IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Nature's Nano Toolbox: Leveraging Plant Extracts and Silver Nanoparticles for Innovative Biological Applications: A Review

Mishu Singh¹ & Akhilesh Kumar*

¹Department of Chemistry, Pt. DDU Govt. Girls P.G. College, Rajajipuram, Lucknow, U.P., India *Department of Physics, Pt. DDU Govt. Girls P.G. College, Rajajipuram, Lucknow, U.P., India

Abstracts:

The progress in medical science has been significantly propelled by the advancements in nanotechnology, offering ground breaking solutions to combat life-threatening diseases. Nanotechnology represents a significant milestone with diverse applications across various sectors such as electronics, textiles, and particularly in healthcare. Nanotechnology is pivotal in healthcare due to its significant contributions in precision medicine applications such as targeted therapy, diagnostic techniques, therapeutic interventions and biomedical sensing all of which enhance human well-being. Nanoparticles serve as an extremely promising framework for a wide range of biomedical uses, showcasing their immense potential in revolutionizing medical treatments and interventions. The emergence of eco-friendly technologies for the biosynthesis of nanoparticles represents a significant stride within the realm of nanotechnology. This development intersects with the broader domain of materials science, particularly in the manipulation of atomic structures to confer distinct properties and facilitate diverse bio-applications. Among metal nanoparticles, silver nanoparticles stand out due to their remarkable physical, chemical and biological attributes. In this context, green chemistry has surfaced as a viable alternative to conventional synthesis methods for nanoparticles. Among the array of green approaches, leveraging plant extracts for nanoparticle synthesis garners particular attention. This preference stems from the rich diversity of biomolecules inherent in plants, which serve not only to reduce nanoparticles but also to act as stabilizing and capping agents, thereby expediting reaction kinetics. In contrast to microbial cultures, plants offer ease of handling, wide distribution and ready availability. The present review delves into the varied plant species suitable for rapid, one-step protocols in silver nanoparticle synthesis. Additionally, it delineates the multifaceted bioactivities exhibited by these nanoparticles, encompassing antibacterial, antifungal, antioxidant, antiviral, anticancer and anti-diabetic properties.

Keywords: silver, nanoparticles, antioxidant, antiviral, anticancer, diabetes

Highlights:

- 1. The review explores the green approach to synthesizing silver nanoparticles using phytoconstituents.
- 2. The review emphasizes the potential of plant-based silver nanoparticles in combating, cancer, viral infections, autooxidising properties, in treatment of diabetes and detailing their mode of action.
- 4. It summarizes the therapeutic prospects and future challenges associated with these nanoparticles.

Introduction:

Nano science and nanotechnology are interdisciplinary domains dedicated to investigating and controlling matter at the nanoscale, typically ranging from 1 nm to 100 nano meters. These fields are pivotal in scientific exploration and technological innovation. In his ground-breaking 1959 speech to the American Physical Society, physicist Richard Feynman underscored the vast possibilities of manipulating matter at the atomic level [1]. Subsequently, Professor Norio Taniguchi coined the term "Nanotechnology" in the pursuit of ultra-precise fabrication. Historical significance of Silver dates back thousands of years, with civilizations like the Egyptians, Persians, Greeks and Romans utilizing it in various forms for food storage. Its antimicrobial properties led to widespread use in daily life, documented as far back as 300 BC. Even today, Hindu rituals involve the use of silverware for preparations such as "Panchamrit." The ancient Indian text Charak Samhita also mentions the therapeutic properties of metals [2]. Nanotechnology has emerged as a transformative force across various sectors including electronics, textiles and healthcare. In the medical field, nanotechnology offers ground breaking solutions such as targeted drug delivery, diagnostics and bio sensing, particularly crucial in combating life-threatening diseases like cancer and viral infections [3].

The advent of nanoparticles has sparked a paradigm shift across various scientific domains, particularly in biomedical engineering, attributable to their remarkable properties [4]. Unlike their macroscopic counterparts, nanoparticles possess an exceptionally high surface-to-volume ratio and exhibit distinct optical [5], electronic and magnetic properties [6]. This characteristic renders them amenable to precise surface modifications, thereby enhancing pharmacokinetic properties, prolonging vascular circulation lifetime and augmenting bioavailability particularly in drug delivery systems. In the realm of drug delivery, nanoparticles offer unparalleled advantages, including heightened efficacy and reduced dosage requirements. Their capacity for surface modifications facilitates targeted drug administration and enables monitoring of drug release rate in real time. Furthermore, nanoparticles' size-dependent properties, such as optical, electronic and magnetic features, find extensive utility in biomedical applications [7, 8]. Magnetic attributes are harnessed for targeted drug delivery mechanisms and serve as mediators in MRI, while optical properties serve diagnostic functions, acting as substitutes for traditional organic dyes in imaging techniques [9].

Moreover, nanoparticles demonstrate improved specificity for targets and increased permeability through biological membranes, making them highly attractive as drug carriers with the potential for controlled drug release. Ongoing research endeavours are focused on harnessing nanoparticles, electronic, opto-electric, magnetic and optical properties for signal detection, transmission and amplification. Notably, shell structured nanoparticles are gaining traction in biomedical administrations owing to their added benefits and tailored functionalities. Nevertheless, the widespread adoption of nanoparticles is not without challenges, chiefly concerning their potential toxicity to biological systems. Their ability to penetrate cellular membranes and interfere with intracellular metabolic processes raise concerns regarding long-term adverse effects, including the onset of neurodegenerative disorders like Alzheimer's and Parkinson's disease [10]. Furthermore, the lack of effective nanoparticle clearance mechanisms in the body may lead to their accumulation, exacerbating potential health risks over time. Hence, while nanoparticles hold immense promise for scientific innovation, their application necessitates a cautious approach, mindful of their potential biological ramifications. In recent years, silver nanoparticles (Ag-NPs) have garnered significant attention from researchers due to their exceptional properties. These nanoparticles find wide-ranging applications in biomedicine, biology, coatings, antimicrobial activities and agriculture fields. In biomedicine, Ag-NPs are utilized for rapid diagnosis, imaging, tissue regeneration and drug delivery, contributing to the development of novel medical products. Their antimicrobial properties make them valuable as anti-infective agents and water purifiers. Additionally, Ag-NPs are employed in agriculture for their protective effects against microorganisms. This versatility highlights the diverse potential applications of Ag-NPs across different sectors. [11-16]

The versatility and unique properties of metallic nanoparticles, especially silver nanoparticles (Ag-NPs), have garnered significant attention in biomedical applications. Ag-NPs exhibit variable activities such as antimicrobial, antioxidant, antifungal, anti-inflammatory and anticancer properties [17, 18]. Research on Ag-NPs has made significant progress, particularly in their synthesis using green methods, which offer advantages such as safety, eco-friendliness, cost-effectiveness and rapid synthesis. Green synthesis methods utilize plants in many ways that results in well-defined nanoparticles with high yield, solubility, and stability.

In the biomedical field, Ag-NPs s as antimicrobial agents in wound dressings, topical creams to prevent infections and even as anticancer agents [19]. Their unique physicochemical properties, such as size, shape, optical activity and extraordinary surface area ratio, make them highly versatile for various purposes [20]. This article aims to provide an overview of greenly synthesized Ag-NPs, detailing their analysis and applications in life science. It delves into the anticancer and antiviral activities of Ag-NPs, elucidating their mechanisms of action on various cell types. Furthermore, the write-up discusses critical therapeutic and future hurdles in utilizing Ag-NPs for anticancer and antiviral activities.

Literature Review:

Silver nanoparticles have attracted considerable attention due to their distinctive characteristics and versatile applications. Silver nanoparticles (Ag-NPs) in particular have been extensively researched for their broadspectrum activities, including antimicrobial, antibacterial [21, 22], antioxidant [23], antifungal [24], antiinflammatory [25] and anticancer [26] properties. With sizes typically ranging from 10 to 100 nm, Ag-NPs exhibit unique physicochemical characteristics. Plant-mediated synthesis of Ag-NPs offers several advantages, including safety, eco-friendliness, cost-effectiveness and rapid synthesis [27, 28]. Consequently, the green synthesis method of Ag-NPs presents various benefits compared to conventional methods. Silver nanoparticles play a vital role in biomedical applications, particularly as antimicrobial agents in wound dressings, topical creams for wound infection prevention and anticancer agents. These nanoparticles play a vital role in biomedical applications, particularly as antimicrobial and anticancer substances. The unique properties of nano-sized metallic particles enable them to significantly modify their characteristics making them valuable for various purposes. Green synthesis methods produce Ag-NPs with high yield, solubility and constancy. Amongst the different approaches for Ag-NPs, biological procedures are preferred for their simplicity, rapidity, non-toxicity, reliability and environmentally friendly nature, enabling the production of distinct sizes and morphologies in ideal conditions for research purposes [29, 301.

