IJCRT.ORG

ISSN: 2320-2882

d569

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Effect Of In-Doping On Structural And Optical Properties Of Zns Thin Film

J.A. Borse

Department of Physics, Late Pushpadevi Patil Arts & Science College, Risod. 444506, India.

Abstract

In-doped ZnS thin film prepared by simplified 2-electrode electrochemical deposition technique. The solution 0.1N ZnSO₄ (Zinc sulphate), 0.1N Na₂S₂O₃ (Sodium thiosulphate) and 0.1N InCl₃ (Indium Trichloride) were used as precursor for Zn, S, and In ions respectively. The electrochemical behavior of Zn, S and In ions studied by using cyclic voltammetry method. As per XRD pattern In-doped ZnS film was found to be zinc blende crystal structure. Effect of In-doping on dislocation density and microstrain has been investigated by XRD data. The optical band gap energy varied between 3.87 -2.57 eV by increasing In-doping from 1% to 3%. Then optical band gap energy was found increases at increasing In-doping at 4%. The thin film sample ZnS: In (3%) has found highest transparency due to low refractive index at wavelength 785 nm in visible region. The electrical parameters such as resistivity, carrier concentration, mobility, hall coefficient were investigated by vanderpauw method of Hall Effect measuring system at doping percentage.

Keywords: In-doped ZnS thin film, electrodeposition, Structural Properties, Optical properties

Introduction:

ZnS is the chalcogenide semiconductor material of group II-VI. It has potential to use in solar cell photovoltaic device due to their wide optical band gap.ZnS exhibit zinc blende and hexagonal wurtzite crystal structures with band gap energy of 3.90 eV and 3.78 eV respectively [1-3]. ZnS is used in various optoelectronic devices like light emitting diode, sensors, dye synthesized solar cell, window layer in thin film solar cell [4-6]. The various methods are employed to prepare ZnS thin film such as spray pyrolysis [7-8], chemical route [9], electrodeposition [10], chemical bath deposition [11], and sputtering [12]. The doping in ZnS can be tuned the energy band gap have been investigated from past few years [13]. Mn, Cu, In and Al-doped ZnS nanoparticles have been reported previously [14, 15]. Doping of ZnS is considered to improve the light absorption ability in visible light region. Till date very few researches works on optical and electrical properties of In-doped ZnS thin film have been carried out. The transition metals like Cu²⁺, Ag²⁺, Mn²⁺ and Pb²⁺ can be dope in ZnS crystal lattice for tunability of optical band gap.

Experimental details:

In-doped ZnS thin films were deposited by simplified 2-electrode electrodeposition techniques on FTO glass and stainless steel substrates. In order to obtain In-doped ZnS thin film different amount 1%, 2% and 3% correspond to 1ml, 2 ml and 3 ml of 0.1 M InCl₃ were added in 100 ml mixed electrolyte bath of 0.1 M ZnSO₄ and 0.1 M Na₂S₂O₃with successive steps as per fig 1.

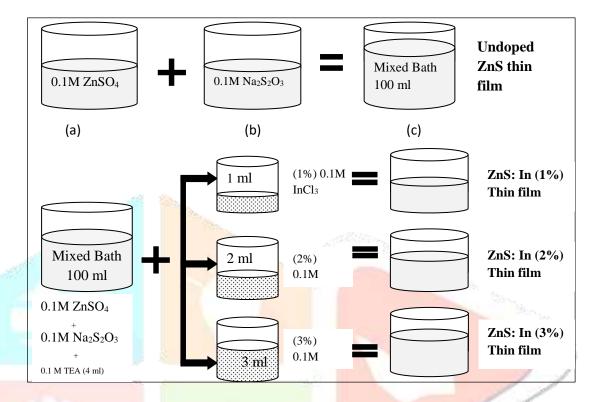


Fig.1 Illustrate the chemical abstract for preparation on undoped and In-doped ZnS thin

The deposing potential of In-doped ZnS thin film was investigated by cyclic voltammetry carried out. The simplified two-electrode electrochemical deposition shown in fig.2 was carried out for growth of In-doped ZnS thin film. In this set up, the graphite rod used as counter electrode and stainless steel or FTO glass substrate were used as working electrode. The distance between working electrode (substrate) and counter electrode (graphite rod) was adjusted at 1 cm during deposition carried out. 4% correspond to 4 ml (0.1 M Triethanolamine) was added in main electrolyte bath as complexing agent for well and adherent film formation. The pH of bath was adjusted at 3.5. In-doped ZnS thin film was deposited for 20 min after optimization of deposition time.

