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Abstract:  This study presents a different approach to get the best features out of Mak's depreciating 

production-inventory model. Here, the production lot-size model with constant deterioration's exact average 

total cost expression has been found. Next, the ideal production cycle time and the ideal total inventory cycle 

time are found using a traditional computerised search procedure. The findings of this study are demonstrated 

numerically, and they are then contrasted with Mak's methods for figuring out the "optimal" values of the 

approximation equations. 

 

Index Terms - Demand, deterioration, inventory, storage 

I. INTRODUCTION 

The idea that products have an endless shelf life in storage has long been a fundamental implicit assumption 

of most inventory systems. One can overlook the effects of degradation or decay if their rate is minimal. 

Nonetheless, specific consideration of degradation is necessary in many instances, such as the deterioration 

of fruits and vegetables, the evaporation of volatile liquids (alcohol or petrol), or the decay of radioactive 

substances. 

Mak took into account an exponentially decaying item manufacturing lot-size inventory model with backlog. 

He arrived at approximations for the production cycle, total inventory cycle time, production cycle average, 

and ideal production lot size. A set of formulas for a production inventory model with a constant rate of 

deterioration for scenarios without shortages and backlogs has also been produced by Shah and Jaiswal. They 

computed the average carrying inventory as half of the greatest amount of inventory and approximated the 

inventory depletion curve as linear in order to determine the average total cost function. The "optimum" 

inventory cycle time was then determined by applying a Newton-Raphson iterative process. The work of 

Misra, who initially introduced a deteriorating inventory model for production lot-size inventory systems, is 

expanded upon in the aforementioned models. 

To get the precise average total inventory cost function for the aforementioned inventory model, a thorough 

study is conducted in this paper. It is also decided on exact expressions for the production cycle, inventory 

cycle time, and production lot size. The ideal value of the inventory cycle time and the production cycle are 

then computed using an automated search method on the precise cost equation. Additionally, the additional 

features of the inventory model can be obtained by directly substituting these results into the corresponding 

equations. A numerical example from Mak's work is utilised to demonstrate how the outcomes of the two 

approaches are compared. 
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II. Model Assumptions And Notations : 

The work of Misra, Shah and Jaiswal, and Mak is extended in this paper's mathematical model of the inventory 

system, which is based on the following presumptions: 

1. The production rate is higher than the demand rate, and both the demand and production rates are known 

and steady.  

2. After manufacture, items are readily available to meet demand.  

3. No item that deteriorates during a certain inventory cycle is repaired or replaced. 

4. There is an expected zero lead time.  

5. Items do not begin to deteriorate until they are placed in inventory; this does not happen beforehand.  

It is believed that the rate of degradation will never change.  

6. The quantity of items is considered a continuous variable and the production rate is independent of the 

size of the production lot.  

7. Only inventory goods that have not degraded are subject to carrying (keeping) costs.  

8. The size of the production batch is set and won't change from cycle to cycle. 

In this paper, the following notations are used: 

I(t) = is the inventory amount at t.  

Q = size of production lot / order amount;  

Im = stands for maximum inventory level.  

Ib = stands for minimum inventory level (maximum backlog of unfilled orders);  

C = carrying cost of inventory (S/item/unit time);  

C2 = inventory shortage cost (S/item/unit time) 

C3 = production/set-up cost (S/set-up) 

C4 =deterioration cost (S/unit) [manufacturing cost plus disposal cost minus any salvage value]; 

K( ) = average total cost 

T = inventory cycle time 

T1 = the time when the inventory level is at maximum 

T2 = the time at which the inventory level reaches zero 

T3 = the time at which the backlog reaches its peak 

D = expected total number of units deteriorating during a given inventory cycle 

P = constant production rate (units/unit time) 

d = constant demand rate (units/unit time) 

I1 = total carrying inventory 

I2 = total backlog 

h = Constant rate of deterioration, where (l/h) is the anticipated mean life of an inventory item. 
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III. Model Development :  

The behaviour of the production lot size inventory model with backlog and constant rate of deterioration. 

Only the more general situation is given because the inventory model without shortages is a special case of 

the inventory model with backlog. 

 

Fig. 1 : A manufacturing lot-size inventory system's inventory cycle with backlog that is continuously 

degrading 

The inventory cycle has four phases if T is the inventory cycle time. Production happens at a rate of p and 

demand happens at a rate of d units per unit time in the first segment (0, T1). There is no production in the 

second segment (T1, T2), and inventory is used to meet demand at a steady pace of d units per unit time. 

Deterioration is also occurring in segments one and two as a function of inventory level at a constant rate, h. 

Demand is backlogged in the third segment (T2, T3), and it is finally lowered at a rate of (p - d) units per unit 

time in the fourth segment (T3, T). However, take note that the third and fourth components of this inventory 

model are stable. 

Given that Mak's equation, the deterioration rate, h, is assumed to be constant. 

 

which expresses the inventory level can be rephrased as follows 

 

In the same way, Mak's formula , 

 

can be expressed as follows for a continuous decline 

I(t) = [exp(-ht)]{Im – (d/h) [exp (ht) - 1]}     
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Given that I(t) = 0 at T2, Im's value equals: 

Im = ( d / h ) exp(hT2- l) 

This, when substituted in the preceding equation, produces the inventory level expression shown below 

          I(t) = ( -d / h){-exp[ h (T2 - t)] + l},                     T ≤ t ≤ T2                            (2) 

Moreover, the inventory level can be expressed easily as follows after correcting for the beginning 

conditions, as there is no decline in the T2 to T range: 

                           I(t) = - d (t-T2),                T2 ≤ t ≤ T3                                                             (3) 

                                     I(t) =  ( p - d) (t - T),        T3 ≤ t ≤ T.                                         (4) 

The following equations linking T1 and T2 can be written using this identity since equations (1) and (2) are 

equivalent at t = T1. 

