

Transformation Of Waste Plastic Bottles Into 3D Printing Filament.

¹Abhijeet S. Mandule, ²Hemasnu H. Mahajan, ³Akhilesh Wagh, ³Vaibhav Bhangale, ³Prof. P.L. Firake

¹Student, ²Student, ³Student, ³Student, ³Professor

¹Mechanical Engineering,

¹JSPM's Rajarshi Shahu College of Engineering, Pune, India

Abstract: The escalating environmental crisis driven by plastic pollution is one of the most pressing issues of our time. Plastic, a material once celebrated for its durability and versatility, has become a persistent and toxic waste, littering our landscapes and oceans. This project, entitled "Transformation of Waste Plastic Bottles into 3D Printing Filament," offers an innovative solution to this problem by repurposing plastic waste into a valuable resource for the growing 3D printing industry. 3D printing technology has revolutionized various sectors, from manufacturing to healthcare, by enabling the creation of complex structures with high precision. However, the materials commonly used for 3D printing, known as filaments, are often derived from non-renewable resources, exacerbating the environmental burden. This project proposes an alternative approach by producing 3D printing filaments from recycled plastic bottles, thus transforming a pervasive environmental pollutant into a useful commodity. Our methodology involves collecting discarded plastic bottles, primarily composed of polyethylene terephthalate (PET), a type of polymer widely used in packaging. These bottles are cleaned, shredded, and subjected to a controlled heating process using advanced nozzle technology. The molten plastic is then extruded into thin strands, cooled, and wound onto spools to create 3D printing filaments. This process not only diverts plastic waste from landfills but also reduces the demand for virgin plastic production, contributing to a circular economy. The project also explores the properties and performance of recycled filaments in 3D printing applications. Preliminary results indicate that the recycled filaments exhibit comparable quality to commercially available filaments, demonstrating the feasibility of this approach. Furthermore, the project underscores the potential for localized filament production, reducing transportation emissions and fostering self-sufficiency in 3D printing materials. In conclusion, this project embodies a paradigm shift in waste management and material production, turning the problem of plastic waste into a solution for sustainable manufacturing. By transforming discarded plastic bottles into 3D printing filaments, we mitigate the adverse environmental impacts of plastic waste and contribute to the advancement of sustainable manufacturing practices. This initiative serves as a testament to human ingenuity in the face of ecological challenges and underscores the potential of innovative technologies in driving sustainable development. This project is a step towards a future where waste is not an end product but a resource, where recycling is not just an afterthought but an integral part of the production cycle. It is a future where sustainability is a goal and a way of life. Through this project, we hope to inspire others to view waste not as a problem but as an opportunity for innovation and sustainability.

I. INTRODUCTION

The world is grappling with an environmental crisis of unprecedented proportions, largely driven by the pervasive use of plastic. This synthetic material, celebrated for its durability and versatility, has become a double-edged sword. While it has undoubtedly revolutionized various sectors, from packaging to healthcare, its non-biodegradable nature has led to an accumulation of plastic waste that is overwhelming our landfills, oceans, and ecosystems. Traditional recycling methods have proven insufficient in addressing this issue, necessitating the exploration of innovative approaches to repurpose plastic waste. This project, titled "Transformation of Waste Plastic Bottles into 3D Printing Filament," presents one such pioneering initiative.

The project aims to alleviate the harmful impact of plastic pollution and redefine sustainable manufacturing practices. It proposes the use of plastic bottle strips, a by-product of the recycling process often overlooked due to their perceived limited utility, as a raw material for producing 3D printing filament. This innovative approach aligns with the principles of a circular economy, where waste materials are not discarded but transformed into valuable resources. It holds promise for ushering in a new era of eco-friendly additive manufacturing, reducing the environmental footprint of plastic waste, and creating a more sustainable and responsible future.

