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Abstract:  This research paper focuses mainly on the analysis, development and investigation of numerical 

methods for solving the further generalized time- fractional diffusion equation, a mathematical model with 

diverse applications in the fields of physics and engineering. A hybrid method combining finite difference 

and spectral techniques for representing the spatial and temporal domains, addressing the challenges 

presented by fractional –order derivatives and nonlinearity is suggested. Analysis of convergence, stability, 

and asymptotic behavior of the proposed numerical approach is the main target. 

       By the first theorem, the convergence order of the proposed numerical method which shows  that the 

numerical solution converges to the exact solution with a specified order as the spatial and temporal 

discretization parameters approach zero is established. The stability , boundedness, and error analysis of the 

method, providing insights into the method’s behavior across a range of parameters is directed  by the second 

theorem. The third theorem analyses  the  asymptotic convergence, stability in time, and uniform 

convergence in time, shedding light on the long-term behaviour and accuracy of the numerical solution. 

This exploration of asymptotic convergence, stability in time and uniform convergence in time has further 

strengthened  the credibility of the proposed numerical approach. The proposed numerical method provides 

stability and converges accurately to the exact solution, providing a robust framework for solving further 

generalized time- fractional diffusion equations. The finding results supply to the knowledge and 

development of effective computational methods for a broach class of fractional partial differential 

equations which will cover the way for applications in different  scientific fields. Thus this my critical 

analysis work gives foundation for advancing the understanding and application of numerical techniques in 

the context of time- fractional diffusion equations. An extensive analysis of stability properties of linear 

systems of fractional differential equations are provided. 

Keywords:  Asymptotic behavior, stability, time- fractional diffusion, Fractional Hybrid numerical methods, 

error analysis, robust framework, convergence analysis, spectral methods, computational efficiency, further 

generalized models. 
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[1]  Introduction  

Fractional calculus , a branch of mathematical analysis dealing mainly with derivatives and integrals of non-

integer order, has achieved increasing attention in various scientific disciplines. Conventionally , integer-

order calculus has been the keystone of mathematical modelling, but fractional calculus furnishes a more 

flexible  structure, permitting the inclusion of non-local and memory – dependent effects in the modelling 

procedure. The concept of of fractional derivatives precedes to the work of Leibniz, the great mathematician 

introducing the concept of non-integer order derivatives in the 17th century. But it is only in recent decades 

that it has found common and widespread applications in science and engineering , in other various fields. 

Anomalous diffusion , characterized by non- Gaussian probability distributions and non-linear scaling of 

mean squared displacements, is the particular useful area of fractional calculus.  

          The classical diffusion equation which is obtained from the standard Brownian motion, assumes a 

linear relationship between time and mean squared displacement. But many real- world processes display 

anomalous diffusion, and fractional calculus supply a more correct representation of these pattern. The 

inclusion of fractional derivatives in diffusion models permits for the description of complex behaviours, 

like sub diffusion and super diffusion , which cannot be reproduced by  traditional integer-order derivatives. 

           Many researchers have contributed to the development and application of fractional calculus in the 

background of anomalous diffusion. The work of [11] provides a thorough introduction to fractional 

calculus, while [10] analyses its applications in physics, emphasizing the role of fractional derivatives in 

explaining complex systems. [4] develops  rigid framework for the study of asymptotic behavior of solution 

to FDEs by two approaches-Lyapunov’s first and second method. In [2], Stability properties are presented 

by the systems of fractional- order differential equations. 

           In the field of fractional anomalous diffusion equations, [9] suggested an important model including 

fractional derivatives to describe anomalous diffusion processes. Also [1] extended this framework for 

considering fractional sub diffusion and super diffusion thoroughly.  In this paper, the important of fractional 

calculus in the modelling of anomalous diffusion is analyses. The role of fractional derivatives in improving 

the  accuracy of diffusion models and taking the complexities of anomalous diffusion phenomena is to be 

highlighted. The time- fractional diffusion equation is a powerful technique for modelling anomalous 

diffusion processes, mainly exhibiting non-local time-related behaviours. Contrary to  the classical diffusion 

equation, the time- fractional version  introduces fractional derivatives in the time domain, permitting for a 

better accurate description of pattern with memory- dependent characteristics. 

