
1-5Department of Computer Engineering, RMD Sinhgad School of Engineering, Warje, Pune–411058, India

Abstract:
This survey explores the various vector-indexed and graph-based approaches employed in Retrieval-

Augmented Generation (RAG) systems, a paradigm that enhances large language models (LLMs) by

incorporating external knowledge through retrieval mechanisms. RAG systems enable LLMs to generate more

accurate, contextually aware, and informative responses by integrating external documents or structured data

during the generation process. We delve into two main techniques: vector-indexed retrieval, which leverages

high-dimensional vector embeddings and methods like Hierarchical Navigable Small World Graphs (HNSW)

for efficient approximate nearest neighbor search, and graph-based retrieval, which utilizes knowledge graphs

to store and query relational data. We examine the key stages involved in these approaches, including data

preprocessing, embedding generation, search algorithms, and integration with LLMs. Furthermore, we address

the challenges of handling large-scale data and unstructured information. The paper provides a comprehensive

overview of the current methods, their strengths, and the limitations of RAG.

Index Terms – GenAI , Retrieval-Augmented Generation (RAG) , Large Language Model (LLM) , Graph-

based RAG.

Introduction

Retrieval-Augmented Generation (RAG) represents a significant advancement in natural language

processing (NLP) by combining the strengths of generative models and retrieval-based systems. Traditional

large language models (LLMs) rely on pre-trained knowledge encoded in their parameters, which can be

limited, especially for knowledge-intensive tasks that require up-to-date or domain-specific information. RAG

systems address this limitation by incorporating external knowledge sources during the text generation process.

By retrieving relevant documents or passages from large databases or structured knowledge graphs, RAG

systems enable LLMs to generate more accurate, contextually informed, and factually grounded responses.

In this paper, we survey the key approaches to vector-indexed and graph-based retrieval in the context of

RAG, focusing on how these methods facilitate the integration of external knowledge into generative

workflows.

The scope of this paper is confined to the retrieval and generation of text-based data.`

I. RECENT TECHNOLOGICAL ADVANCES

Recent advances in LLM techniques, such as Chain-of-Thought Prompting [6], have shown that eliciting

reasoning from the model during the generation process can significantly improve performance, especially on

complex tasks. These advances have inspired the development of more efficient LLM architectures and

retrieval mechanisms. Models like GPT-4 [5] and Llama [1,2] have significantly improved their token limits,

allowing them to process much larger context windows compared to previous models. This enhancement

enables RAG systems to retrieve and incorporate a larger amount of external text data in a single query,

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411360 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d193

improving the quality and relevance of the generated responses. By handling more context in one pass, these

models can maintain better coherence across longer documents and more complex retrieval scenarios, thus

improving the performance of RAG systems, particularly in tasks that require the integration of extensive

background knowledge.

These models are pivotal in facilitating the integration of large-scale external knowledge sources into

generative workflows, ensuring that RAG systems remain effective and efficient across a range of knowledge-

intensive applications.

Moreover, cutting-edge models like Gemini [4], which integrate multimodal capabilities, suggest exciting

new possibilities for expanding RAG's utility beyond traditional text-based applications. Multimodal RAG

systems could, for example, incorporate images, videos, or other non-textual data alongside traditional text-

based queries, broadening the scope of tasks that RAG systems can handle—from complex visual question

answering to more sophisticated content generation across modalities.

Despite these advances, challenges remain in integrating structured and unstructured data in real-time,

which is a central focus of RAG systems. As demonstrated in models like BERT [3], effective handling of

structured data is possible, thanks to its ability to capture rich, contextualized representations of text. Similarly,

we should aim to handle unstructured data effectively to maximize data ingestion efficiency and ensure high-

quality retrieval in RAG systems.

