IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Revolutionizing Cancer Treatment: CAR T-Cell Therapy

Abdulaziz Kazi, Syed Afnaan Naaz

Pharmacy practice, Shivlingeshwar College of pharmacy Almala, dist. Latur, India.

Abstract:

CAR T-cell therapy is a type of cancer immunotherapy treatment that uses immune cells called T cells that are genetically altered in a lab to enable them in locating in destroying cancer cells more effectively. CAR T-cell therapy modifies a patient's T cells with CAR proteins to target and destroy cancer cells. While effective for hematological tumors, challenges remain for solid tumors like antigen selection and safety. Ongoing studies aim to enhance CAR T-cell design for better efficacy and safety. CAR-T therapy holds promise for personalized immunotherapy and is expected to be a significant cancer treatment in the future. The present review provides a comprehensive overview of the principles, clinical applications, therapeutic efficacy and challenges of CAR T-cell therapy.

Key points: Cancer immunotherapy, (ACT), CARs, clinical application, Approved therapies, toxicity.

1. Introduction:

Cancer is one of the major causes of death worldwide. T cells, a type of white blood cell (WBC), are known to kill cancer cells. Chimeric antigen receptors (CARs) are WBCs specialized in targeting cancer cells by binding to their surface proteins. CAR-T-cell therapy harnesses the power of these T cells and CARs to kill cancer cells effectively. CAR-T cells are called the first living drugs, as once they are activated and infused, they remain in the body and show long-term results [1] CAR-T cell therapy has garnered interest in the field of cancer treatment as a personalized cancer immunotherapy strategy [1, 2]. It works by altering the immune system of a patient, allowing it to recognize, attack and remove cancer cells [3]. Among the immune system, CAR-T cells are a special subpopulation of T cells that are genetically engineered to express specific antigen receptors, and to effectively recognize and destroy cancer cells [4]. However, this therapy also faces multifaceted challenges, such as antigen selection, treatment tolerance and safety [5, 6]. Tumor cells lacking specific antigens displaying

heterogeneity in antigen expression can impair the antigen selectivity of CAR-T cells [7]. Moreover, tu<mark>mor c</mark>ells can develop resistance downregulating antigen expression and enhancing the activity of immune inhibitory factors in response to CAR-T cell-induced cytotoxicity [8]. Additionally, cytokine release syndrome (CRS) induced by CAR-T cell therapy, which manifests as fever and difficulty breathing, low blood pressure, nausea and vomiting, poses a notable safety challenge. Currently, progress has been made in addressing the aforementioned issues by examining multiple antigen targets, improving the design of CAR-T cells, adjusting drug dosages and enhancing the activity of CAR-T cells. However, these measures have not completely eliminated the challenges [8]. Further research and efforts are required to solve these problems, and to improve the efficacy and safety of CAR-T cell therapy [9]. It is hypothesized that with the continuous progression of science and technology, CAR-T cell therapy will serve an important role in the future and bring a revolutionary change in individualized cancer treatment.

2. CANCER IMMUNOTHERAPY AND ADOPTIVE CELL THERAPY:

Immunotherapy is a therapy that utilizes the body's normal safe framework, supports its movement, and productively battles disease and different problems [10].Immunotherapy helps in the immediate control of killing harmful cells by making the cells noticeable to the malignant growth battling cells of the body [11]. Immunotherapy has effectively advanced in ongoing a very long time to address restorative obstructions, carrying development to disease treatment. Dynamic and detached immunotherapies are the two drilled immunotherapies. The previous incorporates growth immunizations and later incorporates monoclonal antibodies, oncolytic virotherapy and assenting White blood cell treatment (ACT). ACT is a kind of detached immunotherapy that uses the body's own Lymphocytes to treat malignant growth by control of Immune system microorganisms outside the body, trailed by their development lastly changed White blood cell implantation back into the body [12]. The work was started during the 1980s when another technique was acquainted with produce an enormous number of autologous lymphoid cells to battle malignant growth cells by Rosenberg's group [13].

3. STRUCTURAL DESIGN OF CHIMERIC ANTIGEN RECEPTORS:

In a general sense, Vehicle comprises of three primary domains:

The extracellular area, transmembrane space and intracellular space. [14]. The extracellular space is made out of a solitary chain variable piece (scFv) that is a combination protein of the variable district of the light and weighty chains of the immunizer. It is gotten together with the assistance of a spacer to the transmembrane area that at last gets together with the intracellular flagging area, bringing about cytolysis of malignant growth cells. [15, 16]. The extracellular (scFv) helps Vehicle Lymphocytes in restricting to the designated cells, while the intracellular space actuates Immune system microorganisms [17, 18].

