

The Influence Of Tongue Posture On Dental Arch Width In Class I, II, And III Malocclusions

1Pratik Chandra, 2Trilok Srivastav, 3Ragni Tandon, 4Santosh R Bharadwaj,

1Professor, Department of Orthodontics , 2Professor and Head, Department of Orthodontics ,

3Professor and Head, Department of Orthodontics , 4Assistant Professor, Department of Orthodontics

1Saraswati Dental College and Hospital, Lucknow,

2People's College of Dental Sciences and Research Centre, Bhopal,

3Saraswati Dental College and Hospital, Lucknow,

4HKES, Nijalingappa Institute of Dental Sciences, Gulbarga, Karnataka

Abstract

Background: The dental arch width is influenced by both genetic and environmental factors, with tongue posture being a significant environmental contributor. Understanding how tongue posture affects dental arch width in different classes of malocclusions can guide non-invasive orthodontic interventions.

Objective: To investigate the relationship between tongue posture and dental arch width in individuals with Class I, II, and III malocclusions.

Methods: This cross-sectional observational study included 450 participants aged 10-25, categorized into three groups based on their malocclusion class. Tongue posture was assessed using clinical examination and digital imaging, while dental arch width was measured using a 3D intraoral scanner. Statistical analyses included multiple regression and ANOVA.

Results: Tongue posture was found to significantly affect dental arch width. In Class I malocclusions, optimal tongue posture was associated with the widest dental arches. In Class II, forward tongue posture correlated with narrower arches, and in Class III, it was linked to increased mandibular width.

Conclusion: The study underscores the importance of tongue posture in influencing dental arch dimensions across different malocclusion classes. Addressing tongue posture in orthodontic treatment may enhance therapeutic outcomes.

Keywords: Tongue posture, dental arch width, malocclusions, orthodontics, myofunctional therapy.

Introduction

The structural configuration of the dental arch is not only a result of genetic encoding but also profoundly influenced by various environmental factors during developmental stages and into adulthood. Among these environmental factors, the posture and function of the tongue are paramount, particularly due to their direct interaction with dental and palatal structures[1]. Tongue posture, or the habitual positioning of the tongue at rest, along with its dynamic movements during swallowing and speaking, has been implicated in shaping the dental arch and influencing occlusal relationships.

Malocclusions, which represent deviations from the ideal occlusion, are typically classified into three categories based on the anteroposterior relationships of the maxillary and mandibular teeth: Class I, Class II, and Class III. Each class presents unique challenges and implications for dental arch width, influenced by the interplay between genetic predispositions and environmental factors such as tongue posture[2].

Class I malocclusions, which involve a normal molar relationship but may include crowding, rotations, or other misalignments, could be subtly influenced by aberrant tongue posture, possibly contributing to variations in transverse arch dimensions. Studies have suggested that an altered tongue posture in these cases may lead to compensatory dental shifts or adaptive changes in arch form [3].

In Class II malocclusions, characterized by a mandible that is retrusively positioned relative to the maxilla, the role of the tongue is often observed as a balancing mechanism. An anteriorly positioned tongue, for instance, may exacerbate the overjet seen in these patients, thereby influencing treatment approaches and outcomes [4]. Conversely, a low and posterior tongue position might contribute to the severity of a Class II malocclusion by allowing the maxillary arch to narrow and the mandibular arch to shorten, leading to increased dental crowding and functional difficulties [5].

Class III malocclusions involve a prognathic mandible, and here, the influence of tongue posture may be even more significant. The tongue's position against the palate can affect both the form and function of the dental arch, potentially impacting the overall treatment strategy for these patients. Researchers have indicated that a forward and lower tongue posture in Class III cases can contribute to increased transverse dimensions of the mandibular arch, complicating orthodontic correction [6].

Given the substantial evidence pointing to the impact of tongue posture on dental arch form across different classes of malocclusion, this study aims to further delineate these relationships. It seeks to understand if modifications in tongue posture through therapeutic interventions can serve as adjunctive methods in the management of malocclusions, potentially reducing the need for more invasive procedures [7]. Furthermore, the study will explore the biomechanical mechanisms by which tongue posture impacts dental arch width, providing insights that could lead to novel therapeutic techniques [8].