         The common form of the one-dimensional time- fractional diffusion equation is given by  [7]: 

                          
𝜕𝛼𝑢

𝜕𝑡𝛼
 = D 

𝜕2𝑢

𝜕𝑥2
 . 

         Where  u (x,t) represents the concentration or density of the diffusion quantity, D is the diffusion 

coefficient, 𝛼 ∈ (0,1] is the fractional order of the time derivative. Here the parameter 𝛼 controls the degree 

of memory or non-locality in the diffusion process. The fractional derivative in the time domain initiates 

memory effects, allowing the diffusion process for exhibiting subdiffusion or superdiffusion behaviors.  

When 𝛼 = 1, the equation reduces to the classical diffusion equation, representing standard diffusive 

behavior. An extensive analysis of stability properties of liner systems of FDEs hs been provided and this 

analysis is useful for describing the asymptotic  behaviour of physical systems. 

 

Definition: A differential equation is said asymptotic stability when the solutions for any initial conditions, 

are bounded and eventually approach zero. The initial conditions of the equation do not effect the end 

behaviour. 

 Stability means that the solution of the DE will not leave the 𝜖- ball. But asymptotic stability means that 

the solution does not leave the 𝜖- ball and goes to the origin. 
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In [2], Stability properties are presented by the systems of fractional- order differential equations differing 

in a substantial way from the systems of integer order. In this paper, a detailed analysis of the stability of 

linear systems of fractional  D.Es with Caputo derivative is proposed. The investigation is moved towards 

multi- order systems starting from the Matignon’s results on stability of simple- order systems.  

The investigation of stability properties plays a prominent role in the qualitative theory of fractional order 

systems. Necessary and sufficient conditions for the asymptotic stability and instability of the fractional-

order system are  obtained in terms of the main diagonal elements and the determinant of the system’s matrix 

as well as the Caputo derivatives.  

Multi- term fractional- order differential equations and their qualitative properties are connected to multi-

order systems of fractional D.Es. Detailed explanation about Mittag-Leffler function, its derivatives and 

corresponding asymptotic behaviour is provided in section 3  while the stabilities of single- order systems 

of FDEs is investigated in section 4 . Stability analysis of multi-order systems is discussed in section 5. 

For n-dimensional fractional-order systems with Caputo derivatives, 

              C𝐷𝑞𝑦(𝑡) = f(t,q) =  [

𝑐𝐷𝑞1    𝑦1(𝑡)

𝑐𝐷𝑞1    𝑦2(𝑡)
………… .

𝑐𝐷𝑞𝑛    𝑦𝑛(𝑡)

]  

 Q = (q1, q2, q3, ……….,qn) ∈ [0,1]n…………………….. (i) 

  F: [0, ∞) x ℝ𝑛 → ℝ𝑛 is a continuous function on its domain and   C𝐷𝑞𝑦(𝑡) 
 denotes the application of the 

Caputo derivative of order  0 < 𝑞𝑖 ≤1 to each component yi(t) of y(t).  

Definition: Let 𝛼 > 0  and denote by 𝜑(t, y0) the unique solution of (i) satisfying the initial condition y(0) = 

y0 𝜖 ℝn. Then 

 (a) the trivial  solution of (i) is called stable if for any ℰ > 0 there exists  𝛿 = 𝛿(ℰ) > 0 such that , for every 

y0 𝜖 ℝn satisfying ‖𝑦0‖ < 𝛿, we have ‖𝜑(𝑡, 𝑦0‖ ≤ 𝜀 for any t ≥ 0;  

(b) the trivial solution of (i) is called asymptotically stable if it is stable and there exists 𝜌 >0 such that  

lim
𝑡→∞

𝜑(𝑡, 𝑦0 ) = 0 for ‖𝑦0‖ < 𝜌; 

(c)the trivial solution of (i) is called  𝒪(𝑡−∞)−asymptotically stable if it is stable and there exists 𝜌 > 0 such 

that , for any  ‖𝑦0‖ < 𝜌, we have  ‖𝜑(𝑡, 𝑦0 )‖ = 𝒪(𝑡−∞) as t → ∞. 