There have been five principal ages of Vehicle [19]. The distinction in every age Vehicle for the most part lies in the design and usefulness of the intracellular space [20]. [Figure 1] sums up the significant contrasts and similitudes among different Vehicle ages. Original Vehicles are

equipped for actuation only. Second-age Vehicles perform double flagging, and third-age Vehicles are fit for numerous flagging.

1. First Generation:

The underlying variant of Vehicles was planned with only the CD3 chain from the CD3 TCR or Fc receptor-chain(FcR), connected to an outside (scFv) to make a motion for Lymphocytes to enact. Moreover, essentially speaking with these areas is lacking to deliver proficient Immune system microorganism reactions or tenacious cytokine creation [21], [22]. Therefore, this age of Vehicles was deliberately eliminated inferable from an absence of adequate flagging limit, sturdiness, and antitumor viability in vivo.

2. Second Generation:

In the mid 2000 s, with the comprehension of the meaning of co-excitement for enduring Vehicle White blood cell treatment, second-age Vehicles with one co-stimulatory area, for example, CD28 or 4-1BB (CD137) in series with the CD3ζ intracellular space were produced [23]. The presence of these intracellular flagging areas further develops Immune system microorganism tirelessness, cytokine discharge, hostile to growth adequacy in pre-clinical models [24], and have been affirmed to areas of strength for intervene cancer viability in patients with B-cell intense lymphoblastic leukaemia and Non-Hodgkin lymphoma in clinical preliminaries [25], [26].

3. Third Generation:

The third-age Vehicles were created by joining numerous co-stimulatory spaces, like CD28-41BB or CD28-OX40, to improve Vehicle Lymphocytes intensity with more significant cytokine creation, against cancer capacity, and increment Immune system microorganism multiplication [27]. Also, a few preclinical investigations of the third-age Vehicles have been accounted for to upgrade viability, multiplication, and cytokine creation in the facility when contrasted with secondgeneration Vehicles. Nonetheless, there is problematic proof on whether second-or third-age Vehicle White blood cells produce more grounded reactions in patients [28].

4. Fourth Generation:

A fourth-age (otherwise called TRUCKs), a sort of White blood cell based immunotherapy, was made by utilizing fresher, more transgenic, hereditary

e220

changes including transgenes for cytokine discharge and other co-stimulatory ligands[29]. Subsequently, immunostimulatory cytokines like IL-2 improve Vehicle White blood cell protection from the immunosuppressive cancer microenvironment, as well as their capability and development. Also, these cytokines enact and enlist the natural invulnerable framework to the cancer area [30].

5. Fifth Generation:

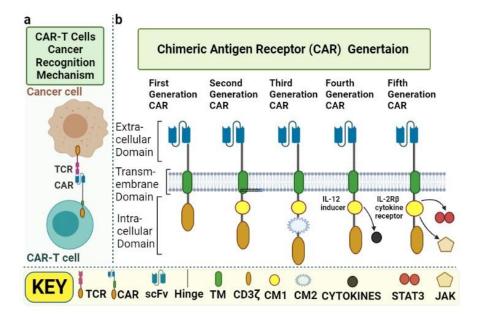

The fifth era Vehicle Lymphocytes contain an extra intracellular area than their ancestors. The Vehicles contain shortened intracellular spaces of cytokine receptors (e.g., IL-2R chain piece) with a theme for restricting record factors like Detail 3/5. The discharged sign accordingly not just drives Vehicle Lymphocytes to stay dynamic and produce memory White blood cells, yet it likewise reactivates and animates the resistant framework [31].

Fig:1: Structural design of CAR [32]

4. CAR T-Cell Therapy Process:

- •White blood cells are gathered from a patient. Immune system microorganisms are gathered by means of apheresis, a technique during which blood is removed from the body and at least one blood parts (like plasma, platelets or white platelets) are taken out. The excess blood is then gotten back to the body [89].
- •Immune system microorganisms are reengineered in a lab. The Immune system microorganisms are shipped off a lab or a medication fabricating office where they are hereditarily designed, by bringing DNA into them, to deliver fanciful antigen

- receptors (Vehicles) on the outer layer of the cells [89].
- •After this reengineering, the Lymphocytes are known as "fanciful antigen receptor (Vehicle) Immune system microorganisms." Vehicles are proteins that permit the Lymphocytes to perceive an antigen on designated cancer cells [89].
- •The reengineered Vehicle White blood cells are then increased. The quantity of the patient's hereditarily altered Immune system microorganisms is "extended" by developing cells in the research facility. This takes around 3 to about a month. At the point when there are enough of them, these Vehicle White blood cells are frozen and shipped off the medical clinic or focus where the patient is being treated [89].
- •At the clinic or treatment focus, the Vehicle White blood cells are defrosted and afterward imbued into the patient. Numerous patients are given a concise course of at least one chemotherapy medications to decrease the quantity of ordinary immune system microorganisms in the body before they get the mixture of Vehicle White blood cells. This is called "lymphodepletion," and it accounts for the new Vehicle Immune system microorganisms. The new Vehicle Immune system microorganisms are imbued into the patient's circulatory system by IV or through a current focal line. This interaction takes under 30 minutes. The Vehicle Immune system microorganisms that have been gotten back to the patient's circulatory system duplicate in number. These are the "aggressor" cells that will perceive, assault and kill cells that have the objective antigen on their surface [89].