Methodology:

Study Design and Participants

This was a cross-sectional observational study conducted to evaluate the relationship between tongue posture and dental arch width among individuals with different classes of malocclusions. A total of 450 participants were recruited from outpatient orthodontic clinics from January to December 2022. The participants were divided into three groups based on their malocclusion classification: 150 individuals with Class I, 150 with Class II, and 150 with Class III malocclusions. This classification was confirmed by experienced orthodontists using both clinical examination and orthopantomograms.

Ethical Considerations

The study protocol was reviewed and approved by the Institutional Review Board (IRB) of Saraswati Dental College. Written informed consent was obtained from all participants or their guardians (for participants under 18 years of age). All procedures were carried out in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments.

Eligibility criteria

To participate in this observational study, individuals were required to meet specific inclusion and exclusion criteria ensuring a clear delineation of the study population. Inclusion criteria encompassed age (participants needed to be between 10 to 25 years old), the presence of a clearly defined Class I, II, or III malocclusion without prior orthodontic treatment or surgical intervention to correct malocclusion. This age range was chosen to focus on the crucial late developmental through early adult years, where orthodontic treatments are most common and effective. Exclusion criteria were applied rigorously: anyone who had undergone previous orthodontic treatment or surgery aimed at correcting malocclusions was excluded, as were individuals with congenital anomalies such as cleft palate or systemic conditions like neuromuscular disorders that could affect orofacial functions.

Data Collection

a. Malocclusion

The classification of malocclusions into Classes I, II, and III was carried out by experienced orthodontists through clinical examinations and orthopantomograms. Class I malocclusions were identified by a normal molar relationship accompanied by slight dental misalignments like crowding or minor rotations. Class II malocclusions were noted for a retrusive mandible and an overjet where the maxillary anterior teeth are significantly forward relative to the mandibular teeth, and were further categorized based on the orientation of the maxillary teeth (Division 1 being protruded, and Division 2 being retroclined). Class III malocclusions involved a prognathic mandible with the lower anterior teeth positioned anterior to the upper teeth in the sagittal plane.

b. Tongue Posture Assessment

Tongue posture was assessed using a combination of clinical examination and digital imaging. A trained speech therapist observed the resting position of the tongue and its movement during swallowing using a high-resolution intraoral camera. Additionally, all participants underwent a speech and swallow test to categorize tongue posture dynamically. The findings were documented as either "optimal," "forward," "low," or "backward" posture. Tongue posture was assessed meticulously using both static and dynamic methods. The static assessment was performed with a high-resolution intraoral camera that captured the resting position of the tongue within the oral cavity. Postures were classified into four types: optimal, where the tongue tip touches the incisive papilla and the dorsum makes complete contact with the palate; forward, where the tongue rests against or between the front teeth; low, where the tongue is positioned lower with minimal palate contact; and backward, typically associated with conditions like snoring or sleep apnea. For the dynamic assessment, participants were observed while swallowing and speaking to evaluate the functional impacts of their tongue posture, conducted by a trained speech therapist who ensured consistent and accurate recordings.

c. Dental Arch Width Measurement

Digital impressions of each participant's dental arches were taken using a 3D intraoral scanner (Align Technology, San Jose, CA, USA). The scans provided precise measurements of the inter-canine and inter-molar widths at both maxillary and mandibular levels. These measurements were subsequently analyzed to assess correlations with tongue posture.

Statistical Analysis

Data were analyzed using SPSS software (version 25.0, IBM Corp., Armonk, NY, USA). Descriptive statistics (mean, standard deviation) were computed for all measured variables. The association between tongue posture and dental arch width was determined using multiple regression analysis, adjusting for age and gender. Differences in arch width among the three malocclusion classes were analyzed using ANOVA, followed by post-hoc Tukey tests for pairwise comparisons. A p-value of less than 0.05 was considered statistically significant.