In recent decades, several reviews have been dedicated to exploring the green synthesis of silver nanoparticles. These reviews predominantly highlight the use of various plant extracts such as cherry fruit, aloe leaf, Coffea arabica seeds, Macrodyloma uni-forum, Trianthema decandra and Rosa rugosa, along with biopolymers like chitosan and microbial sources, for Ag-NP synthesis [31]. Numerous characterization techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and dynamic light scattering (DLS), have been used to elucidate the Ag-NPs, tailored for various applications. This review, unlike its predecessors, focuses on elucidating the synthetic methods, parameters, characterization techniques and biomedical applications, including biosensors, antibacterial and anticancer activities, associated with various green synthesis routes for Ag-NPs [32, 33]. The rapid evolution of nanoparticle and nanomaterial applications across diverse fields, such as healthcare, biomedicine, pharmaceuticals, cosmetics, food, environment, optics, electronics, aerospace, energy science, catalysis, chemical industries and nonlinear optical devices, among others, underscores the significance of their unique or enhanced properties attributed to size, distribution and morphology. These advancing technologies have expanded the horizons of application possibilities and laid the foundation for

new discoveries. This includes the production of nanoscale materials for exploring their intriguing physicochemical and optoelectronic properties, driving innovation across multiple domains.

Eco-Friendly Synthesis of Silver Nanoparticles Using Plant Extracts:

Plant based silver nanoparticles production has garnered attention due to its rapid, eco-friendly, non-pathogenic and cost-effective nature, enabling one-step biosynthetic processes as given in figure 1.

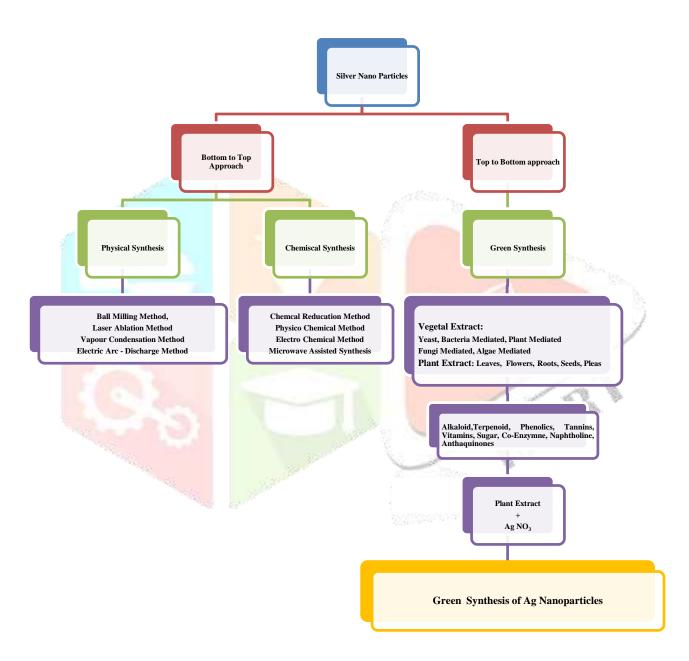


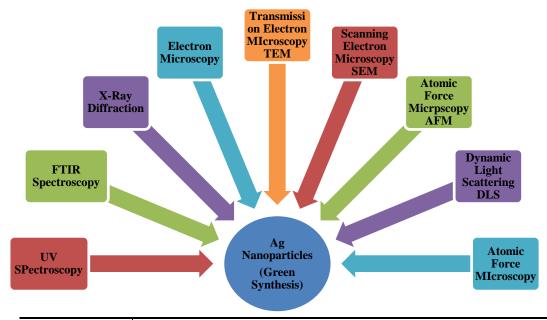
Figure 1: Synthesis of Ag-NPs through Green synthesis method

The presence of diverse biological molecules in plant extracts, such as proteins, enzymes, amino acids, polysaccharides, alkaloids, phenolics, tannins, saponins, terpenoids and vitamins, facilitates the reduction and stabilization of silver ions. These compounds, which possess medicinal properties, contribute to environmentally friendly chemically complex structures [34-38]. The synthesis protocol entails several steps: first, herbal leaves from the desired plant species are collected from suitable sites and thoroughly rinsed multiple times with tap water to eliminate dust and soil particles. Subsequently, the leaves are washed to remove any remains. Once cleaned, the leaves are dried in the shade for 5-7 days and then pulverized using a domestic

blender. To prepare the plant broth, approximately 10g of the dried powder is boiled with 100ml of distilled water [39].

The resultant infusion is meticulously filtered until the broth shows no signs of insoluble substances. When a 10⁻³M AgNO₃ solution is combined with a small quantity of plant extracts, the reduction of pure Ag (I) ions to Ag (0) can be observed, with the progress monitored through regular UV-visible spectrum measurements of the solution [40]. Utilizing herbal leaf extracts, green and rapid syntheses of spherical silver nanoparticles measuring 50-100 nm in diameter have been achieved. The conversion of silver ions into silver nanoparticles using this extract typically occurs within 10-30 minutes. This method offers a rapid, straightforward and cost-effective alternative compared to conventional chemical and biological approaches. This review article aims to explore the potential applications of silver nanoparticles, including their antibacterial, antifungal, antioxidant, antiviral, anticancer and anti-diabetic properties [41].

Green Synthesis:


Green synthesis, a biological approach to producing nanoparticles, particularly silver nanoparticles (Ag-NPs), provides substantial benefits compared to traditional chemical and physical methods. This eco-friendly method requires no sophisticated equipment or toxic chemicals, reducing overall costs and environmental impact [42]. The resulting nanoparticles are typically more stable and exhibit desired shapes and sizes. [43,44]. Plant extracts contain a plethora of primary and secondary metabolic biomolecules, such as proteins, amino acids, vitamins, alkaloids, terpenoids, flavonoids and phenols, which reduce silver ions. When plant extracts are mixed with silver nitrate solution, the metabolites undergo oxidation and coat the developing nanoparticles. The process initiates nucleation followed by particle growth, resulting in various nanoparticle shapes [45, 46]. Factors like pH, temperature, extract concentration and reaction time influence nanoparticle synthesis.

Various plant extracts have been utilized for Ag-NP synthesis, demonstrating their efficacy as reducing and stabilizing agents [47]. For instance, Lonicera hypoglauca flower extract, Artocarpus integer leaf extract and Catharanthus roseus extract have been used, showing anticancer activity [48, 49]. Additionally, Clitoria ternatea and Solanum nigrum leaf extracts synthesized Ag-NPs with antibacterial properties, while Abelmoschus esculentus pulp extract produced Ag-NPs with anticancer and antimicrobial activity [50, 51]. These findings highlight the potential of green-synthesized Ag-NPs in drugs.

Characterization of Silver Based Nanoparticles

Various causes affect the properties of silver nanoparticles (Ag-NPs). Numerous methodologies available for analysis of these characteristics of nanoparticles are shown in Fig-2.

Figure 2- Characterization Methods of Green Synthesized Silve Nanoparticles

b133

Various technologies can be used to study the characteristics and properties of silver nanoparticles (AgNPs):

- i. **Shape, size, and crystallinity:** X-ray diffraction (XRD) delivers evidence about structure of the crystal and size of Ag-NPs, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) suggest conception of the shape, size and morphology at different scales.
- ii. **Surface charge and coating:** Fourier Transform Infrared (FTIR) spectroscopy helps in analyzing the surface chemistry and functional groups present on the surface of Ag-NPs, which contribute to their surface charge and coating. Dynamic light scattering (DLS) can also provide information about the surface charge and stability of Ag-NPs in solution
- i. **Biological activity:** Understanding the biological activity of Ag-NPs often involves assessing their interaction with biological systems. This can be studied using UV spectroscopy to monitor changes in absorbance related to biological interactions, SEM and TEM to visualize interactions at the cellular level and Atomic Force Microscopy (AFM) to study external interactions and mechanical properties.

These technologies collectively offer a comprehensive toolkit for researchers to investigate the various factors influencing the characteristics and properties of Ag-NPs, facilitating their submissions in diverse arenas such as nanomedicine, catalysis and environmental remediation.