Remark : In the particular case of linear systems of fractional-order differential equations  with constant 

coefficients, the system will be stable, asymptotically stable and unstable only when its trivial solution is 

stable, asymptotically stable and  unstable. 

Mittag-Leffler Functions and Asymptotically Behavior:  

        𝐸𝛼,𝛽 (z) = ∑
𝑧𝑘

Γ(𝛼𝑘+ 𝛽)

∞
𝑘=0  , 𝛼 > 0 , z 𝜖 ℂ  where  Γ(x) is the Eluer – Gamma function. 

Stability of Linear System of Single- Order FDEs. :  

For the linear system of Caputo- type fractional order differential equations of the same fractional order. 

     CDq y(t) = Ay(t)………………………………………………………….  (2) 

  with q 𝜖 (0,1] and  A 𝜖 ℝ𝑛𝑥𝑛, coupled with the initial condition  y(0) = y0 𝜖 ℝ𝑛𝑥𝑛. 

Proposition: The linear system (2) is asymptotically stable only when 𝜎(A) ⊂ Sq 

 Where  𝜎(A) denotes the spectrum of the matrix A and Sq = { 𝜆 𝜖 ℂ: sq ≠ 𝜆, ∀ ℜ(s) ≥ 0} 
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 Considering a non singular matrix P 𝜖 ℂ𝑛𝑥𝑛 such that  

   A = PJ 𝑃−1, J = [

𝐽1    0      0
0      𝐽2     0
:        ∶      ∶

0       0      𝐽𝑝

]  where  Jλ , k = 1,2,3,…….,p  are Jordan blocks  

                                      Jk = 

[
 
 
 
 
𝜆𝑘    1    0… .0    0
0     𝜆𝑘    1… .0    0
:   ∶   ∶ …… . .:   ∶

0    0    0… . 𝜆𝑘    1
0    0    0… .0    𝜆𝑘 ]

 
 
 
 

  

Theorem (1): 

 The linear system (2) is (i)   𝒪 (𝑡−𝑞) – asymptotically stable if and only if  

 𝜎(A) ⊂ Sq = {𝜆𝜖ℂ ∶  |arg(𝜆) >  
𝑞𝜋

2 
|} 

 (ii) stable  if and only if  𝜎(A) ⊂ 𝑆𝑞̅ and the eigen values of A satisfying  |arg (𝜆)| = 
𝑞𝜋

2
  have the index 1. 

Stability of Linear Multi- Order Systems of FDEs:  

 CDq y(t) = Ay(t), …………………………………(3) 

 Where  A 𝜖 ℝ𝑛𝑥𝑛 , q = ( q1, q2,……,qn) 𝜖(0,1]𝑛. 

Theorem (2):   

The multi= order system (3)  is asymptotically stable if all the roots of the characteristic equation |∆(𝑠)| = 

0 have the negative real parts. 

In [4], for the study of asymptotic behaviour of solution to FDEs by two approaches a rigid framework is 

developed- Lyapunov’s first method and Lyapunov’s second method. 

 (i) Lyapunov’s  first method( reduction method): Reducing the original problem to a much simpler one- 

linearization of the nonlinear equation near an equilibrium point is the main feature.  

(ii) Lyapunov’s second method( direct method): In this method, the action of the system on Laypunov 

function is discussed to deduct the asymptotic properties of the system without solving the system’s 

fractional DEs explicitly.  

Lyapunov’s first method for a FDE linearized around its equilibrium points is developed in section 4 while 

a Lyapunov’s second method for FDEs is developed in section 5. Some examples are presented to illustrate 

the theoretical results. A theorem on Mittag- Leffler stability by  Lyapunov’s second method is given with 

proof.  

   1.1  Relevance and Applications: 

The time- fractional diffusion equation is relevance in diverse scientific disciplines of insufficient standard 

diffusion models. Using fractional calculus [3] , biological systems , materials science and anomalous 

diffusion in porous media flow is often more accurately described .  

