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Abstract -This project proposes a novel approach to 

assess the Remaining Useful Life (RUL) of lithium-ion 

batteries by employing a hybrid model combining 

Convolutional Neural Networks (CNN) and Long Short-

Term Memory (LSTM) networks. The CNN extracts spatial 

features from battery data, while the LSTM captures 

temporal dependencies, leading to more accurate RUL 

predictions. This method aims to improve predictive 

maintenance and battery management by providing 

precise estimates of battery health and longevity. 

The objective is to enhance predictive maintenance 

strategies and improve battery management systems by 

accurately forecasting battery degradation. By utilizing 

CNN for feature extraction and LSTM for sequence 

prediction, the proposed method aims to capture both 

spatial and temporal patterns in battery performance data. 

 
Key Words: Lithium-ion batteries, Remaining Useful 

Life, CNN-LSTM hybrid, Predictive maintenance. 

 

1.INTRODUCTION  
 

As lithium-ion batteries become increasingly integral to 

modern technology, from powering electric vehicles to 

enabling portable electronics, accurate prediction of their 

Remaining Useful Life (RUL) has become a pressing 

challenge. Effective RUL assessment is vital for optimizing 

battery performance, ensuring safety, and reducing 

operational costs. Traditional methods often fall short in 

capturing the complex degradation patterns of batteries, 

necessitating more sophisticated approaches. This 

research addresses this gap by proposing a hybrid model 

that combines Convolutional Neural Networks (CNN) with 

Long Short-Term Memory (LSTM) networks. The CNN is 

adept at extracting relevant features from the raw battery 

data, such as voltage and current profiles, which are crucial 

for understanding battery health. Meanwhile, the LSTM 

network excels at modelling temporal dependencies, 

allowing for accurate prediction of future battery 

performance based on historical data.  

By integrating these two powerful techniques, this study 

aims to provide a robust framework for RUL estimation, 

improving the accuracy of predictive maintenance 

strategies and enabling more effective battery 

management. The proposed approach not only advances 

the state of the art in battery health monitoring but also 

offers practical benefits for extending battery life and 

enhancing the reliability of battery-dependent systems. 

 

1.1 Aim 
 

The aim of this research is to develop a robust method for 

predicting the Remaining Useful Life (RUL) of lithium-ion 

batteries by integrating Convolutional Neural Networks 

(CNN) with Long Short-Term Memory (LSTM) networks. 

This hybrid approach seeks to enhance the accuracy of RUL 

predictions by leveraging CNN for feature extraction and 

LSTM for capturing temporal dependencies in battery 

performance data. The goal is to improve predictive 

maintenance and battery management strategies, 

ultimately extending battery lifespan and optimizing 

operational efficiency. 

 

 

1.2 Objective 
 

• Develop a hybrid CNN-LSTM model for accurate 

prediction of the Remaining Useful Life (RUL) of 

lithium-ion batteries by integrating spatial feature 

extraction and temporal sequence analysis. 

• Enhance predictive maintenance strategies by 

improving the precision of RUL estimates to 

optimize battery management and prevent 

premature failures. 

•  Analyze and validate model performance through 

comprehensive testing on real-world battery 

datasets to ensure reliability and effectiveness in 

diverse operational conditions. 

• Provide actionable insights for extending battery 

lifespan and improving operational efficiency by 

accurately forecasting battery degradation 

patterns. 
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2. LITERATURE SURVEY 
 

2.1 Existing System 
 

In existing, the prediction of a Lithium-ion battery’s lifetime 

is crucial for maintaining safety and reliability. In addition, 

it is utilized as an early warning system to prevent the 

battery’s failure. Recent advance in Machine Learning (ML) 

is an enabler for new data-driven estimation approaches. In 

this paper, we suggest a combined approach, referred to as 

the CNN-LSTM-DNN, which combines Convolutional Neural 

Network (CNN), Long Short Term Memory (LSTM), and 

Deep Neural Networks (DNN), for determining the battery’s 

remaining operational lifespan and enhancing prediction 

accuracy while maintaining acceptable execution time. 

2.1.1   Disadvantages of Existing System 

 In this case two datasets are used and low results 

occurred for one datasets. 

 Time consumption is high. 

 Theoretical limits. 

 Ineffective at capturing complex, nonlinear 

relationships in battery data. 