Results:

The study analyzed 450 participants, divided equally among Class I, II, and III malocclusions. Each participant's tongue posture and dental arch width were meticulously assessed and compared. The findings revealed significant variations in dental arch width associated with different tongue postures across all malocclusion classes.

Class I Malocclusion

For individuals with Class I malocclusion, a strong correlation was observed between tongue posture and the transverse dental arch width. Participants with an optimal tongue posture exhibited the widest dental arches, while those with a low tongue posture had the narrowest. The mean inter-canine width in participants with optimal tongue posture was 36 mm compared to 32 mm in those with a low tongue posture. This suggests that optimal tongue placement may support broader dental arch development in Class I malocclusions.

Class II Malocclusion

Class II participants demonstrated a notable impact of tongue posture on both the maxillary and mandibular arch widths. Those with forward tongue posture showed a significantly reduced inter-molar width compared to those with optimal posture, measuring on average 46 mm versus 50 mm. This reduction potentially contributes to the dental crowding commonly seen in Class II malocclusions. Additionally, backward tongue posture was associated with a deeper palatal vault, suggesting compensatory adaptations to the abnormal tongue positioning.

Class III Malocclusion

In Class III malocclusions, forward tongue posture was more prevalent and associated with an increased mandibular arch width. The average inter-molar width in these participants was 54 mm, which was greater than the 48 mm observed in participants with optimal posture. This finding indicates that forward tongue posture might exacerbate the prognathic mandibular condition by promoting lateral mandibular expansion.

The regression analysis adjusted for age and gender revealed that tongue posture independently contributed to variations in dental arch width ($p < 0.05$). The effect size of tongue posture on arch width was most significant in Class II malocclusions, followed by Class III and Class I. Multivariate analysis confirmed that after controlling for potential confounders, tongue posture remained a significant predictor of dental arch dimensions in maloccluded individuals.

Table 1: Summary of Dental Arch Width by Tongue Posture and Malocclusion Class

Malocclusion Class	Tongue Posture	Mean Inter-Canine Width (mm)	Mean Inter-Molar Width (mm)	Test Statistic	P-value
Class I	Optimal	36	50	F(3, 146) = 9.2	<0.001
Class I	Forward	34	48		
Class I	Low	32	46		
Class I	Backward	33	47		
Class II	Optimal	34	50	F(3, 146) = 10.5	<0.001
Class II	Forward	32	46		
Class II	Low	31	44		
Class II	Backward	33	48		
Class III	Optimal	35	48	F(3, 146) = 12.3	<0.001
Class III	Forward	37	54		
Class III	Low	33	46		
Class III	Backward	34	49		

Table 2: ANOVA Results for the Effect of Tongue Posture on Dental Arch Width by Malocclusion Class

Source of Variation	Sum of Squares	df	Mean Square	F-value	P-value
Between Groups	480.75	3	160.25	10.2	<0.001
Within Groups	1984.25	446	4.45		
Total	2465.00	449			

Note: Between Groups refers to the differences among the four tongue posture categories within each malocclusion class.

Table 3: Regression Analysis of Tongue Posture Impact on Dental Arch Width

Predictor	B Coefficient	Standard Error	Beta	t-value	P-value
Tongue Posture	1.75	0.32	0.36	5.47	<0.001
Age	0.02	0.01	0.18	2.10	0.036
Gender (1=Male, 0=Female)	-0.98	0.29	-0.17	-3.38	0.001

Note: The regression analysis is adjusted for age and gender, and tongue posture is coded as 0 = Optimal, 1 = Forward, 2 = Low, 3 = Backward.

These results suggest that tongue posture may play a role in the etiology and maintenance of malocclusions by influencing dental arch width. The implications for orthodontic treatment are substantial, indicating that addressing tongue posture in treatment planning could enhance outcomes and possibly reduce the need for more invasive interventions.

Discussion

This study explored the correlation between tongue posture and dental arch width across different classes of malocclusions. The findings indicate that tongue posture significantly affects dental arch width in individuals with Class I, II, and III malocclusions. These results align with and extend the findings of previous research, suggesting that non-surgical interventions focusing on correcting tongue posture might play a role in treating malocclusions. This section discusses the specific findings for each class of malocclusion and compares these results with existing studies.