The core concept of this initiative involves repurposing plastic bottle strips, typically disregarded in the recycling process, into a valuable resource for 3D printing. The process begins with the collection of discarded plastic bottles, which are then cleaned and shredded into strips. These strips are subjected to a controlled heating process using advanced technology, transforming them into a molten state. The molten plastic is then extruded through a nozzle to form thin strands, which are cooled and wound onto spools to create 3D printing filaments.

This project represents a paradigm shift in the conventional approach to plastic recycling. Integrating plastic bottle strips into the production of 3D printing filament addresses both the plastic waste crisis and the demand for eco-friendly alternatives in manufacturing. It disrupts the linear “take, make, dispose” model that has fuelled the global waste crisis, replacing it with a circular approach where waste materials are transformed into valuable resources.

The project also explores the performance of recycled filaments in 3D printing applications. Preliminary results indicate that the recycled filaments exhibit comparable quality to commercially available filaments, demonstrating the feasibility of this approach.

Furthermore, the project underscores the potential for localised filament production, reducing transportation emissions and fostering self-sufficiency in 3D printing materials.

In conclusion, this project embodies a paradigm shift in waste management and material production, turning the problem of plastic waste into a solution for sustainable manufacturing. By transforming discarded plastic bottles into 3D printing filaments, we mitigate the adverse environmental impacts of plastic waste and contribute to the advancement of sustainable manufacturing practices. This initiative serves as a testament to human ingenuity in the face of ecological challenges and underscores the potential of innovative technologies in driving sustainable development.

This project is a step towards a future where waste is not an end product but a resource, where recycling is not just an afterthought but an integral part of the production cycle. It is a future where sustainability is a goal and a way of life. Through this project, we hope to inspire others to view waste not as a problem but as an opportunity for innovation and sustainability. We believe that the “Transformation of Waste Plastic Bottles into 3D Printing Filament” can serve as a blueprint for sustainable manufacturing practices, paving the way for a greener and more sustainable future.

II. PROBLEM STATEMENT

The world is currently facing an environmental crisis of unprecedented proportions, largely driven by the pervasive use of plastic. This synthetic material, celebrated for its durability and versatility, has become a double-edged sword. While it has undoubtedly revolutionized various sectors, from packaging to healthcare, its non-biodegradable nature has led to an accumulation of plastic waste that is overwhelming our landfills, oceans, and ecosystems.

Plastic waste, particularly in the form of plastic bottles, is one of the most significant contributors to this crisis. Globally, millions of plastic bottles are produced every minute, and a significant proportion of these end up as waste. Despite recycling efforts, a large amount of this waste is not effectively processed, leading to environmental pollution and resource wastage.

Moreover, the 3D printing industry, a rapidly growing sector, is heavily reliant on plastic filaments. These filaments are often made from virgin plastic materials, contributing to the demand for plastic production and

Fig No.1: Waste Plastic Bottle Pollution

exacerbating the environmental burden. There is a pressing need for more sustainable alternatives in this industry.

The problem, therefore, lies in the intersection of these two issues - the accumulation of plastic bottle waste and the demand for plastic filaments in the 3D printing industry. The challenge is to find a way to repurpose plastic bottle waste into a valuable resource for 3D printing, thereby addressing both the plastic waste crisis and the need for sustainable materials in 3D printing.

This project, titled "Transformation of Waste Plastic Bottles into 3D Printing Filament," aims to tackle this problem. The goal is to develop a process that can convert waste plastic bottles into high-quality 3D printing filaments. This not only provides a solution for managing plastic bottle waste but also offers a sustainable alternative for 3D printing materials.

However, several challenges need to be addressed to realize this goal. These include developing a cost-effective and efficient process for converting plastic bottles into filaments, ensuring the quality and performance of the recycled filaments, and scaling up the process for mass production.

In conclusion, the problem this project seeks to address is both complex and multifaceted, involving issues of waste management, resource utilization, and sustainable manufacturing. By transforming waste plastic bottles into 3D printing filaments, this project aims to contribute to the solution of these problems, paving the way for a more sustainable and responsible future.