II. FOUNDATIONS OF RETRIEVAL-AUGMENTED GENERATION (RAG)

RAG Overview:

Retrieval-augmented generation (RAG) is a paradigm that enhances the capabilities of large language models

(LLMs) by incorporating external knowledge sources during the generation process. Rather than relying

solely on pre-trained model weights, RAG systems integrate a retrieval component that fetches relevant

documents or passages from a large knowledge base and provides these as context for generating responses.

This hybrid approach enables models to generate more accurate, informative, and contextually aware text,

especially for knowledge-intensive tasks that require up-to-date or domain-specific information. The core

mechanics of RAG were introduced and formally defined in prior works, such as the Retrieval-augmented

Generation for Knowledge-Intensive NLP Tasks paper [7], which laid the groundwork for how retrieval-based

methods can be coupled with generative models to improve performance across tasks like question answering

and summarization.

Key Techniques:

The retrieval component of RAG systems typically employs two main methods for sourcing relevant

information: nearest neighbor search and token-based retrieval. Nearest neighbor search involves finding

documents or passages that are closest in semantic space to the query, often based on vector embeddings

derived from pre-trained language models. These embeddings are compared using similarity metrics, such as

cosine similarity, to identify the most relevant information. Token-based retrieval methods, on the other hand,

select documents based on direct matching of query tokens to indexed document tokens, making it a more

traditional keyword-based retrieval approach. For large-scale retrieval, methods such as approximate nearest

neighbor (ANN) search are commonly used to accelerate the process of finding the closest matching

documents, as demonstrated in works like Efficient and Robust Approximate Nearest Neighbor Search

Using Hierarchical Navigable Small World Graphs [9]. In RAG, the retrieved documents or passages are

then passed to the generative model, which produces contextually relevant text by conditioning the generation

process on both the input query and the retrieved information.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411360 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d194

III. VECTOR-INDEXED APPROACHES IN RAG

Key Steps:
1. Data Storage: Convert and store text data as vector embeddings.

2. Preprocessing: Standard NLP preprocessing (tokenization, stop word removal, etc.).

3. Vector Search: Use HNSW to perform efficient approximate nearest neighbor search in high-

dimensional vector space.

4. Obtain Associated Data: Retrieve the relevant text associated with the closest embedding.

5. Send to LLM: Pass the retrieved text and user query to an LLM for response generation.

This is the most common approach to building a RAG application. In this approach, we store the data that

the user wants the LLM (Large Language Model) to read and answer in the form of vector embeddings. We

then use vector-indexed search to retrieve the relevant text from the database.

Data Storage

The text data provided by the user must be converted into text embeddings for efficient storage. Text

embeddings are generated by passing the text through embedding models, such as Ada-002. The model’s output

consists of vector embeddings—dense, real-valued numerical arrays that capture semantic information about

the objects they represent.

Vector embeddings are essentially ordered collections of numbers, and they store semantic relationships

between words. These vectors exist in high-dimensional space, typically ranging from several hundred to a

few thousand dimensions. In such a high-dimensional space, text data is stored in a way that words with similar

meanings are positioned close to each other, while words with different meanings are positioned farther apart.

For example, words like "car," "vehicle," and "taxi" will be close in this vector space, while words like

"and" or "the" will be far apart.

Preprocessing
Preprocessing consists of standard natural language processing (NLP) operations, such as tokenization,

lowercasing, stop word removal, and special character handling.

 Tokenization: Breaking a larger text into smaller units (tokens).

 Lowercasing: Converting text to lowercase to ensure uniformity.

 Stop Word Removal: Eliminating irrelevant words (such as "is," "the," etc.) that don’t

contribute much to the meaning.

 Special Character Handling: Removing symbols, markup language formatting, etc.

Once the text is preprocessed, we convert it into vector embeddings using a suitable model. Embedding

generator models typically handle tokenization, encoding, and embedding generation.

 Tokenization: The text is split into smaller units (tokens).