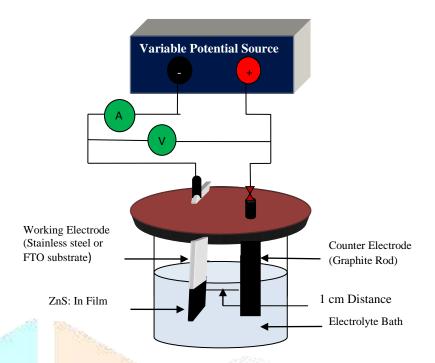


Fig.2 Schematic diagram of 2-electrode electrochemical deposition set up

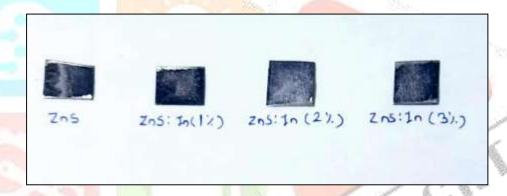


Fig.3 Illustrate the undoped –ZnS and In-doped ZnS thin films deposited by simplified 2-electrode electrochemical deposition method

The deposited films samples as given in fig.3 were characterized by X-ray diffraction with Cu Kα radiation $(\lambda=1.542 \text{ A}^0)$. The optical absorption and transmission spectra in the range 200-1100 nm were studied using UV-Visible spectrophotometer. Finally electrical parameters such as resistivity, carrier concentration, mobility, hall coefficient were estimated directly by using (ECOPIA equipment) vanderpauw method with Hall Effect measuring system.

Result and Discussion:

Cyclic voltammetry:

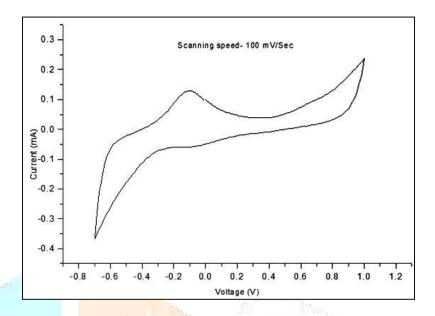


Fig.4 cyclic voltammetry of 0.1 N InCl₃ solution at scanning speed 100 mV/Sec

In fig.4 Anodic potential was reached at +1.0 V showed dissociation of In ion during forward scanning. During reverse scanning cathodic potential was reached at -0.7 V with respect to reference electrode Ag/AgCl indicates that In ions well deposited at -0.7V. To investigate the electrochemical behavior of ZnS mixed with In ions, the cyclic voltammetry have been studied. As per fig.5 it has been concluded that anodic potential such as +0.5 V due to dissociation of ions in bath during forward scanning. During reverse scanning cathodic potential was reached at -0.9 V. As we concluded that ZnS: In thin film well deposited at -0.9V cathodic potential with respect to reference electrode Ag/AgCl.

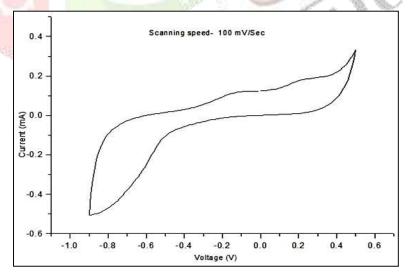


Fig.5 cyclic voltammetry of 0.1 N ZnSO₄, 0.1 N Na₂S₂O₃ and 0.1 N InCl₃ mixed electrolyte bath at scanning speed 100 mV/Sec

Structural characterization:

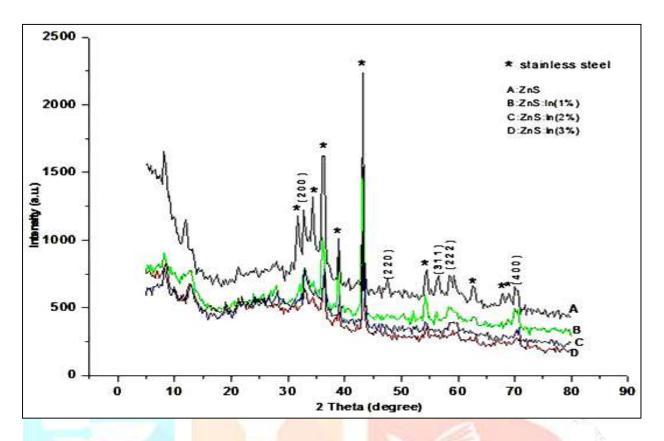


Fig. 6 XRD pattern of (A) Undoped ZnS thin film (B) ZnS: In (1%) (C) ZnS: In (2%) (D) ZnS: In (3%).

The XRD pattern of Undoped and In-doped ZnS thin films are shown in fig 6 After XRD analyzed it has been observed that the undoped ZnS thin film showed high crystallinity and exhibit all the peaks (200), (220), (311), (222) and (400) of Zincblende cubic or sphalerite phase similar to standard database (JCPDS No.05-0566). The stainless steel (316L) substrate was used for deposition of material and obtained other peaks of stainless steel are similar to standard database (JCPDS No.33-0397). It is confirmed the other peaks are of stainless steel. The XRD result showed that ZnS film is formed with sphalerite structure without secondary phase of InS has been found. The undoped ZnS sample exhibit high crystallinity as compared to In-doped ZnS. With increase in percentage of In from 1 to 3% has influenced the crystallinity of ZnS thin film. The intensity reduces also affected by percentage of dope material. This is due to change in electronic density or point defect in the crystallographic position. The guest ions in lattice leads to changes on scattering factor. 'In' ions are distributed in ZnS lattice and samples B, C and D exhibit change in intensity of peaks due to size of dope material.

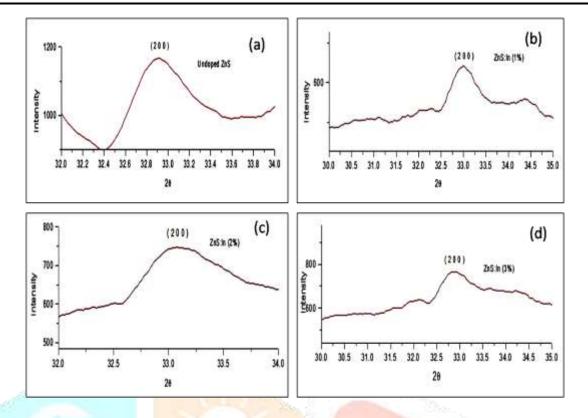


Fig.7. Illustrate the preferred orientation plane (200) of a) Undoped ZnS b) ZnS: In (1%) c) ZnS: In (2%) and d) ZnS: In (3%) for estimation of lattice constant

As per fig.7 the peak of preferred plane (200) of sample d) ZnS: In (3%) slightly shifted to smaller diffraction angle from angle of diffraction at same plane of undoped ZnS thin film. Consequently, lattice constant slightly increases. The lattice constant 'a'was calculated by using equation

$$a = d\sqrt{h^2 + k^2 + l^2} \tag{1}$$

Where, d is interplanar spacing and h, k, l are miller indices planes. The lattice constant for preferred orientation (200) of undoped ZnS thin film sample A was estimated about 5.424 Å. For In-doped ZnS thin film samples b, c and d the lattice constant 'a' were found 5.424 Å, 5.424 Å and 5.443 Å respectively. The lattice parameter increases due to incorporation of 'In' ions on zinc ion sites. Because ionic radius of indium ion is higher than ionic radius of zinc. Consequently, lattice constant are slightly increases.

The crystallite size was estimated by using the Debye Scherrer formula as given below

$$D = \frac{0.9\lambda}{\beta \cos \theta} \quad (2)$$

Where 'D' is the crystallite size, λ =1.5405 Å, ' β ' is the full width at half maximum and ' θ ' is the angle of diffraction. The crystallite size of Undoped ZnS, ZnS: In (1%), ZnS: In (2%) and ZnS: In (3%) samples were estimated about 34.46 nm, 26.97 nm, 22.08 nm and 23.44 nm respectively for favored orientation (200). The crystallite size of sample ZnS: In (3%) was foundan increase due to radius of dopant ions is greater than host ion. The dislocation density (δ) was estimated by using Williamson smallman equation given below.

$$\delta = \frac{1}{D^2} (3)$$

Where D is crystallite size,

The microstrain (ϵ) was determined by using following equation.

$$\epsilon = \frac{\beta}{4\tan\theta} (4)$$

Where, β is full width at half maximum,

Table.4.6 Shows estimated values of average crystallite size, Dislocation density and microstrain of a) undoped ZnS thin film b) ZnS: In (1%), c) ZnS: In (2%) and d) ZnS: In (3%) thin films.