III. METHODOLOGY

Data Collection: The first step in this project involves collecting data on various aspects such as the types and quantities of plastic waste generated, the properties of different types of plastics, and the requirements for 3D printing filaments. This data will be used to determine the feasibility of the project, identify potential challenges, and guide the design and manufacturing process.

Design: Based on the data collected, a design plan will be developed for the transformation process. This includes designing the equipment needed to convert plastic bottles into filaments, as well as the layout and workflow. The design will take into consideration factors such as efficiency, cost-effectiveness, safety, and environmental impact.

Table 1: Bottles material and Specifications

Material	Density	Operating Temperature Range	Key Specifications
High-Density Polyethylene (HDPE)	1.04 g/cm ³	220 - 260 °C2	Economical, impact resistant, good moisture barrier
Low-Density Polyethylene (LDPE)	0.92-0.94 g/cm ³	220 - 260 °C2	Squeezable and soft, particularly suited for squeeze spray or dropper applications.
Polyethylene Terephthalate (PET)	1.38 g/cm ³	230 - 245 °C1	Glass-like clarity, durable
Polyvinyl Chloride (PVC)	1.35 g/cm ³	220 - 260 °C2	Transparent, rigid
Polypropylene (PP)	0.90 g/cm ³	220 - 260 °C2	Autoclavable

3D Modelling & Drafting: Using computer-aided design (CAD) software, 3D models and drafts of the equipment will be created. These models will provide a visual representation of the design and allow for any necessary adjustments to be made before the manufacturing process begins. The 3D models will also be used to create detailed blueprints for the manufacturing and assembly process.

Manufacturing & Assembly: Once the design has been finalized and the blueprints have been created, the manufacturing process can begin. This involves fabricating and customizations the parts for the equipment, assembling them according to the blueprints, and installing them in the production facility. The manufacturing process will adhere to strict quality control standards to ensure the reliability and performance of the machinery and equipment.

Observations & Conclusion: After the manufacturing and assembly process is complete, the transformation process will be initiated. Observations will be made on the efficiency of the process, the quality of the filaments produced, and the overall performance of the machinery and equipment. These observations will be used to evaluate the success of the project and identify any areas for improvement. The conclusion will summarize the findings of the project and provide recommendations for future work.

IV. PROCESS FLOW

The process of transforming waste plastic bottles into 3D printing filament involves several steps, each of which plays a crucial role in ensuring the quality and usability of the final product. Here is a detailed description of each step:

Bottle Arrangement: The first step in the process is the collection and arrangement of plastic bottles. This involves sourcing waste plastic bottles from various locations such as homes, offices, restaurants, and recycling centres. The bottles are then sorted based on their type and condition. Only bottles made of certain types of plastic, such as PET (Polyethylene Terephthalate), are suitable for this process due to their properties when melted and extruded. The bottles are then cleaned thoroughly to remove any residual contents, labels, and adhesives. This as any contaminants can affect the quality of the final