         The importance of the time- fractional diffusion equation is in the capacity of modelling processes 

with long –range memory effects, subdiffusion , and superdiffusion. Practical applications will cover the 

study of contaminant transport in groundwater and the dynamics of particles in heterogeneous environments. 

Research by [8] emphasizes the applicability of time- fractional diffusion equations in biological systems, 

displaying their ability for capturing complex dynamics with memory- dependent features. 
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        The analysis  of time- fractional diffusion equations ,described by the Caputo fractional derivative [3] 

, is critical in modelling various physical phenomena. The controlling equation for a one- dimensional time-

fractional diffusion process is  

                                         

                                   
𝜕𝛼𝑢(𝑥 ,𝑡)

𝜕𝑡𝛼  = D 
𝜕2𝑢(𝑥 ,𝑡)

𝜕𝑥2  . 0 < 𝛼 ≤ 1,                                               (1.2)       Where u(x, t) 

represents the quantity of interest, D is the diffusion coefficient, and 𝛼 is the fractional order. 

2. Preliminary results: 

For understanding the challenges in solving time- fractional diffusion equations,  defining  the Caputo 

fractional derivative is required. 

                    
𝜕𝛼𝑢(𝑡)

𝜕𝑡𝛼  = 
1

Г (1−𝛼)
 ∫ (1 − 𝜏)−𝛼𝑡

0

𝜕𝑓(𝜏)

𝜕𝜏
 d𝜏,                                                  (2.1) 

where Г  is the gamma function.  

          The fractional Laplacian operator, denoted by  (- ∆)s, is another key element in fractional diffusion 

equations : 

                                     (- ∆)s u(x) = ℱ−1(|𝜉|2𝑠ℱ[𝑢(𝑥)]), 

 Where  ℱ is the Fourier transform. 

Research Problem 

The main research problem analysed in this work is the development of numerical methods which can 

accurately and efficiently solve time- fractional diffusion equations. Conventionally designed methods for 

integer-order diffusions equations are not directly applicable to fractional-order problems. As a result there 

is a critical gap in numerical methods modified specifically for time –fractional diffusion equations. The 

motivation for treating this research work is seemed to be originated from the growing necessity of time- 

fractional diffusion equations in diverse fields like physics, biology, and finance. Accurate reproduction of 

such pattern require specialized numerical methods which can handle non- local and non- Markovian nature 

of the fractional derivatives.  

Smith et al. [12]  suggested  a finite difference method that demonstrated promising results in terms of 

accuracy. Due to lack of efficiency , mainly for large – scale simulations, Jones and colleagues [6] introduced 

a spectral method showing improved efficiency but raising about accuracy in certain scenarios. Here the 

method supports recent advancements in computational mathematics taking into account the unique 

characteristics of time- fractional diffusion equations.  

3. Main Results 

For the convergence analysis the following problems are defined. 

Generalized Time- Fractional Diffusion Equation 

The generalized one- dimensional time- fractional diffusion equation is defined  by : 

         
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
  = D (

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
)
𝛽

+  𝛾 u(x, t),  0 < 𝛼 ≤ 1, 𝛽 > 0 , 𝛾 ≠ 0.                              (3.1)   

    Where D represents the diffusion coefficient and u(x,t) represents density or the concentration of the 

diffusing quantity. 
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Parameters involved in the above : 

                       U (x,t):  Unknown function representing the diffusion quantity. 

                        t: Time variable. 

                        x:  Spatial variable. 

                        D: Diffusion coefficient controlling spatial diffusion. 

                        𝛼: Fractional  order parameter for the time-fractional derivative. 

                        𝛽:  Exponent parameter modifying spatial diffusion. 

                        𝛾: Coefficient controlling the additional term.     

Meaning and Interpretation: 

1.Time-Fractional Derivative Term: The term   
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼    represents a fractional  derivative  

          of order 𝛼  with respect to time, introducing non-local and memory-dependent effects. 

2. Spatial Diffusion Term: The term    D(
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑥𝛼
)
𝛽

  represents spatial diffusion, with 𝛽  

         modifying the spatial diffusion operator.   

3. Additional Term: The term 𝛾𝑢(𝑥, 𝑡)  introduces an additional contribution to the evolut- 

         Ion , controlled by the coefficient  𝛾, representing external influences or sources. 

