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Abstract -This project proposes a novel approach to
assess the Remaining Useful Life (RUL) of lithium-ion
batteries by employing a hybrid model combining
Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks. The CNN extracts spatial
features from battery data, while the LSTM captures
temporal dependencies, leading to more accurate RUL
predictions. This method aims to improve predictive
maintenance and battery management by providing
precise estimates of battery health and longevity.

The objective is to enhance predictive maintenance
strategies and improve battery management systems by
accurately forecasting battery degradation. By utilizing
CNN for feature extraction and LSTM for sequence
prediction, the proposed method aims to capture both
spatial and temporal patterns in battery performance data.
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1.INTRODUCTION

As lithium-ion batteries become increasingly integral to
modern technology, from powering electric vehicles to
enabling portable electronics, accurate prediction of their
Remaining Useful Life (RUL) has become a pressing
challenge. Effective RUL assessment is vital for optimizing
battery performance, ensuring safety, and reducing
operational costs. Traditional methods often fall short in
capturing the complex degradation patterns of batteries,
necessitating more sophisticated approaches. This
research addresses this gap by proposing a hybrid model
that combines Convolutional Neural Networks (CNN) with
Long Short-Term Memory (LSTM) networks. The CNN is
adept at extracting relevant features from the raw battery
data, such as voltage and current profiles, which are crucial
for understanding battery health. Meanwhile, the LSTM
network excels at modelling temporal dependencies,
allowing for accurate prediction of future battery
performance based on historical data.

By integrating these two powerful techniques, this study
aims to provide a robust framework for RUL estimation,
improving the accuracy of predictive maintenance

strategies and enabling more effective battery
management. The proposed approach not only advances
the state of the art in battery health monitoring but also
offers practical benefits for extending battery life and

enhancing the reliability of battery-dependent systems.
1.1 Aim

The aim of this research is to develop a robust method for
predicting the Remaining Useful Life (RUL) of lithium-ion
batteries by integrating Convolutional Neural Networks
(CNN) with Long Short-Term Memory (LSTM) networks.
This hybrid approach seeks to enhance the accuracy of RUL
predictions by leveraging CNN for feature extraction and
LSTM for capturing temporal dependencies in battery
performance data. The goal is to improve predictive
maintenance and battery ~management strategies,
ultimately extending battery lifespan and optimizing
operational efficiency.

1.2 Objective

* Develop a hybrid CNN-LSTM model for accurate
prediction of the Remaining Useful Life (RUL) of
lithium-ion batteries by integrating spatial feature
extraction and temporal sequence analysis.

* Enhance predictive maintenance strategies by
improving the precision of RUL estimates to
optimize battery management and prevent
premature failures.

*  Analyze and validate model performance through
comprehensive testing on real-world battery
datasets to ensure reliability and effectiveness in
diverse operational conditions.

* Provide actionable insights for extending battery
lifespan and improving operational efficiency by
accurately forecasting battery degradation

patterns.
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2. LITERATURE SURVEY

2.1 Existing System

In existing, the prediction of a Lithium-ion battery’s lifetime
is crucial for maintaining safety and reliability. In addition,
it is utilized as an early warning system to prevent the
battery’s failure. Recent advance in Machine Learning (ML)
is an enabler for new data-driven estimation approaches. In
this paper, we suggest a combined approach, referred to as
the CNN-LSTM-DNN, which combines Convolutional Neural
Network (CNN), Long Short Term Memory (LSTM), and
Deep Neural Networks (DNN), for determining the battery’s
remaining operational lifespan and enhancing prediction
accuracy while maintaining acceptable execution time.

2.1.1 Disadvantages of Existing System

e In this case two datasets are used and low results
occurred for one datasets.
e Time consumption is high.

e Theoretical limits.
® [neffective  at capturing nonlinear

relationships in battery data.

complex,

e Extensive manual feature extraction required.

e Poor handling of temporal dependencies in battery
degradation data.