Thin film Samples	20 for plane (200)	d- spacing	Lattice constant a (A ⁰)	FWHM	Average Crystallite Size (nm)	Dislocation density(δ)x 10^{-3} (nm ⁻²)	Microstrain (εx10 ⁻³)
Undoped ZnS	32.90	2.7120	5.424	0.251	34.46	0.8421	211.35
ZnS: In (1%)	33.00	2.7120	5.424	0.321	26.97	1.3747	270.93
ZnS: In (2%)	33.08	2.7120	5.424	0.392	22.08	2.0511	330.07
ZnS: In (3%)	32.90	2.7216	5.443	0.369	23.44	1.8200	312.50

Optical Characterization:

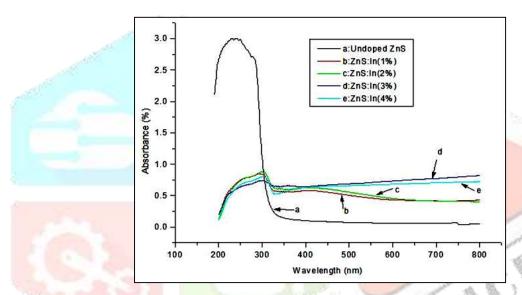


Fig.8.Optical absorption spectra of a) Undoped ZnS thin film b) ZnS: In (1%) c) ZnS: In (2%) d) ZnS: In (3%) e) ZnS: In (4%)

The optical properties of samples were carried out by UV-Visible spectrophotometer with wavelength scanning in the range 200 nm to 800 nm. As per fig.8 it has been found that the absorption edges shifted to longer wavelength with increasing In-content in the range 0 - 3% in ZnS thin films. It is observed that sharp rise in absorbance occurs between 321 nm to 330 nm with increasing In-doping 0-3%. But the absorption edge again decreases to smaller wavelength about 324 nm when increasing In-doping 3-4% in ZnS. This is due to increasing specific surface area of ZnS nanostructure due to microstrain with increasing doping.

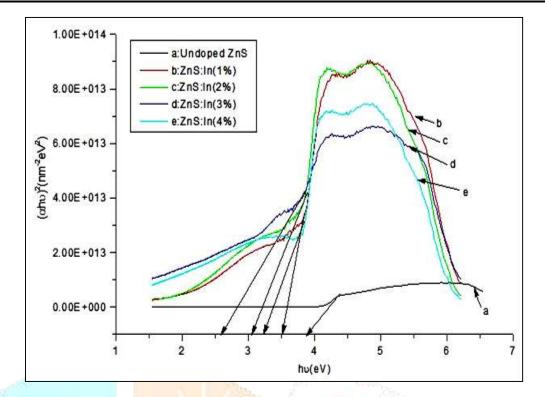


Fig. 9 Energy Band Gap of a) Undoped ZnS thin film b) ZnS: In (1%) c) ZnS: In (2%) d) ZnS: In (3%) e) ZnS: In (4%)

To estimate band gap energy of Un and In-doped ZnS thin films samples by tauc plot shown in fig.9. The tauc plot hv versus $(\alpha hv)^2$ by using following equation

$$(\alpha \, hv)^{1/n} = A(hv - E_g)$$
 (5)

Where, α is absorption coefficient, h is Planck's constant, v frequency of light, A is constant and E_g is band gap. The band gap energy of Un and In-doped ZnS thin films samples were estimated by tauc plotting graph $(\alpha hv)^2$ versus hv by intercept of straight-line portion of $(\alpha hv)^2$ versus hv-on-hv axis. The band gaps energy was found about 3.87 eV, 3.51eV, 3.05 eV, 2.57 eV and 3.23 eV of undoped ZnS, ZnS: In (1%), ZnS: In (2%), ZnS: In (3%) and ZnS: In (4%) respectively. The band gap energy decreases with increasing In-doping (0-3%) in ZnS thin film. But In-content increases in higher amount at 4% the energy band gap increased. The incorporation of In ions in to ZnS lattice due to this increase of specific surface area of ZnS nanostructure and reducing crystallinity of ZnS thin film.