Physical Interpretation: The equation models the evolution of a diffusion quantity in one  

Spatial dimension with time-fractional derivative, spatial diffusion, and an additional term accounting for 

outside affects. 

Spectral- Finite Difference Method 

1.  ** Spatial Discretization ( Finite Difference):** - Discretize the spatial domain with N  

grid points and  ∆x spatial step size. 

2.  **Temporal Discretization (Spectral Method):**- Apply a spectral technique for discretizing the 

temporal domain. 

3. **Hybrid Approach:**- Combine spatial and temporal discretizations  to form a fully 

Discretized system. 

4.  **Numerical Solution:**- Iterate over time steps and spatial grid points to compute the numerical 

solution. 

Hybrid Spectoral – Finite Difference Method for Time- Fractional  Diffusion 

For the further generalized time-fractional diffusion equation: 

                          
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
  = D (

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
)
𝛽

 +  𝛾 u(x, t) 

         

1. ** Spatial Discretization ( Finite Difference):** - Discretizing  the spatial domain with N  

grid points and  ∆x spatial step size.- Using a second- order central finite difference for the spatial 

derivative :   

                                   
𝜕2𝑢

𝜕𝑡2  ≈  
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

∆𝑥2   
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      2. **Temporal Discretization (Spectral Method):**-Fourier transform is applied to trans- 

                form the equation into the frequency domain : 

                                              ℱ (
𝜕𝛼𝑢

𝜕𝑡𝛼) = Dℱ ((
𝜕2𝑢

𝜕𝑥2)
𝛽

 ) + 𝛾 ℱ(u) 

              -Using a spectral method for discretizing the temporal domain. 

      3. **Hybrid Approach:**- Spatial and temporal discretizations are combined  to form a  

            fully  discretized system. 

4. **Numerical Solution:**- Iterating  over time steps and spatial grid points to   compute the numerical 

solution. This is performed for the generalized time- fractional diffusion equation with specific 

parameter values: 

 

                                
𝜕0.5𝑢(𝑥,𝑡)

𝜕𝑡0.5
 = 

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
  + 0.1 u(x, t) 

        
               Using  a hybrid spectral- finite difference method 

 

                                                 

               

 

 

 

 

 

 

 Table 1:   Numerical  Solution of the Time- Fractional Diffusion Equation. 

Theorem: Convergence of the Proposed Numerical Method for the Further Generalized Equation 

For the one- dimensional further generalized time- fractional diffusion equation given as:  

                                                                               (
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 ) = D(
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 )𝛽 + 𝛾u(x,t),   

With  0 < 𝛼 ≤ 1, 𝛽 > 0, and 𝛾 ≠ 0. 

Let u(x,t) be the solution of this further generalized equation with the proposed numerical method , 

combining finite difference and spectral techniques for discretizing the spatial and temporal domains. When 

the spatial and temporal discretization parameters are taken approximately, the numerical solution 𝑢ℎ(𝑥, 𝑡) 

converges to the exact solution u(x,t) in the form  

                                         lim
ℎ→0

‖𝑢ℎ − 𝑢‖𝐿2 = 0,  where h represents the combined spatial and  

 temporal  discretization parameters    𝑎nd  ‖∙‖𝐿2 denotes the  the L2 norm . 

Steps  for the Further Generalized Time- Fractional Diffusion Equation  

  Step  1: Spatial Discretization      xi = i. h for i =  0, 1, …….., N  with  h = 
𝐿

𝑁
  

  Step  2:  Temporal Discretization  

Spatial  (x) Numerical Solution 

0.00 0.0000 

0.01 0.0345 

0.02 0.0691 

0.03 0.1036 

0.04 0.1382 

0.05 0.1727 
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                                                           tn = n . ∆t   with  uniform time step  ∆t                                            

      Step  3:   Time- Fractional  Derivative ( Caputo Derivative) 

                                                             
1

Γ(1−𝛼)
 ∑

𝑢𝑖
𝑘−𝑢𝑖

𝑘−1

Δ𝑡𝛼
𝑛
𝑘=0  ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
ds 

      Step  4:   Spatial Diffusion Term ( Spectral Method) 

                                                               (
𝜕2𝑢(𝑥𝑖 ,𝑡𝑛)

𝜕𝑥2 )
𝛽

 ≈ ℱ−1{(ℱ {𝑢𝑖
𝑛})2𝛽}        

                     Where ℱ and  ℱ−1 denote the discrete Fourier transform and its inverse.  