UV- Spectroscopy: UV-spectroscopy serves as a fundamental and efficient method for characterizing nanoparticles, offering insights into their constancy and the circumstances under which they are synthesized [52]. This technique exploits the surface resonance (SPR) effect, where free electrons on the nanoparticle surface oscillate under electromagnetic radiation [40]. During the synthesis of silver nanoparticles (Ag-NPs), this process manifests as distinct absorption bands in the visible spectrum, typically within the range of 400–500 nm, resulting in a coloured reaction [54]. For instance, Ag-NPs loaded with curcumin exhibit absorption peaks, corresponding to different concentrations of pure curcumin used in the synthesis process. UV-spectroscopic analysis of green-synthesized nanoparticles from Salvia spinosa extract reveals the spectrum [55]. Moreover, UV-Visible spectroscopy is frequently employed to observe colour changes during the process and quantify reduction of silver ions [56-58].

Fourier Transform Infrared Spectroscopy FTIR: It is a highly dependable analytical technique capable of detecting and illustrating various aspects of molecular composition [60, 61]. In the context of characterizing silver nanoparticles (Ag-NPs), FTIR analysis serves to identify molecules and the reduced silver ions [62]. FTIR spectra often reveal the presence of various functional groups also during the synthesis of Ag-NPs [63]. For instance, Ag-NPs synthesized using from Catharanthus roseus leaf-extract exhibit major peaks at specific wavenumbers, indicating the presence of carboxylic acid, alkynes, ketones, alcohols, amides, phenyl rings, primary and secondary amines [60]. Similarly, FTIR analysis of nanoparticles synthesized with Tectona grandis seeds extract reveals characteristic bands at specific wavenumbers corresponding to stretching vibrations of the C=O bond, the amide bond in proteins and nitro compounds and the C-N amine bond [64]. Greenly synthesized Ag-NPs can be visualized effectively under electron microscopy during the interaction of when the beam of electrons with the nanostructured particles. This technique provides qualitative and quantitative information about Ag-NPs [62, 63].

Electron Microscopy: Electron microscopy stands out as a pivotal technique in the realm of nanotechnology for discerning nanoparticle morphology. When subjected to the electron beam, greenly synthesized Ag-NPs (silver nanoparticles) exhibit visualizations that unveil their nanostructured

composition. This approach facilitates the qualitative and quantitative analysis of Ag-NPs, furnishing insights into crucial parameters such as size, shape, size distribution and dry diameter distribution. By leveraging electron microscopy, researchers can delve into the intricate details of nanoparticles, thereby advancing our understanding and utilization of these minuscule entities in various fields [62, 63].

Scanning Electron Microscopy:

It is instrumental in visualizing surface morphology of samples, operating on the principle of electron reflection from the sample's surface. This technique offers high-resolution images that provide a wealth of information including structural details, conductivity and other pertinent properties. Numerous instances of AgNPs synthesis have been considered using SEM [65]. For instance, SEM analysis of Acetyl-11-keto-β-boswellic acid-mediated AgNPs revealed spherical AgNPs ranging in size from 6 to 70 nm. AgNPs synthesized with Glycyrrhiza glabra root extract ranged in particle diameters from 20 to 30 nm, whereas those synthesized with Artemisia turcomanica leaf extract measured approximately 21.22 nm in diameter [66]. Additionally, field emission scanning electron microscopy (FESEM) of Tectona grandis seed extract loaded with silver nanoparticles revealed oval and spherical nanoparticles in sizes ranging from 10 to 30 nm. This analysis confirmed the face-centered cubic crystalline structure of silver. Such detailed characterization underscores the versatility and effectiveness of SEM in elucidating the morphological attributes of AgNPs synthesized through various methods [67].

XRD analysis: This method serves as pivotal technique for characterizing the crystallinity of Ag-NPs. In XRD, X-rays impinge upon the surface of a crystal and interact with its atoms, resulting in a diffraction pattern that unveils the atomic arrangement and crystalline structure. XRD allows researchers to determine the crystalline structure of nanoparticles. By analysing the diffraction pattern produced when X-rays interact with the atoms in the nanoparticles, XRD delivers evidence about the arrangement of atoms in the crystal lattice [68]. The position and intensity of diffraction peaks in the XRD pattern provides valuable insights into the size and shape of nanoparticles. By analysing peak positions and their intensities, researchers can determine the average particle size and distribution within the sample. XRD can identify different phases present in the sample. This is particularly useful when nanoparticles are synthesized using complex methods or when impurities or secondary phases are present [69]. By comparing the experimental XRD pattern with reference patterns from databases, researchers can identify the composition and purity of the nanoparticles. XRD can assess the degree of crystallinity of nanoparticles. Amorphous or poorly crystalline materials exhibit broad diffraction peaks, while highly crystalline materials display sharp and well-defined peaks. This information is crucial for understanding the structural properties of nanoparticles and their potential applications. XRD analysis can be used for quality control purposes during nanoparticle synthesis. By monitoring changes in the XRD pattern during different stages of synthesis, researchers can ensure that the desired crystalline structure and properties are achieved [70].

Overall, XRD analysis provides comprehensive information about the structural properties of nanoparticles, including their crystalline structure, size, shape, phase composition and crystallinity. This information is crucial for grasping the characteristics and behavior of nanoparticles, as well as for refining their synthesis and applications across fields like materials science, nanotechnology and biomedical engineering. In various research endeavours, XRD has been employed to ascertain the crystallinity of greenly synthesized Ag-NPs [62, 63]. For instance, Ag-NPs synthesized using the aqueous leaf extract of Urtica dioica Lin exhibited a crystalline structure with an average particle size of approximately 25 nm. The XRD analysis revealed strong reflections at 38.45°, 46.35°, 64.75°, and 78.05°, corresponding to the 111, 200, 220, and 311 crystalline planes respectively [68].

Similarly, XRD patterns of Ag-NPs prepared using Pedalium murex leaf extract displayed, with an average size of 14 nm [71]. Moreover, XRD analysis of silver nanoparticles synthesized using the leaf extract of Clitoria ternatea showcased intense peaks at specific angles, indicative of crystalline silver. Likewise, silver nanoparticles synthesized with the leaf extract of Solanum nigrum displayed distinct peaks in the XRD pattern, further corroborating the crystalline nature of the synthesized nanoparticles. These findings underscore the utility of XRD in elucidating the crystalline structure and characteristics of Ag-NPs synthesized through various green methods, thereby enhancing our understanding of their properties and potential applications [72].

Transmission Electron Microscopy (TEM): It offers direct visualization of nanoparticles through high-resolution images generated from transmitted electrons. This technique enables researchers to observe individual nanoparticles and their interactions with surrounding materials, providing crucial insights into their structural and chemical properties. TEM allows for detailed examination of nanoparticle morphology, including size, shape and geometry, which is essential for understanding their properties and applications. Additionally, TEM can be used to investigate the crystalline structure of nanoparticles, measure size distribution and analyse chemical composition using techniques like energy-dispersive X-ray spectroscopy (EDS) or electron energy loss spectroscopy (EELS). Overall, TEM is a versatile and powerful tool for studying nanoparticles, contributing to advancements in various fields such as nanotechnology, materials science, catalysis, biomedicine and environmental science.

In nanoparticle research, TEM has been extensively utilized for the characterization of silver nanoparticles produces by green chemistry synthesis. Various studies have employed TEM to visualize Ag-NPs synthesized using leaf extracts of Viburnum lantana, Couroupita guianensis, Malachra capitata, and Lysiloma acapulcensis [62]. For instance, Ag-NPs prepared from these leaf extracts exhibited size ranges of 20–70 nm, 25–40 nm, 30–35 nm, and demonstrated predominantly spherical shapes, respectively [73-75]. TEM analysis of Ag-NPs loaded with Lysiloma acapulcensis extract revealed a crystalline structure with visible lattice fringes. TEM's capability to directly visualize nanoparticles and their interactions with the electron beam makes it a preferred technique for studying AgNP formation. Its high resolution allows for the detection and analysis of core structure, diameter, size, shape and other essential characteristics of nanoparticles. Overall, TEM stands as a crucial tool in nanoparticle research, offering invaluable insights into their morphology and properties [63].

Atomic force microscopy: This technique is a unique method for analysing nanoparticles, including nano particles. By utilizing a phosphorus-doped silicon probe, AFM enables the examination of size, surface morphology, mechanical properties and other physical characteristics of nanoparticles. In the case of silver nanoparticles (AgNPs), AFM analysis involves preparing a sample by dissolving AgNPs in a solvent, depositing the solution onto a silicon substrate and allowing it to dry. The dried sample is then analyzed using AFM to obtain information about nanoparticle size and distribution. Studies on tamoxifen-loaded AgNPs using AFM have revealed an average size range of 17.5 ± 2.5 nm [62]. Overall, AFM serves as a valuable tool for nanoparticle characterization, offering high-resolution imaging and precise measurements that helps in better understanding of their properties and possible applications. Atomic force microscopy (AFM) is a valuable technique for analysing the size, surface morphology, mechano-structural and physical properties of materials, including nanoparticles [63]. In the context of characterizing silver nanoparticles (Ag-NPs), AFM provides insights into their size distribution and surface characteristics.