2.2 Proposed System

In this approach, a CALCE dataset was provided as input.
The data entries has sourced from the dataset storehouse.
We are required to take the four batteries such as CS2_33,
CS2_34,CS2_36 and CS2_37. Next, we need to implement the
data preprocessing step. In this step, we need to address
missing values to prevent incorrect predictions, and to drop
the unwanted columns because it is not required for our
process. Subsequently, we need to split a dataset into test
and train. The data is splitting relies on ratio. In train,
majority of the data’s will be there. In test, smaller portion
of the data’s will be there. Training portion is utilized to
evaluate the model and testing portion is intended to
predicting the model.

2.2.1 Advantages of Proposed System

* Enhanced Accuracy: The hybrid CNN-LSTM model
improves prediction precision by combining CNN'’s
ability to extract spatial features with LSTM'’s
capability to analyze temporal dependencies,
leading to more accurate Remaining Useful Life
(RUL) estimates.

* Improved Predictive Maintenance: By providing
reliable RUL forecasts, the system enables better
scheduling of maintenance activities, reducing
unexpected failures and optimizing battery
management.

*  Comprehensive Analysis: The integration of CNN
and LSTM allows for a thorough understanding of
both  short-term and long-term  battery
performance trends, offering a more complete
assessment of battery health.

* Adaptability to Various Conditions: The model is
designed to handle diverse operational
environments and battery types, making it versatile
and applicable to different applications and
scenarios.

* Extended Battery Lifespan: Accurate RUL
predictions help in proactive maintenance, which
can extend the overall lifespan of lithium-ion
batteries by preventing overuse and ensuring
timely interventions.

3. TECHNOLOGY OVERVIEW
3.1 CNN-LSTM hybrid method

In our project focused on predicting the remaining useful
life (RUL) of lithium-ion batteries, we employ a CNN-LSTM-
DNN hybrid method to enhance the accuracy and reliability
of our predictive models. Here’s an explanation of how each
component of this hybrid method contributes to our
approach:

Convolutional Neural Network (CNN):

* Feature ~Extraction: CNNs are adept at
automatically extracting spatial and temporal
features from multidimensional data such as
sensor readings over time.

* In our project: We utilize CNNs to preprocess and
extract meaningful features from the raw battery
performance data. This helps in capturing
important patterns and essential trends impacting
determining battery degradation.

Long Short-Term Memory Network (LSTM):

* Sequence Modelling: LSTMs are well-suited for
learning dependencies over time in sequential
data.

* Inour project: We implement LSTMs to model the
temporal dependencies in the battery degradation
process. This allows the model to understand how
past states of the battery impact its future
degradation, thereby improving the accuracy of
RUL predictions.
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Integration and Benefits:

*  Hybrid Approach: By combining CNNs for feature
extraction, LSTMs for sequence modelling, and
DNNs for prediction refinement, our hybrid
method leverages the strengths of each
architecture to overcome limitations and improve
overall prediction performance.

* Enhanced Accuracy: This integrated approach
allows us to encompass both spatial and temporal
dependencies in the battery data, leading has more
focused estimates of remaining battery life.

* Application: The CNN-LSTM-DNN hybrid method
is particularly effective in complex time-series data
scenarios like battery degradation, where
understanding both short-term and long-term
patterns is crucial for reliable predictions.

4.METHADOLOGY

The methodology for this project involves a multi-step
process combining data preprocessing, feature
extraction, model development, and evaluation.
Initially, data from lithium-ion batteries, including
voltage, current, and temperature readings, are
collected and preprocessed to ensure quality and
consistency. This step includes normalization, noise
reduction, and segmentation of time-series data into
manageable sequences.

Next, the Convolutional Neural Network (CNN) is
employed for feature extraction from the preprocessed
data. The CNN's convolutional layers are designed to
capture spatial patterns and anomalies in the battery
performance metrics, such as degradation trends and
operational irregularities. These extracted features are
then fed into the Long Short-Term Memory (LSTM)
network, which is adept at learning and predicting
temporal sequences. The LSTM network processes the
sequential data to model the time-dependent behavior
of battery degradation, thereby enhancing the
prediction of the Remaining Useful Life (RUL).