                          T1 = (1/h) ln {1 + (d/p)[exp (hT2) - 1]}                                     (5) 

                          T2 = (1/h) ln {1 + (p/d)[exp (hT1) - 1]}                                     (6) 

Additionally, equations (3) and (4) are equivalent at t = T3, allowing the relationship below to be 

constructed. 

                           T3 = (d/p) T2 + (P- d / p) T                                                        (7) 

Equations (5) and (7) can be used to determine the total number of goods generated during a specific 

inventory cycle, Q, as a function of T2 and T. 

  Q = pT1 + p (T - T3 ) = (p/h) ln {1 + (d/p)[exp(hT2) - 1]} + d(T - T2)                  (8) 

Since the entire number of units that are demanded during an inventory cycle equals dT, the total number 

of units that deteriorate can be calculated as follows: 

             D = Q - dT = (p/h) ln {1 + (d/p) [exp (hT2) - 1]} - dT2                            (9) 

The total carrying inventory and the total backlog for a specific inventory cycle period are the only 

remaining amounts to be computed. Rather than approximating the total carrying inventory by assuming 

that Q(t) is linear in t over (0, T2), as suggested in Refs [2], [3] and [6] the carrying inventory is precisely 

determined by integrating equations (1) and (2) throughout this period. Even while the linearity assumption 

yields "good" approximations, it is incorrect. Next, the carrying inventory total can be expressed as follows: 

I1 = 
1

0

T

I( t ) dt + 
2

1

T

T

I(t) dt = [(pT1 - dT2)/h] + [{ -p + (p - d) exp (-hT2 +  

                                                         d(exp(hT2 - hTl)]}/h2]                                  (10) 

Although equation (10) is expressed as a function of T1 and T2, it can also be expressed as a I1 function of 

a single variable because equations (5) and (6) connect the values of T1 and T2. 

I1 can be rewritten as, by adding equation (6) to the above expression and making additional simplifications. 

                 I1 = [(pT1 - (d/h) In { 1 + (p/d ) [exp(hT1 ) - l]})/h]                         (11) 

and total backlog as 

                I2 = d/2 (T - T2 )
2 (p-d / p)                                                                (12) 

Equation (5) establishes a relationship between the value of T1 and T2, so equation (11) only functions as a 

I1 function of T2. Furthermore, T and T2 determine the precise average total cost equation, which is, 

               K(T2, T) = [C1I1+ C2I2 + C3 + C4D]/T                                             (13) 
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Differential calculus can theoretically be used to obtain the optimal values of T2 and T in order to find the 

minimum of the above cost function; however, approximations to the exponential and logarithmic terms 

would be required. In addition, the optimal T2 and T values from the required circumstances require more 

approximations in addition to numerical methods. Consequently, by employing an automated search 

method, these stages can be removed, and the "optimal" solutions can be found straight out of the precise 

cost equation. For instance, a pattern search like Hooke and Jeeves, which is easy to use and does not require 

differentiability of the cost function (see Keuster and Mize for an explanation and FORTRAN 

implementation of this technique), can be employed in this process. In the scenario where T = T2 and there 

is no backlog, equation (13) functions based on a single variable. Thus, it is possible to get the ideal value 

of T by applying the Fibonacci search method. A single valued convex function's optimal value was found 

using an automated Fibonacci search method. Keuster and Mize also have the coding for this procedure. 

By combining the elegance of mathematical derivations with the strength and power of a computer, an 

automated search technique on the exact cost equation enables the analyst to use a more practical approach 

to issue solution. Raafat has successfully dealt with failing inventory models using this method. 

IV. Numerical Example :  

The following example, taken from Mak's paper, shows the outcomes of the aforementioned methods for 

different values of the deterioration rate. Suppose:  

p = 8000 units/yr; 

d = 2000 units/yr; 

C1 = $5.0 units/yr; 

C2 = $100 units/yr; 

C3 = $200 order; 

C4 = $400 unit. 

The methodology's findings show that employing Mak's cost expression considerably underestimates the real 

cost of the inventory system, but has no discernible effect on the other model parameters. Compared to Mak's 

inventory model, this methodology consistently yields a lower average total cost. The disparities become more 

noticeable as the deterioration rate grows in magnitude. 

V. Conclusion :  

The derivation and determination of the precise average total cost equation for the degrading production 

inventory model is the general solution methodology that is highlighted in this research. With the precise 

equation in hand, one can apply a computer search strategy, like the Fibonacci or Hooke and Jeeves search 

methods, to find the best value for the inventory model's other attributes. In declining inventory models, 

approximations are usually required in determining total carrying inventory in order to achieve "optimal" 

results. To create the "optimal" cost equation, a number of other numerical approximations are also required. 

The additional inventory parameters are then computed on this "optimal" equation using analytical and 

numerical methods. This research, however, demonstrates how automated search methods might be applied 

to more precisely and directly acquire the ideal outcome. Therefore, one can achieve the "optimal" answer 

within a predetermined interval of uncertainty rather than using optimisation techniques on the "approximate" 

cost equation to acquire the optimal inventory characteristics. 
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