For characterization using AFM, a sample containing Ag-NPs is typically prepared by dissolving them in a solvent such as water or ethanol. A droplet of this solution is put onto a silicon film and left to dry, creating a thin coating containing the nanoparticles. Subsequently, AFM analysis is conducted by scanning the silicon substrate surface with a phosphorus-doped silicon probe. Studies utilizing AFM for analysing tamoxifen-loaded Ag-NPs have demonstrated an average size range of 17.5 ± 2.5 nm. This information not only provides details about the size of the nanoparticles but also offers insights into their distribution and morphology [77]. Overall, AFM serves as a valuable tool for the characterization of nanoparticles, offering high-resolution imaging and precise measurements of their physical properties.

Biological Applications and Biopotential of Silver Nanoparticles: Antibacterial and antifungal activity:

Recently, there has been growing interest in the utilization of silver nanoparticles for their antibacterial and antifungal properties [78]. These particles have demonstrated increased antibacterial efficacy against Gramnegative bacteria, with sheet-like RuO2 nanomaterials exhibiting a more pronounced inhibitive effect compared to spherical types. The unique bactericidal mechanisms of silver nanoparticles, along with their ability to penetrate bacteria, make them effective in combating antibiotic-resistant infections. Furthermore, silver nanoparticles have also been found to inhibit the formation of biofilms, which are a major challenge in eliminating bacterial infections [79]. Silver nanoparticles have been extensively studied and have demonstrated outstanding antimicrobial properties, particularly against biofilms. These properties make them a potential substitute treatment for reducing the severity of diseases caused by Pseudomonas aeruginosa infections. Overall, the use of silver nanoparticles shows great promise in the field of medication and hygiene. Furthermore, the use of nanomaterials, particularly metal nanoparticles and their nanocomposites, has emerged as a promising solution in eliminating bacterial biofilms

The escalating challenge posed by antibiotic-resistant bacteria from genera such as Escherichia, Streptococcus, Salmonella and Pseudomonas has become a pressing medical concern. In this pursuit of novel biotherapeutics, silver nanoparticles (Ag- NPs) have emerged as a promising weapon against pathogens. Extensive research has confirmed the efficacy of Ag-NPs in inhibiting growth and inducing the demise of various pathogenic microorganisms responsible for a spectrum of human diseases worldwide. The continuous antibacterial effect of Ag-NPs is attributed to their ability to bind to diverse biomolecules within microorganisms. Plant extracts have emerged as an invaluable resource for AgNP production, often possessing inherent therapeutic properties and serving as effective capping agents. Table 1 highlights a fraction of the established antibacterial effects of nanoparticlessynthesized from different plant extracts.

Table 1: Antimicrobial Properties of Silver Nanoparticles Derived from Various Plant

Plant Extract	Microbes	References
Euphorbia hirta leaf	C. albicans, C. kefyr	79
extract		
Adathoda vasica leaf	V. parahaemolyticus	80
extract		
Citrus limon leaf extract	F. oxysporum, Alt. brassicicola	81
Bergenia ciliate leaf extract	A. fumigatus, F. solani, A. niger, A. flavus, S. aureus, E. aerogenes, B. bronchiseptia	82
Svensonia hyderobadensis	Fusarium, Rhizopus, Proteus, A. flavus, A.	83
leaf extract	niger	
Rhinacanthus nasutus leaf	St. aureus, B. subtilis, Ps. aeruginosa, E. coli,	84
extract	K. pneumonia, A. niger, A. flavus	
pu-erh tea leaves	E. coli, K. pneumoniae, S. typhimurium, S. enteritidis	85
Neurada procumbens leaf	K. pneumoniae, Acinetobacter baumannii	86
extract	r	
Melissa officinalis leaf	S. aureus, Escherichia coli	87
extract	·	
Usnea longissima extracts	St. aureus, Str. Pyrogenes, Str. Viridans, Corynebacterium xerosis	88
Boerhaavia diffusa	Aeromonas hydrophila, Pseudomonas fluorescens and Flavobacterium branchiophilum	89
Aloe vera	E. coli	90
Cucumis sativus plant extract	M. tuberculosis	91
Vigna radiata	S. aureus, Escherichia coli	92
Solanus torvum	P. aeruginosa, S. aureus, A. flavus and Aspergillus niger	93
Ipomea patatas	Vibro cholera, protus mirabilis	94
Green tea	Klebsiella pneumonia, Pseudomonas aeruginosa	95
Green tea	Bacillius subtilis, Escherchia coli, Staphylococcus aures and streptococcus pyogenes	96
Abutilon indicum	S. typhi, E. coli, S. aureus and B. substilus	97
Cymbopogan citratus	P. aeruginosa, P. mirabilis, E. coli, Shigella	98
	flexaneri, S. somenei and Klebsiella pneumonia	
Argimone mexicana	Escherichia coli; Pseudomonas aeruginosa;	99
8	Aspergillus flavus	
	1 -0	

Bioactivity: Anti cancerous Potential

Plant-based silver nanoparticles have emerged as promising agents for effectively combating cancer by targeting the hallmark characteristic of cancer cells: their evasion of apoptosis or programmed cell death, which allows them to continue proliferating. Two main signalling pathways are convoluted in activating apoptosis [100]. However, cancerous cells often lack apoptosis, making it a focal point for cancer therapy development. Silver nanoparticles can exert anticancer effects through several mechanisms. Silver nanoparticles can induce programmed cell death in cancer cells. By disrupting mitochondrial function and increasing the levels of reactive oxygen species, they can trigger apoptotic pathways [101]. Silver nanoparticles can further catalyse the production of ROS within cancer cells, leading to oxidative stress, which can damage cellular components such as DNA and proteins, ultimately leading to cell death [102]. The increased ROS can cause significant damage to the DNA within cancer cells, preventing their replication and causing cell death [103]. Silver nanoparticles may interact with the lipid bilayer of diseased cell or death. They can affect the signalling pathways that regulate cell division, hindering the proliferation of cancerous cells [104].

However, the exact anticancer mechanisms of silver nanoparticles can vary depending on their size, shape, coating and the cellular environment. Further studies are underway to comprehend these mechanisms better and to harness silver nanoparticles potential in cancer therapy. It's important to note that while silver nanoparticles hold promise for cancer treatment, their safety and efficacy need thorough evaluation before they can be widely adopted in clinical settings. Silver nanoparticles synthesized using a bioactive part of Pinus roxburghii have demonstrated cytotoxic activity against cancer cells. These nanoparticles trigger apoptosis via the intrinsic pathway by inducing mitochondrial depolarization and damage of the DNA. They also rise the reactive oxygen species levels ultimately leading to cancer cell death. Similarly, silver nanoparticles synthesized with Phyllanthus emblica leaf extract display anticancer activity against hepatocellular carcinoma (HCC) [105-107].

Liposomes containing silver nanoparticles (Lipo-AgNP) induce cytotoxicity by generating ROS and causing DNA damage, ultimately leading to cell death in macrophages. Biologically synthesized silver nanoparticles exhibit antimicrobial and anticancer effects against breast cancer cell lines and Ehrlich ascites carcinoma in mice. These nanoparticles induce apoptosis through various mechanisms, including endoplasmic reticulum stress and modulation of apoptotic proteins [108]. Silver nanoparticles of different sizes have also demonstrated anticancer effects at the G2/M phase and regulating apoptotic proteins such as P-53, Bax, and Bcl-2. Additionally, silver nanoparticles synthesized with plant extracts like Cynara scolymus, Moringa oleifera, Tropaeolum majus, Gloriosa superba and Teucrium polium have shown cytotoxicity against various cancer cell lines. These nanoparticles modulate mitochondrial apoptosis, generate ROS and regulate apoptotic proteins, ultimately leading to cancer cell death. Overall, plant-based silver nanoparticles hold significant potential as effective anticancer agents, offering various mechanisms to induce apoptosis and combat cancer cell proliferation [109-111].

Table 2 highlights a fraction of the established anticancerous effects of silver nanoparticles synthesized from different plant extracts.