       Step   5:   Additional Term                 𝛾u ( 𝑥𝑖 ,𝑡𝑛)                                      

      Step   6:    Fully Discretized Equation                                                                                       

                
1

Γ(1−𝛼)
 ∑

𝑢𝑖
𝑘−𝑢𝑖

𝑘−1

Δ𝑡𝛼
𝑛
𝑘=0  ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
ds = D ℱ−1 {(ℱ {𝑢𝑖

𝑛})2𝛽} + 𝛾𝑢𝑖
𝑛    

Discretized System for the  Further Generalized  Time- Fractional  Diffusion Equation 

      For the further generalized one- dimensional time-fractional diffusion equation: 

                                     (
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 ) = D((
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 )
𝛽

 )  +   𝛾u(x,t),  

with spatial discretization  xi = I. h and temporal discretization  tn = n. ∆t, where h  is the spatial  step size 

and  ∆t is the time step. 

          Discretized Time- Fractional Derivative ( Caputo Derivative):  

                                                      
1

Γ(1−𝛼)
 ∑

𝑢𝑖
𝑘−𝑢𝑖

𝑘−1

Δ𝑡𝛼
𝑛
𝑘=0  ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
ds  

         Discretized Spatial Diffusion Term ( Spectral Method):  

                                                      (
𝜕2𝑢(𝑥𝑖 ,𝑡𝑛)

𝜕𝑥2 )
𝛽

 ≈ ℱ−1{(ℱ {𝑢𝑖
𝑛})2𝛽}   

        Where ℱ  and ℱ−1 denote the discrete Fourier transform and its inverse. 

        Discretized Additional Term : 

                                                          𝛾u ( 𝑥𝑖 ,𝑡𝑛)                      

        Using this in original equation, we get 

                  
1

Γ(1−𝛼)
 ∑

𝑢𝑖
𝑘−𝑢𝑖

𝑘−1

Δ𝑡𝛼
𝑛
𝑘=0  ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
 ds  =     D ℱ−1 {(ℱ {𝑢𝑖

𝑛})2𝛽} + 𝛾𝑢𝑖
𝑛          

       It is fully discretized equation  representing  a system of algebraic equations for each spatial  point  i 

and time step n. For given spatial and temporal discretizations, this system can be solved numerically for 

obtaining the discrete solution 𝑢𝑖
𝑛. 

Von Neumann Stability Analysis 

Caputo derivative is considered as: 

                                    
1

Γ(1−𝛼)
  ∫ ( 𝑡 − 𝑠)−𝛼𝑡

0
 
𝜕

𝜕𝑠
 𝑢(𝑥, 𝑡)ds  

 For the finite difference of time discretization:  

                                       
𝜕

𝜕𝑡
 𝑢𝑖

𝑛 =  
𝑢𝑖

𝑛−𝑢𝑖
𝑛−1

Δ𝑡
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The stability condition for Von Neumann stability analysis is presented as  

                                       | 
1

Γ(1−𝛼)
 ∑

 𝑒𝑖𝑤(ℎ𝑖−𝑐𝑡𝑘 )−𝑒𝑖𝑤(ℎ𝑖−𝑐𝑡𝑘−1 )

Δ𝑡𝛼
𝑛
𝑘=0  ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
 ds| ≤ 1 

Putting the Caputo derivative and finite differe1 nce expressions: 

                         |∑
 𝑒𝑖𝑤(ℎ𝑖−𝑐𝑡𝑘 )−𝑒𝑖𝑤(ℎ𝑖−𝑐𝑡𝑘−1 )

Δ𝑡𝛼

1

Γ(1−𝛼)
  ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
 ds 𝑛

𝑘=0 |  ≤ 1 

 For the time- fractional derivative term: 

            
1

Γ(1−𝛼)
 ∑  

 𝑒𝑖𝑤(ℎ𝑖−𝑐𝑡𝑘 )−𝑒𝑖𝑤(ℎ𝑖−𝑐𝑡𝑘−1 )

Δ𝑡𝛼   𝑛
𝑘=0 ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
 ds  

Considering  the solution of the form 𝑢𝑖
𝑛 = 𝑒𝑖(𝑤ℎ𝑖−𝑤𝑐𝑡𝑛 ).   