The combined CNN-LSTM model is trained using
historical battery data, with rigorous validation and
testing phases to assess its accuracy and robustness.
Performance metrics such as Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) are used to
evaluate the model’s predictive capabilities. Finally, the
model's effectiveness is demonstrated through
comparative analysis with existing methods,
showcasing its potential to offer superior RUL
predictions and improved battery management
solutions.

4.1 Implementation Modules
4.1.1 Data selection

* The input data was obtained from dataset
repository.

* Inour process, the CALCE dataset is used.

¢ In this dataset, we have to take four batteries such
as CS2_33,CS2_34, CS2_37 and CS2_38.

* In the absence of specific instructions, the
discharge cutoff voltage for these batteries was set
at2.7V.

*  All CS2 cells were assigned random numbers and
named accordingly, with each cell labelled as
'CS2_n', where 'n' represents the cell's number

e Al the CS2 cells experienced identical charging
profile which Followed a constant
current/constant voltage protocol with a constant
current rate of 0.5C until the voltage hit 4.2V, after
which 4.2V was held until the charging current
decreased to under 0.05A.

4.1.2 Data Preprocessing

» Data pre-processing is the process of removing the
unwanted data taken from the dataset.

*  Pre-processing data transformation tasks are
employed to convert the dataset into a format
suitable for machine learning.

* This phase includes dataset:cleaning to remove
irrelevant or corrupted data, enhancing both
accuracy and efficiency.

*  Missing data removal

* Encoding Categorical data

* Missing data removal: In this process, the null
values such as missing values and Nan values are
replaced by zero.

4.1.3 Data Splitting:

* Data is necessary during the machine learning
process to facilitate learning.

*  Along with training data, test data is necessary to
assess the algorithm's performance and determine
its effectiveness.

* In our approach, 70% of the input dataset was
allocated for training, while the remaining 30%
was used for testing.

» Data splitting consists of dividing available data
into two portions, usually for cross-validator
purposes.

* One segment pertaining to the data is utilized to
build a predictive model, while another segment is
used to assess the model's performance.
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4.1.4 Classification:

* In our process, we have to implement the deep
learning algorithms such as Convolutional Neural
Network (CNN) and Long Short Term Memory
(LSTM).

* In our process, to integrate the CNN and LSTM
hybrid model.

* LSTM is a type of artificial recurrent neural
network architecture employed in deep learning.

¢ Unlike standard feed forward neural networks,
LSTM has feedback connections.

* It is capable of handling not just individual data
points but also complete sequences of data.

* LSTM networks are well-suited
to  classifying, processing and  making
predictions grounded in time series data, as there
may be indeterminate lags between significant
events within the series.

* ACNN is adeep learning algorithm that processes
input images, assigns learnable weights and biases
to different features, and distinguishes between
various objects within the image.

4.1.5 Result Generation

The final result is derived from the comprehensive
classification and prediction. The effectiveness of this
proposed method is assessed using metrics such as:

¢« MAE: In statistics;, the mean absolute
error (MAE) is a way to assess the accuracy of a
given model. It is calculated as:

MAE = (1/n) * X|yi - xi|

Where:

e X: A Greek symbol that means

o yi: The observed value for the
ith observation

e xi: The estimated value for the ith
observation

e n: The total
observations

number of

e  MSE: The mean squared error (MSE) is a common
way to
performance. It is calculated as:

measure the prediction model

MSE = (1/n) * X (actual - prediction)?