 Self-attention Mechanism: The model determines the strength of the relationship between

each word and every other word in the sequence, allowing it to capture dependencies regardless of their

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411360 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d195

distance in the text. This mechanism, introduced in the Transformer model by Vaswani et al. [8], is key

to enabling parallel computation and long-range context understanding.

 Encoding: A transformer-based model creates the text encoding using neural networks. BERT,

in particular, introduced highly effective bidirectional encoders, significantly improving the quality of

contextual understanding in language models [3].

The output of the embedding model is a vector embedding that captures the semantic meaning of the text

in a high-dimensional space.

Storage of Vector Embeddings
These vector embeddings need to be stored in a specific database designed to handle the storage and

retrieval of high-dimensional vectors. Popular databases for storing vector embeddings include FAISS,

Pinecone, and ChromaDB, among others.

Vector Search
During vector search, we retrieve the most relevant pieces of information (stored as text embeddings) from

the high-dimensional vector space. The process involves finding the nearest neighbors of the query vector in

this embedding space.

As the number of vectors grows, the search time can become exponentially expensive. In this case, one of

the most popular, effective, and efficient Approximate Nearest Neighbor Search (ANNS) techniques is

HNSW (Hierarchical Navigable Small World), introduced in the paper "Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs" [9].

HNSW: Hierarchical Navigable Small World Graphs
HNSW takes advantage of the small-world property of graphs, which has two key characteristics:

1. Local Clustering: Nodes are connected to a small number of neighbors that are close in the

graph.

2. Long-range Connections: Despite having only a few neighbors, each node has a small number

of long-range connections that enable fast "shortcuts" to distant parts of the graph.

Hierarchical Structure

HNSW uses a multi-layered graph structure:

 The lower layers are denser, while the upper layers become more sparse.

 The bottom-most layer contains all the vectors, and each higher layer contains a subset of the

previous layer, allowing for faster navigation.

Performing the Search

Each node in the multi-layer graph represents a data point with a text embedding. The search begins at the

topmost layer and moves downwards until reaching the lowest layer.

At each layer:

 The algorithm greedily moves towards the most similar node to the query.

 Once the best candidate is found at the current layer, the search moves downward to the next

layer.

 As we move down, the graph becomes denser, and the search becomes more precise.

This process is described as the zoom-out phase (moving through lower-density layers) and the zoom-in

phase (navigating through higher-density layers) in the HNSW paper [9].

Obtain Associated Data
Once the closest embedding is found, it typically corresponds to a document or text chunk in a large corpus.

The next step is to retrieve the actual text data associated with the closest embedding.

This can include a full document, a passage, or a section of text relevant to the user query.

Send Retrieved Data to the LLM
The retrieved text is then passed, along with the user’s original query, to the LLM (Large Language

Model). The LLM reads both the user query and the relevant associated text and responds in the designated

question-answer format or other task-specific formats (e.g., summarization, completion, etc.).

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411360 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d196

IV. RETRIEVAL-AUGMENTED GENERATION (RAG) WITH KNOWLEDGE GRAPHS

Key Steps:
1. Query the Knowledge Graph to fetch relevant entities and relationships.

2. Process the retrieved data (either by forwarding all results or selecting the best matches).

3. Integrate the retrieved data into the prompt for the LLM.

4. Generate a response using the LLM, now augmented with relevant external knowledge.

In a retrieval-augmented generation (RAG) system, two main components are at play:

1. The Retrieval Mechanism, which retrieves external data that the language model (LLM) has

not been pre-trained on.

2. The LLM, which generates responses based on the retrieved data and the user's query.

The system operates by feeding relevant portions of this external data to the LLM during the prompt phase.

For instance, in a question-answering scenario, the retrieved information supplements the LLM's knowledge,

providing it with up-to-date, domain-specific, or factual knowledge that the model may not inherently possess.

Knowledge Graphs for Data Storage and Retrieval

A knowledge graph is a data structure that stores information in the form of nodes and edges. Each node

represents an entity (such as an object, person, or concept), while the edges define the relationships between

these entities.