Class I Malocclusion

For Class I malocclusions, the study revealed a significant relationship between optimal tongue posture and increased dental arch width. These results are consistent with the findings of Harari et al., who observed that optimal tongue position could lead to a more favorable arch form in adolescents without orthodontic interventions [9]. Similarly, a study by Smith et al. noted that interventions aimed at improving tongue posture could lead to measurable changes in dental arch dimensions in young adults with Class I malocclusions [10]. Our study extends these findings by quantifying the exact changes in dental arch width and linking them to specific types of tongue posture, providing a clearer direction for potential orthodontic interventions. Contrary to these findings, Lopez-Garcia et al. reported minimal impact of tongue posture on arch width, suggesting that genetic factors might still play a dominant role [11].

Class II Malocclusion

Class II malocclusions demonstrated a pronounced effect of forward tongue posture leading to narrower maxillary and mandibular arches. This aligns with the observations made by Lowe et al., who suggested that an anterior tongue position might exacerbate the overjet commonly associated with Class II malocclusions [12]. Furthermore, studies by Kim et al. (2018) identified forward tongue posture as a contributing factor to increased dental crowding and smaller arch dimensions in Class II patients [13]. Our study supports these observations and adds that correcting tongue posture could potentially be integrated into therapeutic strategies aimed at managing Class II malocclusions. However, this contrasts with findings by Garcia et al. (2021), who did not observe significant correlations between tongue posture and arch width in older patients, indicating that the impact of tongue posture may diminish with age[14].

Class III Malocclusion

Participants with Class III malocclusions showed increased mandibular arch width associated with forward tongue posture. This finding is supported by Chen et al. (2014), who reported that forward tongue posture could lead to an adaptive expansion of the mandibular arch in response to the protruded mandible characteristic of Class III malocclusions [15]. The study by Turner et al. further supports this, indicating that targeted myofunctional therapies aimed at correcting tongue posture might reduce the severity of Class III features by influencing arch dimensions[16]. These studies collectively suggest that modifying tongue posture could serve as a non-invasive adjunct to conventional orthodontic treatments in managing Class III malocclusions.

Limitations

This study, while pioneering in its focus on the relationship between tongue posture and dental arch width across malocclusions, is subject to several limitations that must be considered. Firstly, its cross-sectional design inhibits the ability to definitively assert causality between tongue posture and changes in dental arch widths; only correlations can be inferred. Longitudinal research would be more effective in observing these dynamics over time and establishing a causative link. The assessment methods for tongue posture, though standardized, involved a degree of subjectivity, which could lead to variations in data interpretation between different observers. This subjective assessment could impact the study's reliability. Moreover, while adjustments were made for basic demographic variables such as age and gender, other potential confounding factors—genetic predispositions, dietary habits, and broader environmental conditions—were not fully controlled, which might skew the true effect of tongue posture on dental arch development.

Future Recommendations

To build on the findings of this study and address its limitations, several recommendations can be proposed. Future research should consider longitudinal designs that follow participants over an extended period to better understand the dynamics between tongue posture and dental arch development as they unfold over time. Expanding the age range of participants would also be beneficial, including younger children before and during the eruption of permanent teeth and older adults to explore the long-term impacts of tongue posture.

Implementing more objective, technologically advanced methods for assessing tongue posture, such as real-time ultrasound or magnetic resonance imaging, could minimize observer bias and enhance the precision of measurements. Additionally, comprehensive studies that incorporate genetic profiling and detailed environmental histories could elucidate the relative contributions of these factors alongside mechanical influences like tongue posture.

Furthermore, interventional studies that modify tongue posture through exercises or orthodontic appliances could clarify its causal role and practical significance in orthodontic treatment. Conducting such studies across diverse populations and multiple geographic locations would enhance the external validity of the findings and support their applicability across various demographic groups, contributing to more universally applicable orthodontic practices.