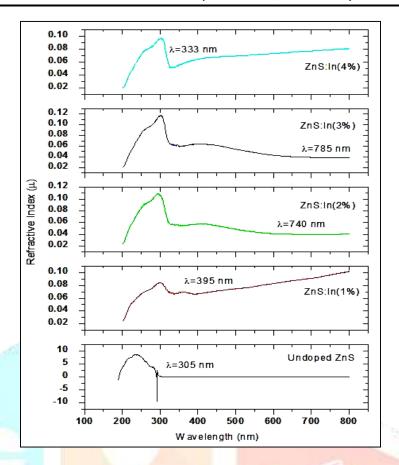


Fig. 10 Illustrate the refractive Index of Un and In-doped ZnS thin film deposited on FTO glass

The refractive index of Un and In-doped ZnS thin films were estimated by using following equation

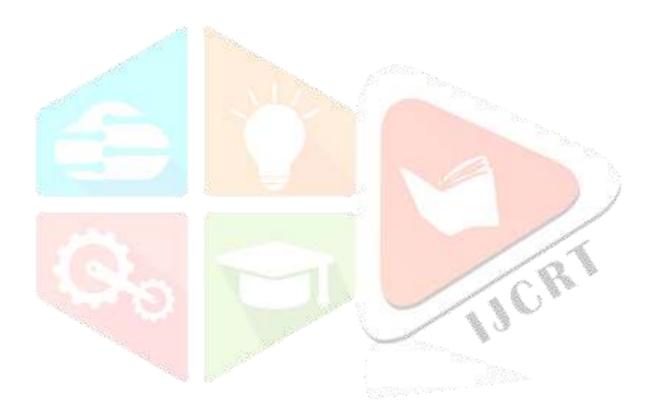
$$n = \frac{1}{T} + \sqrt{\frac{1}{T-1}} \tag{6}$$

Where, n is refractive index, T is percent transmittance. The percent transmittance (Ts) was determined by using following equation

$$T = 10^{(-A)} X 100 \tag{7}$$

Where, A is absorbance

As per Figure.10 the refractive index (n) decreased with increasing wavelength. The undoped ZnS thin film has high refractive index in visible region. But the refractive index decreases with increasing wavelength by increasing In-doping in ZnS thin film. Undoped ZnS, ZnS: In (1%), ZnS: In (2%), ZnS: In (3%) and ZnS: In (4%) has highest transparency due to low refractive index in the wavelength range 305 nm, 395 nm,740 nm, 785 nm and 333 nm respectively. The thin film sample ZnS: In (3%) has highest transparency due to low refractive index at wavelength 785 nm in visible region. which allow to use this film layer as an optical window or buffer layer in thin film solar cell device.


Conclusion:

Undoped ZnS and In-doped ZnS thin film was successfully growth by using simplified 2-electrode electrodeposition technique. In-doped ZnS thin film was well deposited at -9 V cathodic potential with respect to reference electrode Ag/AgCl. As per XRD pattern In-Doped ZnS thin film exhibit zinc blende crystal structure without formation of InS crystal phase. The optical band gap energy was regulated by Indoping in ZnS. The optical band gap energy was decreased 3.87-2.57 eV by increasing In-content in ZnS. The sample ZnS: In (3%) has highest transparency due to low refractive index at wavelength 785 nm in visible region which allow to used as window layer of buffer layer in thin film solar cell device.