 Extensive manual feature extraction required. 

 Poor handling of temporal dependencies in battery 

degradation data. 

 

 

2.2   Proposed System 

In this approach, a CALCE dataset was provided as input. 

The data entries has sourced from the dataset storehouse. 

We are required to take the four batteries such as CS2_33, 

CS2_34, CS2_36 and CS2_37. Next, we need to implement the 

data preprocessing step. In this step, we need to address 

missing values to prevent incorrect predictions, and to drop 

the unwanted columns because it is not required for our 

process. Subsequently, we need to split a dataset into test 

and train. The data is splitting relies on ratio. In train, 

majority of the data’s will be there. In test, smaller portion 

of the data’s will be there. Training portion is utilized to 

evaluate the model and testing portion is intended to 

predicting the model. 

2.2.1   Advantages of Proposed System 

• Enhanced Accuracy: The hybrid CNN-LSTM model 

improves prediction precision by combining CNN’s 

ability to extract spatial features with LSTM’s 

capability to analyze temporal dependencies, 

leading to more accurate Remaining Useful Life 

(RUL) estimates. 

• Improved Predictive Maintenance: By providing 

reliable RUL forecasts, the system enables better 

scheduling of maintenance activities, reducing 

unexpected failures and optimizing battery 

management. 

• Comprehensive Analysis: The integration of CNN 

and LSTM allows for a thorough understanding of 

both short-term and long-term battery 

performance trends, offering a more complete 

assessment of battery health. 

• Adaptability to Various Conditions: The model is 

designed to handle diverse operational 

environments and battery types, making it versatile 

and applicable to different applications and 

scenarios. 

• Extended Battery Lifespan: Accurate RUL 

predictions help in proactive maintenance, which 

can extend the overall lifespan of lithium-ion 

batteries by preventing overuse and ensuring 

timely interventions. 

 

 

3.  TECHNOLOGY OVERVIEW  

3.1   CNN-LSTM hybrid method 

In our project focused on predicting the remaining useful 

life (RUL) of lithium-ion batteries, we employ a CNN-LSTM-

DNN hybrid method to enhance the accuracy and reliability 

of our predictive models. Here’s an explanation of how each 

component of this hybrid method contributes to our 

approach: 

 

Convolutional Neural Network (CNN): 

• Feature Extraction: CNNs are adept at 

automatically extracting spatial and temporal 

features from multidimensional data such as 

sensor readings over time. 

• In our project: We utilize CNNs to preprocess and 

extract meaningful features from the raw battery 

performance data. This helps in capturing 

important patterns and essential trends impacting 

determining battery degradation. 

Long Short-Term Memory Network (LSTM): 

• Sequence Modelling: LSTMs are well-suited for 

learning dependencies over time in sequential 

data. 

• In our project: We implement LSTMs to model the 

temporal dependencies in the battery degradation 

process. This allows the model to understand how 

past states of the battery impact its future 

degradation, thereby improving the accuracy of 

RUL predictions. 
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 Integration and Benefits: 

• Hybrid Approach: By combining CNNs for feature 

extraction, LSTMs for sequence modelling, and 

DNNs for prediction refinement, our hybrid 

method leverages the strengths of each 

architecture to overcome limitations and improve 

overall prediction performance. 

• Enhanced Accuracy: This integrated approach 

allows us to encompass both spatial and temporal 

dependencies in the battery data, leading has more 

focused estimates of remaining battery life. 

• Application: The CNN-LSTM-DNN hybrid method 

is particularly effective in complex time-series data 

scenarios like battery degradation, where 

understanding both short-term and long-term 

patterns is crucial for reliable predictions. 

4.METHADOLOGY 

The methodology for this project involves a multi-step 

process combining data preprocessing, feature 

extraction, model development, and evaluation. 

Initially, data from lithium-ion batteries, including 

voltage, current, and temperature readings, are 

collected and preprocessed to ensure quality and 

consistency. This step includes normalization, noise 

reduction, and segmentation of time-series data into 

manageable sequences.  