For example:

 Entity 1: Gold (Node)

 Entity 2: Jewellery (Node)

 Relationship: "Used in" (Edge)

Thus, the knowledge graph could represent the relationship between these two entities as follows:

 Node 1: Gold

 Node 2: Jewellery

 Edge: "Used in"

The main advantage of using a knowledge graph for storage is that it reflects how humans store and recall

information. Just as we relate concepts and recall facts based on their associations (e.g., "Gold is used in

Jewellery"), a knowledge graph captures this relational structure, making it easier to traverse and retrieve

related data.

By storing related data together and connecting it via edges, knowledge graphs enable efficient traversal.

When a particular piece of information is needed, it is usually located in close proximity to the relevant entity

within the graph, reducing the computational cost of search queries.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411360 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d197

Retrieving Data from the Knowledge Graph
The retrieval phase in a RAG system involves querying the knowledge graph to fetch relevant information.

This is done using graph query languages or graph databases, which are designed to perform pattern

matching and pathfinding across nodes and edges. Examples of graph query languages include Cypher (used

in Neo4j), SPARQL (used in RDF-based systems), and other query systems tailored for graph-based data.

The process of query execution typically involves:

1. Pattern Matching: Identifying nodes and edges that match the query’s conditions.

2. Pathfinding: Traversing the graph to find relationships between entities, particularly when the

query involves multiple nodes and edges.

3. Returning Results: The result of a query can be a list of matching nodes, a set of relationships

between entities, or a subgraph representing a pattern of connections. The data returned is usually

structured in a machine-readable format such as JSON or RDF.

For instance, a query asking for "What is gold used in?" might return a list of related entities like "Jewellery",

"Electronics", and "Coins", along with their associated relationships (e.g., "Gold is used in Jewellery").

Integrating Retrieved Data into the LLM for Response Generation
Once the query results are returned from the knowledge graph, the next step is to decide how to utilise this

information in the prompting process for the LLM. The retrieved data can be processed in a few different

ways:

 Forwarding All Retrieved Results: You could send the entire result set (e.g., a list of nodes

and relationships) along with the user's query to the LLM. This ensures the model has access to all the

information, though it may increase complexity or noise in the prompt.

 Selecting the Best Matches: Alternatively, the system could select the most relevant or highly

ranked results from the knowledge graph based on a scoring mechanism, ensuring that only the most

relevant information is provided to the LLM.

Generating Responses with the LLM
Once the LLM receives the user's query along with the relevant retrieved data, it can use this external

knowledge—information that was previously unknown to the model—to generate a response. The retrieval-

augmented approach allows the LLM to generate more contextually accurate and knowledge-rich responses

than it would otherwise be able to generate based on its pre-trained knowledge alone.

The LLM, now equipped with relevant factual data from the knowledge graph, uses this context to produce

an output. The generated answer can then be a more precise, contextually informed response to the user's query.

V. CHALLENGES IN DATA HANDLING FOR RAG SYSTEMS

Large Data Intake
One of the key challenges in implementing a Retrieval-Augmented Generation (RAG) system is handling

large volumes of data. The system may struggle to ingest large datasets quickly, particularly when those

datasets must be processed in real-time. The process of embedding creation—which transforms raw data into

vector embeddings—can be computationally expensive and time-consuming.

When large datasets are suddenly ingested:

 The system's performance may degrade, with slower ingestion times and increased

processing overhead.

 Batch processing may be required to mitigate the performance impact, but this may introduce

additional delays.

 Overall system efficiency may decline due to the increased load on the ingestion pipeline and

the resource-intensive process of embedding generation.

To manage this challenge, scalable systems are needed to efficiently handle large data volumes while

maintaining a balance between data intake speed and computational resources.