Type of Cancer	Name of the Plant/Plant part	References
Human Breast Cancer	Artocamphus integer (leaf)	[112]
	Cynara scolymus (leaf)	[113]
	Annona squa- (Leaf)	[114]
	Camellia Sinen-sis Green tea (leaf)	[115]
	Couroupita(leaf)	[116]
	Glycyrrhiza (root)	[117]
	Juglans regia walnut fruit	[118]
	Lonicera (flower)	[119]
Human T-cell lymphoma	Abelmoschus esculentus (pulp)	[120]
Prostate cancer cells	Alternanthera sessili (leaf)	[121]
Gastric cancer cells	Artemisia tur- comanica 9leaf)	[122]
Hepatic cancer	Asafoetida (gum)	[123]
	Myrtus com- munis	[124]
Lung Carcinoma	Bauhinia (leaf)	[125]
Human Skin Cancer	Boswellia serrate (bark)	[126]
100	Gelsemium semperviren (whole plant)	[127]
	Hydrastis canadensis (whole plant)	[127]
	Phytolacca decandra (whole plant)	[127]
	Thuja occiden-talis(whole plant)	[127]

Biopotential: Antiviral Activity:

Throughout human history, viruses have emerged as formidable pathogens, posing significant health threats. Their pathogenicity typically involves attachment and entry into host cells, wherein viral proteins interact with cell membrane ligands and proteins. Disrupting this binding process represents a key strategy for preventing cell infection. Silver nanoparticles have been observed to initiate the apoptotic pathway, producing reactive oxygen species that demonstrate in vitro antitumor effects [128]. By disrupting normal cellular functions and influencing membrane integrity, silver nanoparticles activate various apoptotic signalling genes in cells in mammal, ultimately leading to cell death [129]. Similarly to their antioxidant and anticancer properties, silver nanoparticles synthesized using common bio factory plants have shown

promising antiviral activity. Additionally, organisms such as fungi and bacteria, including A. fumigatus, have been utilized for nanoparticle synthesis [130,131]. With potent anticancer properties and minimal toxicity, silver nanoparticles hold significant promise as anticancer agents. Further exploration of their antiviral potential may unveil new avenues for combating various virus-induced diseases.

Plant-based silver nanoparticles have garnered responsiveness for their potential as antiviral agents against various life-threatening viruses. Studies suggest that Ag-NPs may exert their antiviral effects through different mechanisms, such as intracellular inhibition of viral replication or extracellular interaction with viral proteins, such as gp120, to block viral entry. This mode of action may vary depending on the specific virus being targeted.

Ag NPs have demonstrated effectiveness against a range of viruses, including feline coronavirus (F Co V)[132], influenza virus [133], HIV [134], adenovirus [135], herpes simplex virus [136], dengue virus [137], chikungunya virus [138], nor virus [139], bovine herpes virus and human Para influenza virus type 3 [141]. This diverse antiviral activity highlights the potential of Ag NPs as a novel pharmacological agent for combating viral infections. Further research into the mechanisms of action and safety profile of plant-based Ag NPs could pave the way for their development as effective antiviral treatments [142].

Bioactivity: Antioxidant Potential

Numerous studies have investigated the free radical scavenging abilities of silver nanoparticles synthesized using plant extracts over varying durations. These nanoparticles exhibit heightened antioxidant activity, likely attributed to the efficient absorption of antioxidants from the plant extracts onto the nanoparticle surface. The antioxidant properties of silver phyto-nanosystems render them valuable in disease treatment. Consequently, silver phyto-nanoparticles derived from plant extracts have demonstrated significant antioxidant activity [143].

Salari et al. demonstrated that silver nanoparticles synthesized using an aqueous extract of Prosopis farcta fruit displayed exceptional free radical scavenging abilities [144]. Similar effects were observed in vitro with aqueous extracts of apple [38], Indigofera hirsuta [145] and leaf extracts of Elephantopus scaber [146]. Hence, the robust antioxidant activity of these phyto-nanoparticles may be attributed to the specific capping of Ag-NPs, particularly from medicinal plants rich in diverse antioxidants such as polyphenols and flavonoids.

Biopotential: Antidiabetic Activity:

Nanotechnology is increasingly applied in disease treatment, notably in diabetes mellitus, through manipulation of phytochemical sizes to enhance bioavailability and efficacy [148]. Research commonly utilizes organic plant extracts, particularly in the green synthesis of silver nanoparticles (Ag NPs) from leaf extracts. Characterization of Ag NPs is crucial prior to biological testing, with FTIR spectroscopy proving instrumental in determining molecular composition and structure based on spectral analysis of infrared absorption frequencies [149]. In the management of diabetes, targeting alpha-amylase and glucosidase, key enzymes in carbohydrate metabolism, is crucial. Inhibiting these enzymes prevents the breakdown of carbohydrates into glucose, thereby controlling blood sugar levels. Several studies have identified silver nanoparticles (Ag NPs) as effective alpha-amylase inhibitors both in laboratory experiments and animal studies, suggesting their potential in modulating blood glucose levels when consumed with starchy foods [150, 151]

Conclusion:

The green biosynthesis of silver nanoparticles mediated by plant extracts offers several advantages over alternative methods, primarily due to its environmentally friendly and cost-effective nature. This approach is highly conducive to producing nanoparticles devoid of toxic contaminants, essential for various bio-applications. The use of plant-mediated biosynthesis yields silver nanoparticles with notable nanotechnological features, facilitating unparalleled applications. Compared to other biological methods, nanoparticle synthesis using plant materials is particularly advantageous due to their ease of handling, safety, wide distribution and ready availability. Recent reviews, drawing from various literature sources, underscore the significance of plant extract-mediated biosynthesis of silver nanoparticles. These nanoparticles are characterized as effective agents against bacterial and fungal infections, possess antioxidant properties, exhibit antiviral activity and demonstrate potential in cancer therapy.

Abbreviation:

Ag-Silver

DLS - Dynamic Light Scattering

EDX- Energy-Dispersive X-Ray Spectroscopy,

FTIR -Fourier-Transform Infrared Spectroscopy

MRI-Magnetic Resonance Imaging

NP- Nano Particle

SEM -Scanning Electron Microscopy

TEM - Transmission Electron Microscopy,

UV-Ultra- Violet Spectroscopy

XRD- X-Ray Diffraction

Reference

- 1. Feynman RP, Goddard WA, Brenner D, ELyshevski S, Iafrate GF. In Handbook of Nanoscience, Engineering and Technology, CRC Press, 3rd edn,2012:12:26–35.
- 2. Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of Ag-NPs and their applications, Artificial Cells Nanomedicine and Biotechnology, 2017:45(7):1272-1291.
- 3. Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN. Green synthesis of Ag-NPs: a review. Green Sustainable Chemistry, 2016:6(01):34-39.
- 4. Liu H, Hou P, Zhang W, Wu J. Synthesis of monosized core—shell Fe3O4/Au multifunctional nanoparticles by PVP-assisted nanoemulsion process. Colloids Surf A
- 5. Physicochem Eng Asp 2010;356:21–7. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties ofmetal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003;107: 668–77.
- 6. Liu G, Swierczewska M, Lee S, Chen X. Functional nanoparticles formolecular imaging guided gene delivery. Nano Today 2010;5:524–39.
- 7. Prasad G. Biomedical applications of nanoparticles. Safety of Nanoparticles. Springer; 2009 89–109
- 8. Murray CB, Kagan C, Bawendi M. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 2000; 30:545–610.
- 9. Cui H, Feng Y, Ren W, Zeng T, Lv H, Pan Y. Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat Nanotechnol 2009;3:32–41