Next, the Convolutional Neural Network (CNN) is 

employed for feature extraction from the preprocessed 

data. The CNN's convolutional layers are designed to 

capture spatial patterns and anomalies in the battery 

performance metrics, such as degradation trends and 

operational irregularities. These extracted features are 

then fed into the Long Short-Term Memory (LSTM) 

network, which is adept at learning and predicting 

temporal sequences. The LSTM network processes the 

sequential data to model the time-dependent behavior 

of battery degradation, thereby enhancing the 

prediction of the Remaining Useful Life (RUL). 

The combined CNN-LSTM model is trained using 

historical battery data, with rigorous validation and 

testing phases to assess its accuracy and robustness. 

Performance metrics such as Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE) are used to 

evaluate the model’s predictive capabilities. Finally, the 

model's effectiveness is demonstrated through 

comparative analysis with existing methods, 

showcasing its potential to offer superior RUL 

predictions and improved battery management 

solutions. 

 

 

4.1 Implementation Modules 

4.1.1 Data selection 

• The input data was obtained from dataset 

repository.  

• In our process, the CALCE dataset is used. 

• In this dataset, we have to take four batteries such 

as CS2_33, CS2_34, CS2_37 and CS2_38. 

• In the absence of specific instructions, the 

discharge cutoff voltage for these batteries was set 

at 2.7V. 

• All CS2 cells were assigned random numbers and 

named accordingly, with each cell labelled as 

'CS2_n', where 'n' represents the cell's number 

• All the CS2 cells experienced identical charging 

profile which Followed a constant 

current/constant voltage protocol with a constant 

current rate of 0.5C until the voltage hit 4.2V, after 

which 4.2V was held until the charging current 

decreased to under 0.05A. 

 

 

4.1.2   Data Preprocessing 

 

• Data pre-processing is the process of removing the 

unwanted data taken from the dataset.  

• Pre-processing data transformation tasks are 

employed to convert the dataset into a format 

suitable for machine learning. 

• This phase includes dataset cleaning to remove 

irrelevant or corrupted data, enhancing both 

accuracy and efficiency. 

• Missing data removal 

• Encoding Categorical data 

• Missing data removal: In this process, the null 

values such as missing values and Nan values are 

replaced by zero. 

4.1.3 Data Splitting: 

• Data is necessary during the machine learning 

process to facilitate learning. 

• Along with training data, test data is necessary to 

assess the algorithm's performance and determine 

its effectiveness.  

• In our approach, 70% of the input dataset was 

allocated for training, while the remaining 30% 

was used for testing. 

• Data splitting consists of dividing available data 

into two portions, usually for cross-validator 

purposes.   

• One segment pertaining to the data is utilized to 

build a predictive model, while another segment is 

used to assess the model's performance. 
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4.1.4 Classification: 

• In our process, we have to implement the deep 

learning algorithms such as Convolutional Neural 

Network (CNN) and Long Short Term Memory 

(LSTM). 

• In our process, to integrate the CNN and LSTM 

hybrid model. 

• LSTM is a type of artificial recurrent neural 

network architecture employed in deep learning. 

• Unlike standard feed forward neural networks, 

LSTM has feedback connections.  

• It is capable of handling not just individual data 

points but also complete sequences of data. 

• LSTM networks are well-suited 

to classifying, processing and making 

predictions grounded in time series data, as there 

may be indeterminate lags between significant 

events within the series. 

• A CNN is a deep learning algorithm that processes 

input images, assigns learnable weights and biases 

to different features, and distinguishes between 

various objects within the image. 

 

4.1.5   Result Generation 

The final result is derived from the comprehensive 

classification and prediction. The effectiveness of this 

proposed method is assessed using metrics such as: 

• MAE: In statistics, the mean absolute 

error (MAE)    is a way to assess the accuracy of a 

given model. It is calculated as: 

 

 

Where: 

 Σ: A Greek symbol that means 

“sum” 

 yi: The observed value for the 

ith observation 

 xi: The estimated value for the ith 

observation 

 n: The total number of 

observations 

 MSE: The mean squared error (MSE) is a common 

way to measure the prediction model 

performance. It is calculated as: 

 

Where: 

 Σ – a fancy symbol that means “sum” 

 n – sample size 

 actual – the actual data value 

 forecast – the predicted data value 

 

 RMSE: The root mean square error (RMSE) is a 

metric that tells us how far apart our predicted 

values are from our observed values in a model, on 

average. It is calculated as: 

 

Where: 

 Σ is a fancy symbol that means “sum” 