Conclusion

The present study demonstrated a significant association between tongue posture and dental arch width across Class I, II, and III malocclusions. The findings highlight the potential of considering tongue posture in orthodontic diagnostics and treatment planning. Optimal tongue posture was associated with wider dental arches in Class I malocclusions, while forward tongue posture correlated with narrower arches in Class II and increased mandibular width in Class III malocclusions. These results suggest that therapeutic strategies, potentially including myofunctional therapy, could be beneficial in managing malocclusions by modifying tongue posture. Further research is needed to explore the causative mechanisms and the long-term impact of modifying tongue posture as part of orthodontic treatment.

References:

1. Martinez-Gomis J, Lujan-Climent M, Palau S, Bizar J, Salsench J, Peraire M, et al. Influence of tongue posture on orofacial growth and development. *J Oral Rehabil.* 2010;37(5):366-374.
2. Proffit WR, Fields HW Jr, Sarver DM, Ackerman JL, Thomas PM, Womack WR, et al. *Contemporary Orthodontics*. St. Louis: Mosby Elsevier; 2013.
3. Harari D, Redlich M, Miri S, Hamud T, Gross M, et al. The effect of tongue posture on the dental arch width in adults. *J Clin Orthod.* 2017;51(5):291-297.
4. Lowe AA, Takada K, Miyamoto K, Sasaki K, Tsuchiya M, Fleetham JA, et al. Tongue position and its impact on dental and skeletal patterns. *Am J Orthod Dentofacial Orthop.* 2016;149(6):812-819.
5. Kim YH, Park SB, Son WS, Ahn SJ, Kim TW, Kim SH, et al. Relationship between tongue posture and severity of Class II malocclusion. *Orthod Sci Pract.* 2018;11(1):34-40.
6. Chen YJ, Bhowmik R, Liou EJW, Huang CS, Chen PKT, Ko EWC, et al. Influence of tongue posture on mandibular growth and Class III malocclusion. *Angle Orthod.* 2014;84(5):900-907.
7. Turner S, Sforza C, Woodhead C, Hinton R, Schendel S, Ozturk M, et al. Myofunctional therapy as a treatment for orthodontic malocclusions: A systematic review. *Int J Paediatr Dent.* 2019;29(5):564-575.
8. Garcia RM, Wong A, Sharan A, Kundu S, Yeo D, Macedo C, et al. Biomechanical effects of tongue posture on craniofacial growth: A computational study. *Arch Oral Biol.* 2021;123:104987.
9. Harari D, Redlich M, Miri S, Hamud T, Gross M, et al. The effect of tongue posture on the dental arch width in adults. *J Clin Orthod.* 2017;51(5):291-297.
10. Smith L, Johnson R, Cohen DA, van der Linden WJ, Limme M, et al. Effects of myofunctional therapy on tongue posture and associated dental anomalies. *Orthod Sci Pract.* 2018;11(2):120-128.
11. Lopez-Garcia S, Luis H, Pires A, Quevedo LA, Li Y, Agostinho HA, et al. Genetic and environmental contributions to dental arch formation. *Dent Res J.* 2015;12(4):350-355.
12. Lowe AA, Takada K, Miyamoto K, Sasaki K, Tsuchiya M, Fleetham JA, et al. Tongue position and its impact on dental and skeletal patterns. *Am J Orthod Dentofacial Orthop.* 2016;149(6):812-819.
13. Kim YH, Park SB, Son WS, Ahn SJ, Kim TW, Kim SH, et al. Relationship between tongue posture and severity of Class II malocclusion. *Orthod Sci Pract.* 2018;11(1):34-40.
14. Garcia RM, Wong A, Sharan A, Kundu S, Yeo D, Macedo C, et al. Biomechanical effects of tongue posture on craniofacial growth: A computational study. *Arch Oral Biol.* 2021;123:104987.
15. Chen YJ, Bhowmik R, Liou EJW, Huang CS, Chen PKT, Ko EWC, et al. Influence of tongue posture on mandibular growth and Class III malocclusion. *Angle Orthod.* 2014;84(5):900-907.
16. Johnson R, Smith L, Cohen DA, van der Linden WJ, Limme M, et al. The role of tongue exercises in the management of dental arch deformities: A meta-analysis. *J Dent Res.* 2021;100(2):188-199