Handling Unstructured Data
Another major challenge in RAG systems is working with unstructured data. Unstructured data, such as

PDFs, emails, and web pages, often contains a variety of complex elements—tables, charts, images, and

different formatting—that make it difficult to store and retrieve efficiently. The challenges include:

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411360 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d198

 Data Storage: Unstructured data may not be stored in a structured format, causing issues with

organizing and indexing.

 Semantic Loss: When the data is not properly structured, the original order and context of

the information may be lost. This can lead to incomplete or inaccurate retrievals, especially if the

relationships between different pieces of information (e.g., tables, figures, and accompanying text) are

not preserved.

 Formatting Complexity: Unstructured data comes in varied formats, and processing it requires

additional steps like text extraction, cleaning, and standardization to make it suitable for the RAG

system.

The difficulty of preserving semantic meaning, dealing with noisy or complex data formats, and ensuring

that relevant context is captured during retrieval presents significant obstacles in building robust RAG systems.

Overcoming these challenges is crucial for improving the overall efficiency and effectiveness of RAG,

particularly in real-time knowledge retrieval and response generation.

VI. Conclusion

Retrieval-Augmented Generation (RAG) systems represent a significant advancement in natural language

processing by enhancing large language models (LLMs) with external knowledge retrieval. By integrating

relevant, up-to-date, and domain-specific information, RAG systems enable LLMs to generate more accurate,

informative, and contextually aware responses, particularly for knowledge-intensive tasks. Techniques such as

vector-indexed search, approximate nearest neighbor algorithms like HNSW, and the integration of knowledge

graphs are fundamental to improving the efficiency and quality of data retrieval in RAG systems.

Despite their powerful capabilities, RAG systems face challenges in handling large-scale data intake,

especially with unstructured data like PDFs, web pages, and images. Addressing these challenges requires

ongoing improvements in data preprocessing, storage solutions, and retrieval mechanisms. Moreover,

advancements in LLMs, including techniques like chain-of-thought prompting and multimodal integration,

continue to expand the potential of RAG systems, making them more efficient and capable of solving complex

tasks across diverse domains.

Future research in RAG systems will likely focus on optimizing data retrieval and integration processes,

handling real-time data ingestion, and improving the scalability of systems to manage large datasets. As these

systems evolve, they are poised to become even more powerful tools for a wide range of applications, including

question answering, summarization, and complex reasoning tasks, driving advancements in both academic

research and practical applications.

VII. REFERENCES

[1] Touvron, Hugo, et al. “Llama: Open and Efficient Foundation Language Models.” arXiv.Org, 27 Feb.

2023, arxiv.org/abs/2302.13971.

[2] Touvron, Hugo, Louis Martin, et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models.”

arXiv.Org, 19 July 2023, arxiv.org/abs/2307.09288.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association

for Computational Linguistics.

[4] Gemini Team Google. [2312.11805] Gemini: A Family of Highly Capable Multimodal Models,

arxiv.org/abs/2312.11805.

[5] OpenAI, et al. “GPT-4 Technical Report.” arXiv.Org, 4 Mar. 2024, arxiv.org/abs/2303.08774.

[6] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V.

Le, and Denny Zhou. 2024. Chain-of-thought prompting elicits reasoning in large language models. In

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882

IJCRT2411360 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d199

Proceedings of the 36th International Conference on Neural Information Processing Systems (NIPS '22).

Curran Associates Inc., Red Hook, NY, USA, Article 1800, 24824–24837.

[7] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,

Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020.

Retrieval-augmented generation for knowledge-intensive NLP tasks. In Proceedings of the 34th

International Conference on Neural Information Processing Systems (NIPS '20). Curran Associates Inc.,

Red Hook, NY, USA, Article 793, 9459–9474.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz

Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International

Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY,

USA, 6000–6010.

[9] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate Nearest Neighbor Search

Using Hierarchical Navigable Small World Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (April

2020), 824–836. https://doi.org/10.1109/TPAMI.2018.2889473

http://www.ijcrt.org/