 Pi is the predicted value for the ith observation 

 Oi refers to the actual value for the ith observation. 

 n denotes the sample size 

 

5. EXPERIMENTS 
 

The experiments for this project are designed to validate 

the effectiveness of the hybrid CNN-LSTM model for 

predicting the Remaining Useful Life (RUL) of lithium-ion 

batteries. The following experimental phases are 

conducted: 

Data Collection and Preprocessing: High-quality battery 

data is collected, including variables such as voltage, 

current, and temperature. This data is then preprocessed to 

handle missing values, normalize measurements, and 

segment time-series data into fixed-length sequences 

suitable for model input 

 

 

Fig 5.1: Data selection 

MAE = (1/n) * Σ|yi – xi| 

 

MSE = (1/n) * Σ (actual – prediction)2 

RMSE = √[ Σ(Pi – Oi)2 / n] 
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Fig 5.2: Correlation Heatmap 

 

In the RUL prediction project for Li-ion batteries using a 

CNN-LSTM hybrid model, a correlation heatmap is crucial 

for identifying relationships between key battery 

parameters like voltage, current, and temperature. It helps 

in selecting the most relevant features by highlighting 

strong correlations, thereby reducing redundancy and 

avoiding multicollinearity. This ensures that the model 

focuses on the most impactful data, improving its ability to 

capture critical patterns over time, leading to more 

accurate and reliable predictions.  

 

 

 

Fig.5.3: Distribution of Cycle Index 

 

In the context of predicting the Remaining Useful Life (RUL) 

of Li-ion batteries using a CNN-LSTM hybrid model, the 

"Distribution of Cycle Index" image visualizes how battery 

cycles are spread across the dataset. This distribution helps 

to understand the variation in battery degradation over 

different cycles, which is essential for training the model. A 

well-distributed cycle index ensures that the model learns 

from a diverse set of battery conditions, improving its 

generalization and accuracy in predicting RUL across 

different battery states and usage patterns. This 

visualization is key to ensuring the model is robust and 

applicable to real-world scenarios. 

 

 

Fig.5.4: Validation Graph 

 a validation graph plays a crucial role in evaluating the 

model's performance. The graph typically plots the loss or 

error metric (such as Mean Squared Error) against the 

number of epochs during training for both the training and 

validation datasets. This graph helps in monitoring the 

model's learning process and detecting overfitting or 

underfitting. If the validation loss starts increasing while the 

training loss continues to decrease, it indicates overfitting, 

meaning the model is learning patterns specific to the 

training data but failing to generalize to new data. indicating 

that the model is effectively learning from the data without 

overfitting. 

  
 

Fig .5.5: Prediction vs actual for dataset 1 
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The x-axis represents the actual values, while the y-axis 

represents the predicted values made by the model. - Black 

Diagonal Line: This line represents the ideal scenario 

where the predicted values perfectly match the actual 

values (i.e., where `Predicted = Actual`). If all points lie on 

this line, it indicates a perfect prediction. - Blue Dots: These 

dots represent the actual data points, with their position on 

the graph indicating how close the predicted values are to 

the actual values. Interpretation: The graph shows that the 

predicted values closely follow the actual values, as most 

points lie near or on the black diagonal line. This indicates 

that the hybrid model is performing well, with high 

accuracy in predicting the RUL of the batteries. The small 

deviations suggest minor prediction errors, but overall, the 

model appears to be robust and reliable. 

 

 
 

Fig.5.6:Performance metrix 

 

                                                                          

 
 

Fig.5.7: Model Architecture Summary 

 

8. CONCLUSIONS 

 

The Remaining Useful Life (RUL) assessment of lithium-ion 

batteries using the CNN-LSTM-DNN hybrid method 

represents a significant advancement in battery 

management technology. By integrating real-time data 

processing, advanced machine learning techniques, and 

user-friendly interfaces, this system delivers highly precise 

and actionable predictions. Future enhancements, such as 

improved visualization tools, expanded compatibility, and 

robust alerting systems, will further enhance its utility and 

reliability. Moreover, incorporating cloud computing and 

IoT integration will streamline data processing and 

analysis, ensuring faster and more dependable outcomes. 

These improvements will make the RUL assessment system 

an indispensable tool for various industries, contributing to 

more efficient and proactive battery management. 
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