Then the amplification factor  G(𝜔, ∆𝑡) = 
𝑢𝑖

𝑛

𝑢𝑖
𝑛−1    

Then the stability condition for Von Neumann stability analysis is : 

                     |
1

Γ(1−𝛼)
 ∑  

 𝑒𝑖𝑤(ℎ𝑖−𝑐𝑡𝑘 )−𝑒𝑖𝑤(ℎ𝑖−𝑐𝑡𝑘−1 )

Δ𝑡𝛼   ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
 ds 𝑛

𝑘=0  | ≤ 1 

Convergence Analysis for Further Generalized Time- Fractional Diffusion Equation 

For  the further generalized time- fractional diffusion equation: 

                     
1

Γ(1−𝛼)
 ∑  

𝑢ℎ,𝑖
𝑘 −𝑢ℎ,𝑖

𝑘−1

∆𝑡𝛼 ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
 ds 𝑛

𝑘=0  = D ℱ−1 {(ℱ {𝑢ℎ,𝑖
𝑛 })2𝛽} + 𝛾𝑢ℎ,𝑖

𝑛   

Let u (x,t) be the exact solution. 

The error 𝐸ℎ(𝑥, 𝑡) is defined as the L2 norm of the difference between the numerical and exact solutions: 

     𝐸ℎ (x,t) = ‖ 
1

Γ(1−𝛼)
 ∑  

𝑢ℎ,𝑖
𝑘 −𝑢ℎ,𝑖

𝑘−1

∆𝑡𝛼 ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
 ds − D ℱ−1 {(ℱ {𝑢ℎ,𝑖

𝑛 })2𝛽} −  𝛾𝑢ℎ,𝑖
𝑛𝑛

𝑘=0 ‖ L
2

 

Analysing the behavior of    𝐸ℎ (x,t)  as ∆𝑥 and ∆𝑡 approach zero we have  

                lim
∆𝑥,∆𝑡→0

‖𝑢ℎ − 𝑢‖ L
2 = 0 

Investigation  of Convergence Order 

For the further generalized time- fractional diffusion equation: 

          
1

Γ(1−𝛼)
 ∑  

𝑢ℎ,𝑖
𝑘 −𝑢ℎ,𝑖

𝑘−1

∆𝑡𝛼 ∫ ( 𝑡𝑛 − 𝑠)−𝛼𝑡𝑛

𝑡𝑘
 ds 𝑛

𝑘=0  = D ℱ−1 {(ℱ {𝑢ℎ,𝑖
𝑛 })2𝛽} + 𝛾𝑢ℎ,𝑖

𝑛   

        Let u (x, t) be the exact solution. 

        The error Eh (x, t) is defined as the difference between the numerical and exact   solutions:   Eh (x, t) = 

u ( x, t) – uh (x, t). 

 Investigating the convergence order by varying the spatial and temporal discretization parameters:         

                   Eh (x, t) = 𝒪( hp) 

The convergence order p can be found by analysing the rate with error decreases at decreasing discretization 

parameters. 
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 This theorem gives the convergence of the proposed numerical technique for solving the further generalized 

time- fractional diffusion equation. The convergence criterion is expressed in L2 norm as discretization 

parameters → 0. 

Lemma: Convergence Order of the Proposed Numerical Method 

For the one- dimensional further generalized time- fractional diffusion equation as  

                                           
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
     = D(

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
)
𝛽

 +   𝛾u(x,t), 

with  0 < 𝛼 ≤ 1, 𝛽 > 0, and 𝛾 ≠ 0. 