- 10. Arora P, Sindhu A, Dilbaghi N, Chaudhury A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 2011;28:1–12.
- 11. Galib MB, Mashru M, Jagtap C, Patgiri BJ, Prajapati PK. Therapeutic potentials of metals in ancient India: A review through Charaka Samhita. Journal of Ayurvedic Integration Medicine,2011:2(2):55–62.
- 12. Balamurugan M, Saravanan S, Soga T. Coating of green-synthesized silver NPs on cotton fabric. Journal of Coat Technology Research, 2017:14(3):735-745.
- 13. Sivakumar T, Gajalakshmi D, Subramanian VK, Palanisamy K. Tuber extract mediated biosynthesis of silver nanoparticles and its antioxidant, antibacterial activity. Journal of Biological Sciences, 2015:15(2):68-77.
- 14. Senthilkumar SR, Sivakumar T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZNO) nanoparticles and studies on their antimicrobial activities. International Journal of Pharmacy and Pharmaceutical Sciences, 2014:6(6):461-465.
- 15. Senthil Kumar SR, Sivakumar T, Arulmozhi KT, Mythili N. Antimicrobial Activity of Indian Commercial Green Teas (Camellia Sinensis). International Journal of Biosciences and Nanosciences, 2016:3(7):108–112.
- 16. Sivakumar T. Phytochemical screening and GC- MS analysis of bioactive compounds and biosynthesis of silver nanoparticles using sprout extracts of vigna radiata L. and their antioxidant and antibacterial activity. Asian journal of Pharmaceutical and clinical research, 2019:12(2):180-184.
- 17. Burdusel AC, Gherasim O, Grumezescu AM, Mogoanta L, Ficai A, Andronescu E (2019) Biomedical applications of silver nanoparticles: anup-to-date overview. Mol 24:719
- 18. Karmous I, Pandey A, Ben K, Haj KB, Chaoui A (2020) Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: insights on plant-based bioengineered nanoparticles, biophysical properties and anticancer roles. Bio Tra Ele Res 196:330–342
- 19. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications, Trends Biotechnology, 2010:28(11):580–588.
- 20. Chanel TH, Adri H, Muhammad DB, Bambang Y, Fakhili G. Green synthesis of silver nanoparticle and its antibacterial activity. Rasayan Journal of Chemistry, 2017:10(4):1137-1144.
- 21. Sondi I, Sondi BS (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Col and Inter Sci 275:177–182
- 22. Nagarajan S, Kalaivani G, Poongothai E, Arul M, Natarajan H (2019) Characterization of silver nanoparticles synthesized from Catharanthus roseus (Vinca rosea) plant leaf extract and their antibacterial activity. IJRAR 6(1):680–685
- 23. Al-Shmgani HSA, Mohammed WH, Sulaiman GM, Saadoon AH (2017) Biosynthesis of Silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial and wound- healing activities. Art Cell Nanomed Biotech 45(6):1234–1240
- 24. Deya C, Bellotti N (2017) Biosynthesized silver nanoparticles to control fungal infections in indoor environments. Adv Nat Sci Nanosci Nano- technol 8:1–8
- 25. Singh P, Ahn S, Kang JP, Veronika S, Huo Y, Singh H, Chokkaligam M, El- Agamy Farh M, Aceituno VC, Kim YJ, Yang DC (2018) In vitro anti-inflam- matory activity of spherical silver nanoparticles and monodisperse hex- agonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artific Cells Nanomed Biotechnol 46(8):2022–2032
- 26. Yuan YG, Zhang S, Hwang JY, Kong IK (2018) Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxida Medi Cellu Longe 1:1–21
- 27. Karmous I, Pandey A, Ben K, Haj KB, Chaoui A (2020) Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: insights on plant-based bioengineered nanoparticles, biophysical properties and anticancer roles. Bio Tra Ele Res 196:330–342

- 28. Yesilot S, Aydin C (2019) Silver nanoparticles; a new hope in cancer therapy? East J Med 24(1):111–116
- 29. Siadati SA, Afzali M, Sayadi M (2020) Could silver nano-particles control the 2019-nCoV virus? An urgent glance to the past. Chem Rev Lett 3:9–11
- 30. Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S (2016) Metal nanoparticles: the protective nano-shield against virus infection. Crit Rev Microbiol 42(1):46–56
- 31. Anwar N, Shah M, Saleem S, Rahman H (2018) Plant mediated synthesis of silver nanoparticles and their biological applications. Bull Chem Soc Ethiop 32(3):469–479
- 32. Chen X, Jensen L (2016) Understanding the shape effect on the plasmonic response of small ligand coated nanoparticles. J Opt. 18:1–18
- 33. Noah N (2019) Green synthesis: characterization and application of silver and gold nanoparticles. Green Synth Characterizat Applicat Nanoparticles. 53:111–13
- 34. Choudhury R, Majumder M, Roy DN, Basumallick S, Misra TK. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods. Internatioal journal of Nano Letters, 2016:6(6):153-159.
- 35. Kharissova OV, Dias HR, Kharisov BI, Perez BO, Perez VM. The greener synthesis of nanoparticles. Trends Biotechnology, 2013:31(4):240–248.
- 36. Majeed S, Bakhtiar NFB, Danish M, Mohamad Ibrahim MN, Hashim R (2019) Green approach for the biosynthesis of silver nanoparticles and its antibacterial and antitumor effect against osteoblast MG-63 and breast MCF-7 cancer cell lines. Sus Chem Pharma 12:100138
- 37. Krithiga N, Rajalakshmi N, Jayachitra A (2015) Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosoco mial pathogens. J Nanosci 2015:1–8
- 38. Mollick MMR, Rana D, Dash SK, Chattopadhyay S, Bhowmick B, Maitya D, Mondala D et al (2019) Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Ara J Chem 12:2572–2584
- 39. Chen X, Jensen L (2016) Understanding the shape effect on the plasmonic response of small ligand coated nanoparticles. J Opt. 18:1–18 30. Noah N (2019) Green synthesis: characterization and application of silver and gold nanoparticles. Green Synth Characterizat Applicat Nanoparticles. 53:111–135
- 40. Khan MJ, Shameli K, Sazili AQ, Selamat J, Kumari S (2019) Rapid green synthesis and characterization of silver nanoparticles arbitrated by curcumin in an alkaline medium. Molecules 24:719
- 41. Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruc Chemis 9:1–9
- 42. Nadaroglu H, Alayli GA, Ince S (2017) Synthesis of nanoparticles by green synthesis method. Int J Inno Res Rev 1(1):6–9
- 43. Mousavi B, Tafvizi F, Bostanabad SZ (2018) Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artifi Cells Nanomed Biotech 46(1):499–510
- 44. Thakur S, Mohan GK (2019) Green synthesis of silver nanoparticles of boswellic acid, and it's in vitro anticancer activity. Int J Pharma Bio Sci 10(3):92–100
- 45. Bedlovicova Z, Salayova A (2017) Green-Synthesized Silver Nano- particles and their Potential for Antibacterial Applications. Bacterial Pathogenesis Antibacterial Control. 8:73–94
- 46. Silva LP, Pereira TM, Bonatto CC (2019) Frontiers and perspectives in the green synthesis of silver nanoparticles. Green Synth Characterizat Applicat Nanoparticles. 2019:137–164
- 47. Sanjay SS (2019) Safe nano is green nano. Green Synth Characterizat Applicat Nanoparticles 14:27–36
- 48. Ghosh S (2019) Green synthesis of nanoparticles and fungal infection. Green Synth Characterizat

- Applicat Nanoparticles 7:75–86
- 49. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673
- 50. Devatha CP, Thalla AK (2018) Green synthesis of nanomaterials. Synthe Inorganic Nanomater 31:169–184
- 51. Jang SJ, Yang IJ, Tettey CO, Kim KM, Shin HM (2016) In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mat Sci Engineer C 68:430–435
- 52. Chen X, Jensen L (2016) Understanding the shape effect on the plasmonic response of small ligand coated nanoparticles. J Opt. 18:1–18 30. Noah N (2019) Green synthesis: characterization and application of silver and gold nanoparticles. Green Synth Characterizat Applicat Nanoparticles. 53:111–135
- 53. Khan MJ, Shameli K, Sazili AQ, Selamat J, Kumari S (2019) Rapid green synthesis and characterization of silver nanoparticles arbitrated by curcumin in an alkaline medium. Molecules 24:719
- 54. Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruc Chemis 9:1–9
- 55. Gudikandula K, Maringanti SC (2016) Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial proper ties. J Exp Nanosci 11(9):714–721
- 56. Ahmed S, Saifullah Ahmad M, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Rad Res App Sci 9:1–7
- 57. Osibe DA, Chiejina NV, Ogawa K, Aoyagi H (2018) Stable antibacterial silver nanoparticles produced with seed-derived callus extract of Catharanthus roseus. Art Cells Nanomed Biotech 46(6):1266–1273
- 58. Mukunthan KS, Elumalai EK, Patel TN, Murty RV (2011) Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed 1(4):270–274
- 59. Majeed S, Bakhtiar NFB, Danish M, Mohamad Ibrahim MN, Hashim R (2019) Green approach for the biosynthesis of silver nanoparticles and its antibacterial and antitumor effect against osteoblast MG-63 and breast MCF-7 cancer cell lines. Sus Chem Pharma 12:100138
- 60. Nagarajan S, Kalaivani G, Poongothai E, Arul M, Natarajan H (2019) Characterization of silver nanoparticles synthesized from Catharanthus roseus (Vinca rosea) plant leaf extract and their antibacterial activity. IJRAR 6(1):680–685
- 61. Baudot C, Tan CM, Kong JC (2010) FTIR spectroscopy as a tool for nano-material characterization. Infrared Phys Technol 53(6):434–438
- 62. Hasan KMF, Pervez MN, Talukder ME, Sultana MZ, Mahmud S, Meraz MM, Bansal V, Genyang C (2019) A novel coloration of polyester fabric through green silver nanoparticles (G-AgNPs@PET). Nanomaterials 9:569
- 63. Burdusel AC, Gherasim O, Grumezescu AM, Mogoanta L, Ficai A, Andronescu E (2019) Biomedical applications of silver nanoparticles: an up-to-date overview. Mol 24:719
- 64. Noah N (2019) Green synthesis: characterization and application of silver and gold nanoparticles. Green Synth Characterizat Applicat Nanoparticles. 53:111–135
- 65. Rautela A, Rani J, Das MD (2019) Green synthesis of silver nano particles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Ana Sci Tech 10:1–10
- 66. Khan A, Al-Harrasi A, Rehman NU, Sarwar R, Ahmad T, Ghaffar R, Khan H, Al-Amri I, Csuk R, Al-Rawahi A (2019) Loading AKBA on surface of silver nanoparticles to improve their sedative-hypnotic and anti inflammatory efficacies. Nanomed. 14:1–16
- 67. Sivalingam D, Karthikeyan S, Arumugam P (2012) Biosynthesis of silver nanoparticles from