References:

- [1] Arup KantiKole, Pathik Kumbhakar, Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals, Result in physics, 2 (2012) 150-155. https://doi.org/10.1016/j.rinp.2012.09.010
- [2] M.A.Hernández-Fenollosa, M.C.López, V.Donderis, M.González, B.Marí, J.R.Ramos-Barrado, Role of precursors on morphology and optical properties of ZnS thin films prepared by chemical spray pyrolysis, Thin solid films, 516 (2008) 1622-1625.https://doi.org/10.1016/j.tsf.2007.05.031
- [3]S.KMandal, SChaudhuri, A.KPal, Optical properties of nanocrystalline ZnS films prepared by high pressure magnetron sputtering, Thin solid films, 350 (1999) 209-213.https://doi.org/10.1016/S0040-6090(99)00236-9
- [4]A.A.Ojo, I.M.Dharmadasa, Analysis of the electronic properties of all-electroplated ZnS, CdS and CdTe graded bandgap photovoltaic device configuration, Solar energy, 158 (2017) 721-727. https://doi.org/10.1016/j.solener.2017.10.042
- [5] Junfeng Han, Ganhua Fu, V.Krishna kumar, Cheng Liao, Wolfram Jaegermann, M.P.Besland, Preparation and characterization of ZnS/CdS bi-layer for CdTe solar cell application, Journal of physics and chemistry of solids, 74 (2013) 1879-1883. https://doi.org/10.1016/j.jpcs.2013.08.004
- [6]R.Hernández Castillo, M.Acosta, I.Riech, G.Santana-Rodríguez, J.Mendez-Gamboa, C.Acosta, M.Zambrano, Study of ZnS/CdS structures for solar cells applications, Optik, 148 (2017) 95-100.https://doi.org/10.1016/j.ijleo.2017.09.002
- [7]Sema Ebrahimi, Benyamin Yarmand, Nima Naderi, Enhanced optoelectrical properties of Mn-doped ZnS films deposited by spray pyrolysis for ultraviolet detection applications, Thin solid films, 676 (2019) 31-41.https://doi.org/10.1016/j.tsf.2019.02.046
- [8] Mustafa O ztas, MetinBedir, A. Necmeddin Yazici, E. VuralKafadar, Hu" seyinToktamıs, Characterization of copper-doped sprayed ZnS thin films, PHYSICA B, 381 (2006) 40-46. doi:10.1016/j.physb.2005.12.248
- [9] M.Shobana, S.R.Meher, Effect of cobalt doping on the structural, optical and magnetic properties of solgel derived ZnS nanocrystalline thin films and ab initio studies, Thin solid films, 683 (2019) 97-110. https://doi.org/10.1016/j.tsf.2019.05.037
- [10] Alireza Azmand, Hosein Kafashan, Al-doped ZnS thin films: Physical and electrochemical characterizations, Journal of alloys and compounds, 779 (2019) 301-313. https://doi.org/10.1016/j.jallcom.2018.11.268
- [11] Akbar I.Inamdar, SeulgiLee, Duhwan Kim, K.V.Gurav, J.H.Kim, HyunsikIm, Woong Jung, Hyungsang Kim, Metal-doped ZnS(O) thin films on glass substrates using chemical bath deposition, Thin solid films, 537 (2013) 36-41.https://doi.org/10.1016/j.tsf.2013.04.114
- [12] Chao-Ming Huang, Kong-Wei Cheng, Yi-RueiJhan, Tsair-Wang Chung, Preparation of visible-light-active Ag and In-doped ZnS thin film photo electrodes by reactive magnetron co-sputtering, Thin solid films, 515 (2007) 7935-7944. doi:10.1016/j.tsf.2007.03.049

- [13] Benjamin Ayim-Otu1 & Melih Kuncan2 & Ömer Şahin3 & Sabit Horoz2, Synthesis and photovoltaic application of ZnS: Cu (3%) nanoparticles, Journal of the Australian Ceramic Society, 2(2019) 85-92. https://doi.org/10.1007/s41779-019-00380-0
- [14] Melody Kimi, LenyYuliati and Mustaffa Shamsuddin, Preparation of High Activity Ga and Cu Doped ZnS by Hydrothermal Method for Hydrogen Production under Visible Light Irradiation, Journal of Nanomaterial, 5(2015)1-9. http://dx.doi.org/10.1155/2015/195024
- [15] L. Bruno Chandrasekar, R. Chandramohan, R. Vijayalakshmi, S. Chandrasekaran, Preparation and characterization of Mn-doped ZnS nanoparticles, Int Nano Lett, 5 (2015) 71-75. DOI 10.1007/s40089-015-0139-6