      If  u (x ,t)  be the solution of this further generalized equation. To discretize the spatial and temporal 

domains, the proposed numerical method which is the combination of finite difference and spectral methods 

is considered. If the spatial and temporal discretization parameters are taken appropriately, then the 

numerical solution  uh (x, t) converges to exact solution u (x ,t) with a convergence  order p as  

                                                                                     lim
ℎ→0

‖𝑢ℎ−𝑢‖𝐿2  

ℎ𝑝
 = C, 

where h denotes the combined spatial and temporal discretization parameters,  ‖∙‖𝐿2  represents the L2 norm, 

and C is a positive constant. 

Corollary: Stability and Convergence of the Proposed Method 

Due to lemma, the proposed numerical method for the further generalized time- fractional diffusion equation 

is stable, and the convergence order p gives the error between the numerical solution  uh and the exact 

solution u decreases proportionally to hp as h→ 0. The method gives accurate and efficient solutions for a 

broad range of parameters, showing stability and convergence in L2 norm.  

 Theorem: Asymptotic Behavior of the Numerical Solution 

 For the one- dimensional further generalized time- fractional diffusion equation : 

                                     
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼      = D(
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 )
𝛽

 +   𝛾u(x,t),  with  0 < 𝛼 ≤ 1, 𝛽 > 0, and 𝛾 ≠ 0.  

           Let u (x,t) be the solution of this further generalized equation. Assuming the proposed numerical 

method is used with appropriate spatial and temporal discretization parameters. 

Part 1: Asymptotic Convergence 

The numerical solution uh (x, t) converges asymptotically to exact solution u(x, t) in the norm L2 when the 

spatial and temporal discretization parameters (h) →0 then   lim
ℎ→0

‖𝑢ℎ − 𝑢‖ L
2 = 0. 

Part 2:  Stability and Boundedness 

The proposed numerical method is stable, such that numerical solution  uh (x, t) always bounded for every 

x and t 

Part  3:  Error Analysis 

The error arisen from the numerical solution uh and exact solution u satisfies  

  ‖𝑢ℎ − 𝑢‖ L
2  ≤  Chp ,     where C is a positive constant and p is the convergence order of the numerical 

method. 

Theorem: Stability and Convergence in Time 

For the one-dimensional further generalized time- fractional diffusion    

  
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼      = D(
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 )
𝛽

 +  𝛾u(x,t)  with  0 < 𝛼 ≤ 1, 𝛽 > 0, and 𝛾 ≠ 0. 
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   Let u (x, t) be the solution of the further generalized equation. The proposed numerical method is taken 

for separating  the spatial and temporal domains is used with suitable spectral and  temporal discretization 

parameters. 

Part  1:  Stability in Time 

For any fixed spatial discretization h, the chosen numerical method absolutely stable throughout the domain 

and the solution uh (x ,t) always bounded for each t as h tends to 0. 

Part  2:  Convergence in Time 

The numerical solution  uh (x ,t) converges to exact solution u(x, t) uniformly in time when temporal 

discretization parameter ∆𝑡 → 0 as described by  

     lim
∆𝑡→0

‖𝑢ℎ − 𝑢‖
𝐿∞ ([0,𝑇]) = 0,  where T is the total simulation time.  

4 .Conclusion  : This research has reached into the development and analysis of numerical methods for 

solving the further generalized time-fractional diffusion equation. The proposed hybrid method which is the 

combination of finite difference and spectral techniques has exposed its effectiveness in providing exact and 

stable solutions in such complex mthematicl model. Through the presented theorems the convergence order 

of the numerical method is constructed showing  as the spatial and temporal discretization parameters  

approach zero, the numerical solution converges to the exact solution with a specified order.  Also the 

analysis  supplies perceptions into the stability, boundedness, and error behaviour of the technique providing 

its strength over a wide range of parameters.The exploration of asymptotic convergence, stability in time, 

and uniform convergence in time has further strengthened the reliability of the proposed numerical 

approach. This research contributes to the growing body of knowledge on numerical methods for fractional 

calculus equations , providing researchers and practitioners with a stable computational tool for further 

generalized time- fractional diffusion equations. Totally this work sets down the foundation for advancing 

the understanding and application of numerical methods in the connection of time- fractional diffusion 

equations. Both single –order and multi-order linear  systems have been studied. 
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