- Glycyrrhiza glabra root extract. Arch App Sci Res 4(1):178–187
- 68. Hamer M, Carballo R, Rezzano I. Polyallylamine-chlorophyllide derivatized gold and silver nanoparticles as optical probes for sensor applications. Sensors Actuators B Chem 2010;145:250–3.
- 69. Xie F, Baker MS, Goldys EM. Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. J Phys Chem B 2006;110:23085–91.
- 70. Lee JS, Lytton-Jean AK, HurstSJ, MirkinCA. Silver nanoparticle-oligonucleotide con jugates based on DNA with triple cyclic disulfide moieties. Nano Lett 2007;7: 2112–5.
- 71. Jyoti K, Baunthiya M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Rad Res App Sci 9(3):217–227
- 72. Anandalakshmi K, Venugob J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. App Nanosci 6:399–408
- 73. Shafaghat A (2015) Synthesis and characterization of silver nanoparticles by photosynthesis method and their biological activity, synthesis and reactivity in inorganic. Metal-Org Nano-Met Chem 45(3):381–387
- 74. Devaraj P, Kumari P, Aarti C, Renganathan A (2013) Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 Cell Line. J Nanotech. 2013:1–5
- 75. Srirangam GM, Rao KP (2017) Synthesis and characterization of silver nanoparticles from the leaf extract of Malachra capitata (l). Ras J Chem 10(1):46–53
- 76. Garibo D, Borbon-Nunez HA, de Leon JND, Mendoza EG, Estrada I, Toledano-Magana Y, Tiznado H, Ovalle-Marroquin M, Soto-Ramos AG, Blanco A, Rodríguez JA (2020) Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scienti rep 10:1–11
- 77. Rasheed M, Ali A, Kanwal S, Ismail M, Sabir N, Amin F (2019) Synergy of green tea reduced tamoxifen-loaded silver nanoparticles exhibit OGT downregulation in breast cancer cell line. Dig J Nanomat Biostr 14(3):695–704
- 78. Seil I, Webster T. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine.

 2012;7:2767-2781

 https://doi.org/10.2147/IJN.S24805
- 79. Shkodenko, L.; Kassirov, I.; Koshel, E. Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations. *Microorganisms* 2020, 8, 1545. https://doi.org/10.3390/microorganisms8101545
- 80. Sahayaraj K, Rajesh S. Bionanoparticles: synthesis and antimicrobial applications, Science against microbial pathogens: communicating current research and technological advances, FORMATEX, A. Méndez- Vilas (Ed.),2011:228-244
- 81. Elumalai EK, Prasad TNVKV, Kambala V, Nagajyothi PC, David E. Green synthesis of silver nanoparticleusing Euphorbia hirta L. and their antifungal activities. Archives of Applied Science and Research, 2010:2(6): 76–81.
- 82. Latha M, Priyanka M, Rajasekar P, Manikandan R, Prabhu NM. Biocompatibility and antibacterial activity of the Adathoda vasica Linn extract mediated silver nanoparticles. Microbiology and Pathology, 2016:93:88–94.
- 83. Vankar SP, Shukla D. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Applied Nanoscience,2012:2:163–168. Phull AR, Abbas Q, Ali A, Raza H, Kim SJ, Zia M. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliate. Future Journal of Pharmacological Science,2016:2(5):31–36.
- 84. Rao ML, Savithramma N. Antimicrobial activity of silver nanoparticles synthesized by using stem extract of Svensonia hyderobadensis (Walp.) Mold–A rare medicinal plant. Research journal of

- Biotechnology, 2010:3:41–47.
- 85. Pasupuleti VR, Prasad TNVKV, Shiekh RA, Balam SK, Narasimhulu G, Reddy CS, Ab Rahman I, Gan SH. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: Synthesis, spectral analysis, and antimicrobial studies. International Journal of Nanomedicine, 2013:8:3355–3364.
- 86. Loo YY, Rukayadi Y, Nor-Khaizura MAR, Kuan CH, Chieng BW, Nishibuchi M. *In vitro* antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Frontiers Microbiology, 2018:9:1555.
- 87. Alharbi FA, Alarfaj AA. Green synthesis of silver nanoparticles from Neurada procumbens and its antibacterial activity against multi-drug resistant microbial pathogens. Journal of King Saud University Science, 2020:32:1346-1352.
- 88. Ruiz-Baltazar AJ, Reyes-Lopez SY, Larranaga D, Estévez M, Perez R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties Results Physics, 2017:7:2639–2643.
- 89. Siddiqi KS, Rashid M, Rahman A, Husen A, Rehman S. Biogenic fabrication and characterization of silver nanoparticles using aqueousethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomaterials Research, 2018:22:1–9.
- 90. Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti-bacterial activity. Indian Crops Production, 2014:52:562–566.
- 91. Zhang Y, yang D, Kong Y, Wang X, Pandoli O, Gao G. Synergtic antibacterial effects of silver nanoparticles @Aloe vera Prepared via a green method. Nano Biomedical Engineering, 2010:2(4):252–257.
- 92. Agarwal P, Mehta A, Kachhwaha S, Kothari SL. Green Synthesis of Silver Nanoparticles and Their Activity Against Mycobacterium tuberculosis. Advanced Science and Engineering Medicine, 2013:5:1–6.
- 93. Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G. Biogenic silver nanoparticles by Solanumtorvum and their promising antimicrobial activity. Journal of Biopesticide, 2010:3(1):394–9.
- 94. Sadeghi B, Rostami A, Momeni SS. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochemica Part A: Molecular Biomolecular Spectroscopy, 2015:134:326–32.
- 95. Kumarasamyraja D, jeganathan NS. Green synthesis of silver nanoparticles using aqueous extract of acalypha indica and its antimicrobial activity. International Journal of Pharmacy and Biological Science. 2013:4(3):469-76.
- 96. Bunchez IR, Barbinta Patrascu ME, Badea N, Doncea SM, Popescu A, Ion RM. Antioxidant silver nanoparticles green synthesized using ornamental plants. JOAM,2012:14:1016–1022.
- 97. Salaria S, Bahabadia SE, Samzadeh-Kermanib A, Yosefzaei F. In-vitro evaluation of antioxidant and antibacterial potential of green synthesized silver nanoparticles using Prosopis farcta fruit extract. Iranian Journal of Pharmaceutical Research, 2019:18:430–44
- 98. Khandelwal N, Singh A, Jain D, Upadhyay MK, VermaHN. Green synthesis of silver nanoparticles using Argimone mexicana leaf extract and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructure, 2010:5(2):483–9
- 99. Carson L, Bandara S, Joseph M, Green T, Grady T, Osuji G, Weerasooriya A, Ampim P, Woldesenbet S (2020) Green synthesis of silver nanopar- ticles with antimicrobial properties using Phyla dulcis plant extract. Foodbor patho dis 17:04–511
- 100.Kumari R, Saini AK, Kumar A, Saini RV (2020) Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. J Bio Inorg Chem 25:23–37
- 101.Singh D, Yadav E, Falls N, Kumar V, Singh M, Verma A (2019) Phyto-fabricated silver nanoparticles of Phyllanthus emblica attenuated diethyl-nitrosamine-induced hepatic cancer via knock-down