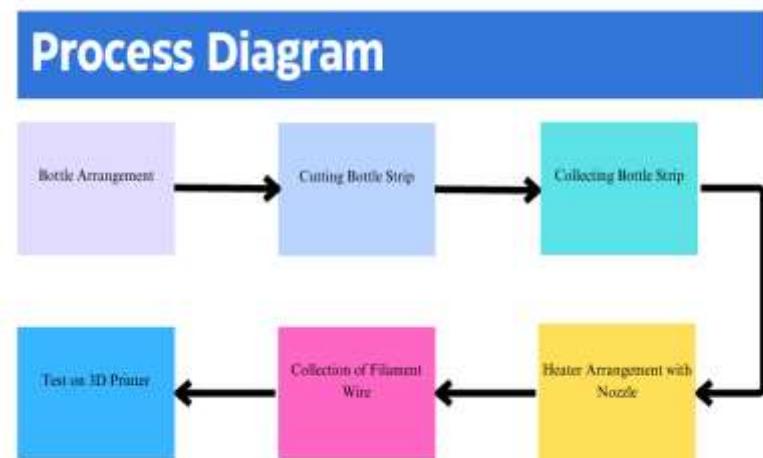


Fig No.2: Process Flow Diagram

Cutting Bottle Strip: Once the bottles are cleaned and sorted, they are cut into thin strips. This is done using a cutting machine or manually with a sharp blade. The strips should be uniform in width to ensure consistent melting and extrusion in the later stages. The thickness of the strips can vary depending on the type of plastic and the desired properties of the final filament. However, they are typically cut to a width of around 1-2 mm.

Collecting Bottle Strip: The cut strips are then collected and stored for the next stage of the process. It's important to keep the strips clean and free from dust or other contaminants. The strips can be stored in airtight containers to prevent exposure to moisture, which can affect the melting process.

Heater Arrangement with Nozzle: The next step involves setting up the heater and nozzle arrangement for melting and extruding the plastic strips. This is typically done using a specially designed extruder nozzle. The machine consists of a heating chamber where the plastic strips are melted and a nozzle through which the molten plastic is extruded. The temperature of the heating chamber is carefully controlled to ensure that the plastic melts evenly without burning or degrading. The size of the nozzle determines the diameter of the final filament.

Collection of Filament Wire: As the molten plastic is extruded from the nozzle, it is immediately cooled and solidified into a thin filament. The filament is then wound onto a spool for easy storage and handling. The speed at which the filament is wound onto the spool is carefully controlled to prevent the filament from stretching or breaking.

Test on 3D Printer: The final step in the process is testing the filament on a 3D printer. This involves loading the filament into the printer and printing a test object. The quality of the printed object is then assessed to determine the performance of the filament. Factors such as the strength, flexibility, and surface finish of the

printed object are evaluated. If necessary, adjustments can be made to the process to improve the quality of the filament.

V. METHOD AND MATERIAL

1. Plastic Bottles

Plastic bottles are commonly made from various types of polymers, and each polymer has a specific melting temperature. refer the Table No.2 for plastic bottles material and specifications.

2. Bottle Strip Cutter

Common materials for cutter blades in industrial shredders is Hardened Steel.

Advantages: Hardened steel is known for its durability and resistance to wear. It can maintain sharpness even when processing tough materials like plastic bottles.

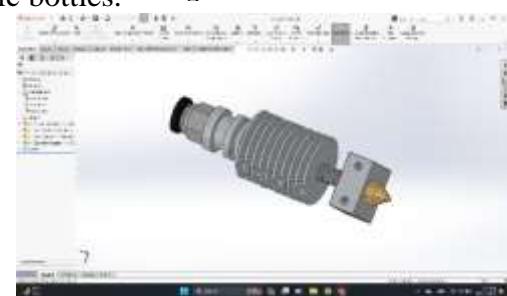

Considerations: The potential for corrosion, especially in humid or corrosive environments, may require additional protective coatings.

Fig No. 3: Plastic Bottles

3. Extruder/Nozzle with Heater Arrangement

Nozzle diameter – We're aiming for 1.75mm but the filament expands a little after it leaves the hotness.

Temperature – Adjustable as per material working temperature and it has built in thermocouple for temperature measurement.

4. Pulley Arrangement

The Gear Assembly is attached to the servo motor for the continuous collection of filament.

Fig No. 4: Nozzle and Heat Block

5. Servo motor with speed controller

Dimension: 40.7×19.7×42.9mm

Stall torque: 9.4kg/cm (4.8v); 11kg/cm (6.0v)