Where:

e X - afancy symbol that means “sum”
e n-sample size

e actual - the actual data value

e forecast - the predicted data value

e RMSE: The root mean square error (RMSE) is a
metric that tells us how far apart our predicted
values are from our observed values in a model, on
average. It is calculated as:

RMSE = /[ £(Pi - 0i)2 / n]

Where:

e Yisafancy symbol that means “sum”

e  Piis the predicted value for the it observation

e Qi refers to the actual value for the ith observation.
e ndenotes the sample size

5. EXPERIMENTS

The experiments for this project are designed to validate
the effectiveness of the hybrid CNN-LSTM model for
predicting the Remaining Useful Life (RUL) of lithium-ion
batteries. The
conducted:

Data Collection and Preprocessing: High-quality battery
data is collected, including variables such as voltage,
current, and temperature. This data is then preprocessed to
handle missing values, normalize measurements, and

following experimental phases are

segment time-series data into fixed-length sequences
suitable for model input

Fig 5.1: Data selection
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Fig 5.2: Correlation Heatmap

In the RUL prediction project for Li-ion batteries using a
CNN-LSTM hybrid model, a correlation heatmap is crucial
for identifying relationships between key battery
parameters like voltage, current, and temperature. It helps
in selecting the most relevant features by highlighting
strong correlations, thereby reducing redundancy and
avoiding multicollinearity. This ensures that the model
focuses on the most impactful data, improving its ability to
capture critical patterns over time, leading to more

accurate and reliable predictions.
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Fig.5.3: Distribution of Cycle Index

In the context of predicting the Remaining Useful Life (RUL)
of Li-ion batteries using a CNN-LSTM hybrid model, the
"Distribution of Cycle Index" image visualizes how battery
cycles are spread across the dataset. This distribution helps
to understand the variation in battery degradation over
different cycles, which is essential for training the model. A
well-distributed cycle index ensures that the model learns
from a diverse set of battery conditions, improving its
generalization and accuracy in predicting RUL across
states

different battery and usage patterns. This

visualization is key to ensuring the model is robust and
applicable to real-world scenarios.
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Fig.5.4: Validation Graph

a validation graph plays a crucial role in evaluating the
model's performance. The graph typically plots the loss or
error metric (such as Mean Squared Error) against the
number of epochs during training for both the training and
validation datasets. This graph helps -in monitoring the
model's learning process and detecting overfitting or
underfitting. If the validation loss starts increasing while the
training loss continues to ‘decrease, it indicates overfitting,
meaning the model is learning patterns specific to the
training data but failing to generalize to new data. indicating
that the model is effectively learning from the data without
overfitting.
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Fig .5.5: Prediction vs actual for dataset 1
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The x-axis represents the actual values, while the y-axis
represents the predicted values made by the model. - Black
Diagonal Line: This line represents the ideal scenario
where the predicted values perfectly match the actual
values (i.e., where "Predicted = Actual’). If all points lie on
this line, it indicates a perfect prediction. - Blue Dots: These
dots represent the actual data points, with their position on
the graph indicating how close the predicted values are to
the actual values. Interpretation: The graph shows that the
predicted values closely follow the actual values, as most
points lie near or on the black diagonal line. This indicates
that the hybrid model is performing well, with high
accuracy in predicting the RUL of the batteries. The small
deviations suggest minor prediction errors, but overall, the
model appears to be robust and reliable.

Performance metrics

Mean Absolute Error 8.7016695447645167

Mean Squared Error: 8.6855847518436563

Root Mean Squared Error: @.8

r squared:

zax_poolingld (MaxPoolingiD)

Ists 1 (LSTM)

t 1 (Drooout)

dense {Densz)

Fig.5.7: Model Architecture Summary
8. CONCLUSIONS

The Remaining Useful Life (RUL) assessment of lithium-ion
batteries using the CNN-LSTM-DNN hybrid method
represents a significant battery
management technology. By integrating real-time data

advancement in

processing, advanced machine learning techniques, and
user-friendly interfaces, this system delivers highly precise
and actionable predictions. Future enhancements, such as

improved visualization tools, expanded compatibility, and
robust alerting systems, will further enhance its utility and
reliability. Moreover, incorporating cloud computing and
IoT integration will streamline data processing and
analysis, ensuring faster and more dependable outcomes.
These improvements will make the RUL assessment system
an indispensable tool for various industries, contributing to
more efficient and proactive battery management.
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