- oxidative stress and inflammation. Inflammopharmacol 27:1037–1054
- 102. Yusuf A, Casey A (2020) Liposomal encapsulation of silver nanoparticles (Ag NP) improved nanoparticle uptake and induced redox imbalance to activate caspase-dependent apoptosis. Apo 25:20–134
- 103.El-Naggar NE, Hussein MH, El-Sawah AA (2017) Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity. Scient Rep 7:1–20
- 104.Simard JC, Durocher I, Girard D (2016) Silver nanoparticles induce irremediable endoplasmic reticulum stress leading to unfolded protein response dependent apoptosis in breast cancer cells. Apo 21:1279–1290
- 105.Lee YS, Kim DW, Lee YH, Oh JH, Yoon S, Choi MS, Lee SK, Kim JW, Lee K, Song CW (2011) Silver nanoparticles induce apoptosis and G2/M arrest via PKCf-dependent signaling in A549 lung cells. Arch Toxicol85:1529–1540
- 106. Vasanth K, Ilango K, Kumar MR, Agrawal A, Dubey GP (2014) Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis. Coll Surf B: Bioint 117:354–359
- 107. Valsalam S, Paul A, Arasu MV, Al-Dhabi NA, Mohammed Ghilan AK, Kavi- yarasu K, Ravindran B, Chang SW, Arokiyaraj S (2018) Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifun- gal, antioxidant and anticancer properties. J Photochem Photobiol, B 191:65–74
- 108. Sarkar S, Kotteeswara V (2018) Green synthesis of silver nanoparticles from aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells. Adv Nat Sci Nanosci Nanotechnol 9(2):025014
- 109.Hashemi F, Tasharrofi N, Saber MM (2020) Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J Mol Str 1208:127889
- 110. Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F (2019) Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Art Cells Nanomed Biotech 47(1):1617–1627
- 111. Foldbjerg R, Dang AD, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–75073:51–57
- 112.Majeed S, Bakhtiar NFB, Danish M, Mohamad Ibrahim MN, Hashim R (2019) Green approach for the biosynthesis of silver nanoparticles and its antibacterial and antitumor effect against osteoblast MG-63 and breast MCF-7 cancer cell lines. Sus Chem Pharma 12:100138
- 113.Muthukrishnan S, Vellingiri B, Murugesan G (2018) Anticancer effects of silver nanoparticles encapsulated by Gloriosa superba (L.) leaf extracts in DLA tumor cells. Fut J Pharma Sci 4:206–214
- 114. Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan. S (2012) Green biosynthesis of silver nanoparticles from Annona squamosal leaf extract and it's in vitro cytotoxic effect on MCF-7 cells. Pro Biochem 47(12):2405–2410
- 115.S (2012) Green biosynthesis of silver nanoparticles from Annona squamosal leaf extract and it's in vitro cytotoxic effect on MCF-7 cells. Pro Biochem 47(12):2405–2410
- 116.Rasheed M, Ali A, Kanwal S, Ismail M, Sabir N, Amin F (2019) Synergy of green tea reduced tamoxifen-loaded silver nanoparticles exhibit OGT downregulation in breast cancer cell line. Dig J Nanomat Biostr 14(3):695–704
- 117.. Devaraj P, Kumari P, Aarti C, Renganathan A (2013) Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 Cell Line. J Nanotech. 2013:1–5
- 118.Huo Y, Singh P, Kim YJ, Soshnikov V, Kang J, Markus J et al (2018) Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and invitro applications. Art Cell Nanomed

- Biotech 46(2):303-312'
- 119.Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari M (2018) Selective cytotoxicity of green synthesized silver nanoparticles against the McF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomed 13:8013–8024
- 120.Jang SJ, Yang IJ, Tettey CO, Kim KM, Shin HM (2016) In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mat Sci Engineer C 68:430–435
- 121.Mollick MMR, Rana D, Dash SK, Chattopadhyay S, Bhowmick B, Maitya D, Mondala D et al (2019) Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Ara J Chem 12:2572–2584
- 122.Mousavi B, Tafvizi F, Bostanabad SZ (2018) Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artifi Cells Nanomed Biotech 46(1):499–510
- 123. Satsangi N (2020) Synthesis and characterization of biocompatible silver nanoparticles for anticancer application. J Inorg and Organometal Pol and Mat 30:1907–1914
- 124.Ali Abuderman A, Syed RA, Alyousef AS, Alqahtani M, Shamsul Ola M, Malik A (2019) Green synthesized silver Nanoparticles of Myrtus communis L (AgMC) extract inhibits cancer hallmarks via targeting aldose reductase (AR) and associated signaling network. PRO 7(11):860
- 125.Mukundan D, Mohan kumar R, Vasanth kumari R (2015) Green synthesis of silver nanoparticles using leaves extract of Bauhinia Tomentosalinn and its invitro anticancer potential. Mater Today Proceed 2(9):4309–4316
- 126. Thakur S, Mohan GK (2019) Green synthesis of silver nanoparticles of boswellic acid, and it's in vitro anticancer activity. Int J Pharma Bio Sci 10(3):92–100
- 127.Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda-Bukhsh AR (2013) Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Col Sur B: Bioin 101:325–336
- 128.Kharat SN, Mendhulkar VD. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Material Science & Engineering C: Materials for Biological Applications, 2016:62:719–724.
- 129.Gurunathan S, Lee KJ, Kalimuthu K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials, 2009:30:6341–6350.
- 130. Sanpui P, Chattopadhyay A, Ghosh SS, Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Applied Materials Interfaces, 2011:3:218–228.
- 131.Nilavukkarasi M, Vijayakumar S, Kumar PS. Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and antiproliferation efficiency. Materials Sciece Energy Technology, 2020:3:371–376.
- 132. Chen YN, Hsueh YH, Hsieh CT, Tzou DY, Chang PL (2016) Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res 13(4):430
- 133.Kim M, Nguyen DY, Heo Y, Park KH, Paik HD, Kim YB (2020) Antiviral activity of Fritillaria thunbergii extract against Human Influenza Virus H1N1 (PR8) In Vitro, In Ovo and In Vivo. J Microbiol Biotechnol 30(2):172–177
- 134.Elechiguerra JL, Burt JL, Morones JR, Bragado BC, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotech 3(6):1–10
- 135. Chen N, Zheng Y, Yina J, Lia X, Zhenga C (2013) Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Vir Met 193:470–477
- 136.Hu RL, Li SR, Kong FJ, Hou RJ, Guan XL, Guo F (2014) Inhibition effect of silver nanoparticles on herpes simplex virus 2. Gen Mol Res 13(3):7022–7028
- 137. Sujitha V, Murugan K, Paulpandi K, Panneerselvam C, Suresh U, Roni M, Nicoletti M et al (2015)

- Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114(9):3315–3325
- 138.. Gaal H, Fouad H, Mao G, Tian J, Jianchu M (2017) Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses' vector Aedes albopictus mosquito and its histopathological analysis. Art Cell Nanomed Biotech 46(6):1171–1179
- 139.Sharma V, Kaushik S, Pandit P, Dhull D, Yadav JP, Kaushik S (2019) Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. App Microbio Biotech 103:881–891
- 140.Bekele AZ, Gokulan K, Williams KM, Khare S (2016) Dose and size-AU2 c dependent antiviral effects of silver nanoparticles on feline calicivirus, a human norovirus surrogate. Foodbor Patho Dis 13(5):239–244
- 141.El-Mohamady RS, Ghattas TA, Zawrah MF, Abd El-Hafeiz YGM (2018) Inhibitory effect of silver nanoparticles on bovine herpesvirus-1. Int J Vet Sci Med 6:296–300
- 142.Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M (2013) Antiviral activity of myco-synthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303–4314.
- 143.Loo YY, Rukayadi Y, Nor-Khaizura MAR, Kuan CH, Chieng BW, Nishibuchi M. *In vitro* antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Frontiers Microbiology, 2018:9:1555.
- 144. Alharbi FA, Alarfaj AA. Green synthesis of silver nanoparticles from Neurada procumbens and its antibacterial activity against multi-drug resistant microbial pathogens. Journal of King Saud University Science, 2020:32:1346-1352.
- 145.Ruiz-Baltazar AJ, Reyes-Lopez SY, Larranaga D, Estévez M, Perez R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results Physics, 2017:7:2639–2643.
- 146.Siddiqi KS, Rashid M, Rahman A, Husen A, Rehman S. Biogenic fabrication and characterization of silver nanoparticles using aqueousethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomaterials Research, 2018:22:1–9.
- 147. Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti-bacterial activity. Indian Crops Production, 2014:52:562–566
- 148.Yee N, Benning LG, Phoenix VR, Ferris FG. Characterization of metalcyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 2004;38:775-82. doi: 10.1021/es0346680, PMID 14968864
- 149. Padmini E, Meenakshi N: Upregulation of HSP70 extends cytoprotection to fish brain under xenobiotic stress. Journal of Fisheries Science 2016;Vol 11:11-20.
- 150.Othman AM, Elsayed MA, Al- AM. alakocy NG, Hassan MM, Elshafei Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in di_erent biological activities. Journal of Genetics Engineering Biotechnology, 2019:17:08–21.
- 151.Bagyalakshmi J, Haritha H. Green synthesis and characterization of silver nanoparticles using Pterocarpus marsupium and assessment of its in vitro antidiabetic activity. American Journal of Advanced Drug Delivery 2017:5:118–130.

152.