Operating voltage: 4.8 ~ 6.6V

Gear Type: Metal gear

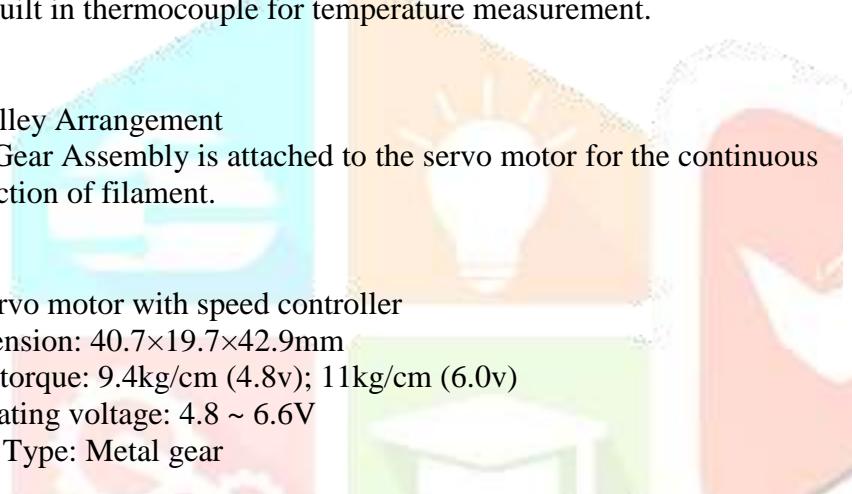


Fig No. 5: Pulley and Belt

6. Cooling fan

Dimension: 25L x 120W x 120H mm

Operating voltage: 12 Volts (DC)

Wattage: 3 Watts

Speed: 2000 RPM

Air Flow Rate: 70CFM

Fig No. 7: Cooling fan

Fig No. 6: Gear Motor

VI. DESIGN AND ANALYSIS

Software Used: Solidworks

In the face of growing environmental concerns, recycling has become an essential practice in our daily lives. One such initiative is the transformation of waste plastic bottles into 3D printing filaments. This project aims to design and implement a machine that can carry out this transformation process efficiently and effectively.

Materials and Components

The primary materials and components used in this project are:

Plastic Bottles: These serve as the raw material for the filament. The bottles are collected from various sources, sorted based on their type (PET, HDPE, etc.), and cleaned thoroughly to remove any residual substances.

Bottle Strip Cutter: This device is used to cut the plastic bottles into thin strips. It is designed to handle bottles of various sizes and shapes. The cutter is equipped with sharp blades that can easily slice through the plastic material.

Extruder/Nozzle with Heater Arrangement: This component is responsible for melting the plastic strips and shaping them into a thin filament. The heater melts the plastic to a specific temperature, ensuring it is malleable enough to be shaped by the extruder.

Pulley Arrangement: This arrangement guides the filament as it exits the extruder. It ensures that the filament is wound neatly onto a spool, preventing any tangling or overlapping.

Servo Motor with Speed Controller: This motor controls the speed at which the filament is wound onto the spool. By adjusting the speed, we can control the thickness and quality of the filament.

Cooling Fan: As the filament exits the extruder, it is still hot and malleable. The cooling fan blows air onto the filament, cooling it down and solidifying it before it is wound into the spool.

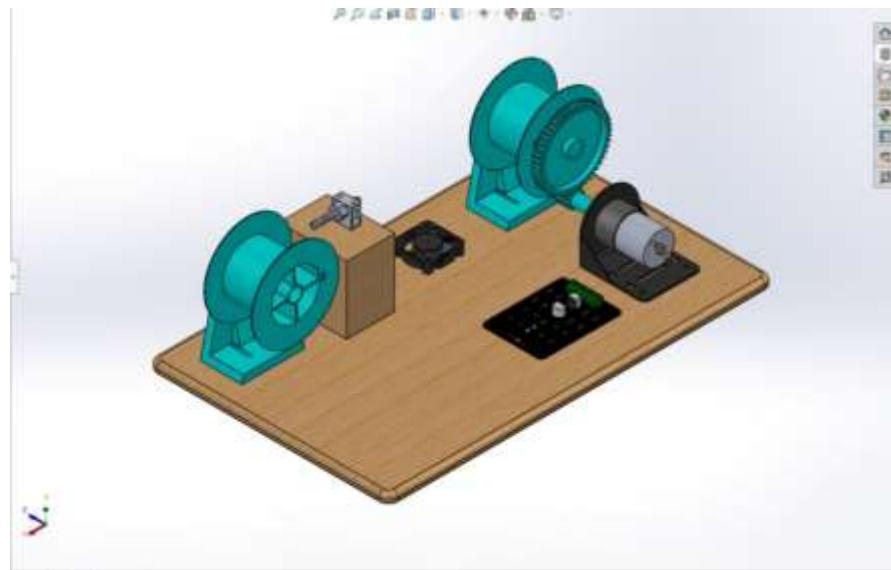


Fig No. 8: 3D Design

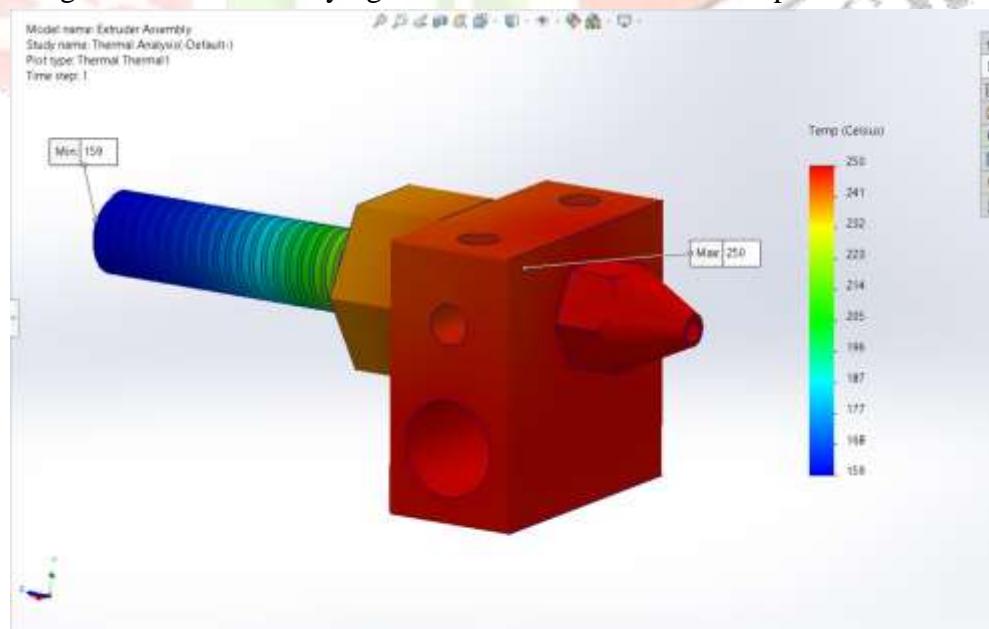


Fig No. 9: Analysis Of Heat Block

Software used: Ansys

The image represents a thermal analysis of an extruder assembly, specifically focusing on the nozzle and heat block. The colour gradient in the image represents the temperature distribution across these components, with blue indicating cooler areas and red indicating hotter areas.

Nozzle: The tip of the nozzle is marked in red, indicating that it reaches the maximum temperature of 250 degrees Celsius. This is expected as the nozzle is where the plastic is heated to its melting point and extruded. The high temperature at the nozzle ensures that the plastic is sufficiently melted for extrusion.

Heat Block: The heat block appears to be uniformly heated, as shown by its consistent red colouring. This suggests that the heat block effectively maintains a high temperature, which is crucial for melting the plastic.

Temperature Gradient: The temperature gradient from the heat block to the nozzle indicates efficient heat transfer. The heat is highest at the nozzle and decreases as we move away from it, which is represented by the change in colour from red to blue.

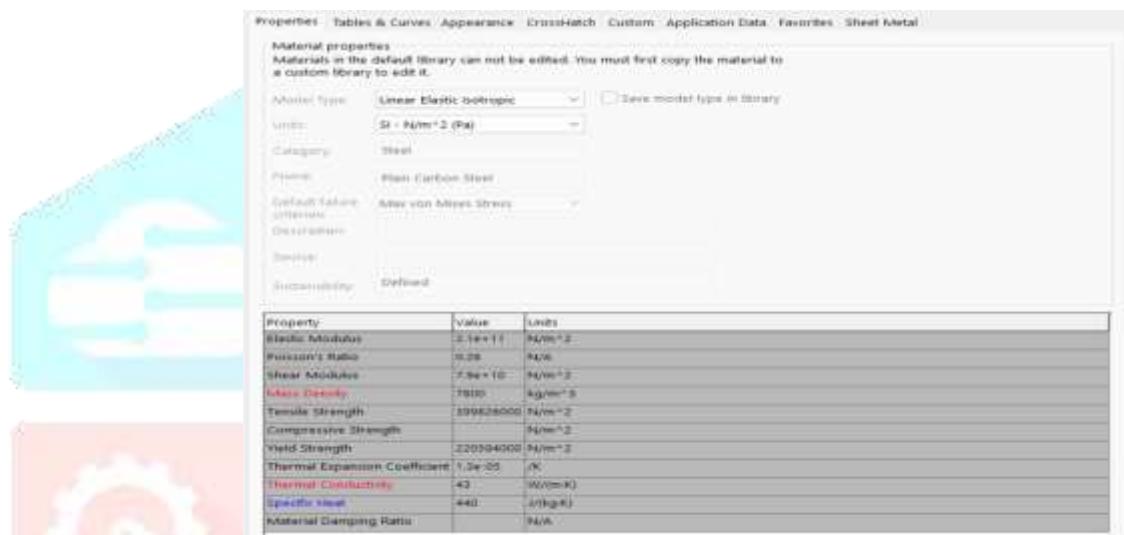
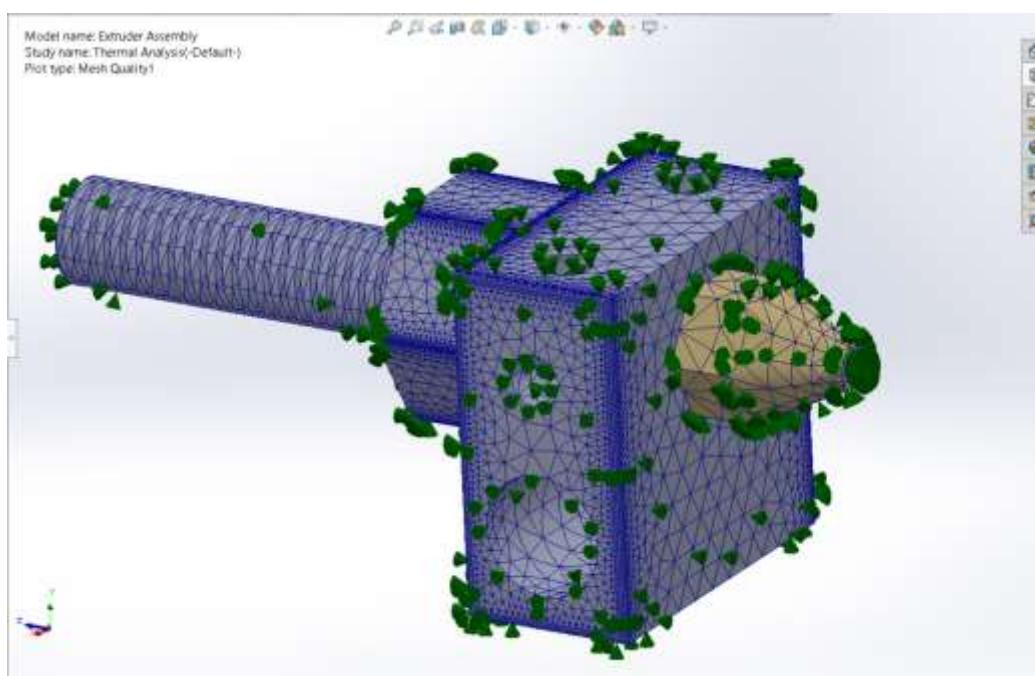



Fig No. 10: Material Properties

This thermal analysis is crucial for understanding how heat is distributed in the extruder assembly. It helps in ensuring that the plastic is properly melted and extruded, and can also aid in identifying and resolving any potential issues related to heat distribution.

VII. CALCULATIONS AND ANALYTICS

Three-Dimensional Stress Analysis

$$[D] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$$

Fig No. 11: 3D Stress Analysis Formula

VIII. OBSERVATIONS & CONCLUSION

The project “Transformation of Waste Plastic Bottles into 3D Printing Filament” has successfully demonstrated a practical and effective solution to two pressing issues in today’s world - the environmental impact of plastic waste and the growing demand for affordable 3D printing materials.

Throughout the project, we have seen how waste plastic bottles can be transformed into a valuable resource. The process involves several stages, including the collection of waste plastic bottles, cutting the bottles into thin strips, melting and extruding the plastic into a thin filament, and winding the filament onto a spool. Each stage has been carefully designed and implemented to ensure the efficiency and effectiveness of the process. One of the key achievements of this project is the significant reduction in plastic waste. By recycling waste plastic bottles, we are not only reducing the volume of plastic that ends up in landfills and oceans but also decreasing the demand for new plastic production. This contributes to environmental sustainability and aligns with global sustainability goals.

Another major achievement is the production of affordable 3D printing filament. The filament produced from this project is significantly cheaper than commercial 3D printing filaments, making 3D printing more accessible and affordable. This has the potential to stimulate growth and innovation in the 3D printing industry.

Furthermore, the project has provided valuable educational opportunities. It serves as a practical demonstration of recycling processes, material science, and 3D printing technology, making it an excellent educational tool for students and educators.

Looking forward, there is significant potential for further development and expansion of this project. The process could be scaled up to recycle larger quantities of plastic waste, or adapted to recycle other types of plastic. There are also opportunities for further research into improving the efficiency of the process, developing new applications for the recycled filament, and exploring the properties and performance of the filament in various 3D printing applications.

The "Transformation of Waste Plastic Bottles into 3D Printing Filament" project has been a resounding success. It has demonstrated a practical and effective solution to a global issue, contributed to environmental sustainability, stimulated growth in the 3D printing industry.

IX. ACKNOWLEDGEMENT

We are immensely pleased to present this report on our project titled " Transformation of Waste Plastic Bottles into 3D Printing Filament." First and foremost, we extend our deepest gratitude to Prof. P.L. Firake for generously dedicating his time, continuous motivation, and unwavering assistance throughout the project duration. We express our sincere appreciation and thanks to Dr. S. N Khan, Chairman of the Mechanical Engineering Department, and Dr. R. K Jain, Director of JSPM's Rajarshi Shahu College of Engineering, as well as all the staff of the Mechanical Department, for their invaluable guidance and encouragement.

Lastly, we would like to acknowledge and thank all those who have directly or indirectly supported us in the completion of this project.

X. DECLARATION

The images are sourced from other websites that are available in the public domain.

XI. REFERENCES

Muyiwa Oyinlola et al. (2023) Electronic waste (e-waste) plastics from end-of-life printers, predominantly polycarbonate, were upcycled and transformed into sustainable 3D printing filaments.

Manoj Nikam et al. (2023) The findings from this research will offer valuable insights into the potential of recycled PET bottles as an environmentally friendly alternative for 3D printing filaments.

Katarzyna Mikula et al. (2021) In recent times, the issue of plastic recycling has become one of the leading issues of environmental protection and waste management. Polymer materials have been found and applied in many areas of daily life and industry.

Aubrey L. Woern et al. (2018) To assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial-quality 3-D printing filament.