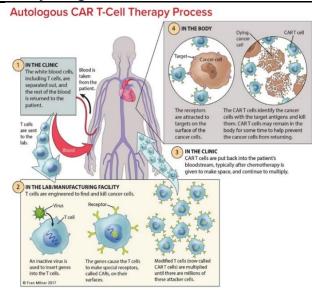


Fig 2: CAR T-Cell Therapy Process [89]

5. Clinical Application of CAR T-Cell Therapy

blood Vehicle White cell treatment has accomplished remarkable application brings about hematological cancers [33]. For instance, Vehicle Immune system microorganisms planned against the CD19 antigen have accomplished restorative impacts by focusing on and killing CD19+ leukaemia cells [34]. Likewise, Vehicle Immune system microorganism treatment has shown remarkable adequacy in the therapy backslid/hard-headed B-cell non-Hodgkin's lymphoma (B-NHL) [35], B-cell intense lymphoblastic leukaemia (B-ALL) and constant lymphocytic leukaemia, with 40-60% of patients with B-NHL getting strong abatement and subsequent to endurance getting Lymphocyte treatment, and 80-90% of patients with B-ALL acquiring solid reduction and endurance or complete reduction, in the wake of getting Vehicle Lymphocyte treatment [36]. The utilization of Vehicle White blood cell treatment in the treatment of strong growths, rather than hematological cancers, keeps on being examined, and regardless of various difficulties and limits, positive advances have been made [37]. Vehicle Lymphocytes have been planned and applied to target antigens on the cell surface of neuroblastoma cells, for example, GD2 [38]. Fundamental clinical preliminary information have shown that Vehicle Lymphocytes exhibit some helpful viability in patients with high-chance and unmanageable neuroblastoma (6). Vehicle Lymphocytes for prostate-explicit memory corrosive phosphatase have likewise shown some enemy of prostate malignant growth adequacy, and clinical preliminaries of Vehicle **Immune** system

microorganism treatment for delicate tissue sarcoma have proposed some potential [39][40]. Vehicle White blood cell treatments in strong cancers face various difficulties, for example, antigenic variety, resistant departure because of the growth microenvironment and accomplishing adequate expansion and penetration [37][41]. These variables limit the use of Vehicle White blood cell treatment in the treatment of strong growths [37].

6. Combination treatment of Vehicle Immune system microorganisms:

Vehicle Immune system microorganisms should beat many obstacles to deliver greatest and supported reactions in patients with strong malignancies [42]. Subsequently, with exception of the changes of Vehicle Lymphocytes, many examinations certainly stand out to the mix treatment to build the handiness of Vehicle Immune system microorganisms in treating strong cancers [43].

6.1. Combination with oncolytic infections:

Oncolytic infections (OVs) are hostile to growth specialists that are lytic and immunogenic, specifically contaminating and killing cancer cells [44], [45]. Oncolytic virotherapy has gotten expanded interest in malignant growth treatment after the FDA endorsement of Talimogene laherparepvec (T-VEC) [46]. T-VEC is the main FDA-supported oncolytic infection delivered from herpes simplex infection type 1 (HSV-1) for unrespectable cutaneous, subcutaneous, and nodal metastases in patients with melanoma [47]. Overall, OVs apply their antitumor effect through two unmistakable components: direct lysis of tainted malignant growth cells (oncolysis) and advancement of antitumor versatile invulnerability. Furthermore, OV might be hereditarily designed to communicate various transgenes in the growth microenvironment, improving cancer explicit White blood cells' effector exercises. Thus, OV can possibly synergize with an assortment of combinatorial immunotherapy techniques [48]. OVs have a remarkable capacity to synergize with Vehicle Immune system microorganisms, helping them in defeating strong malignancies. To start, infections produce peril flags that might actuate against growth insusceptibility and converse immunosuppression, advancing the dealing of Vehicle Lymphocytes and cancer intrusion. Second, the oncolytic cycle produces TAAs, which might set off a versatile insusceptible reaction, subsequently lessening cancer resistant break through antigen misfortune. Third, joining OVs and Vehicle Immune system microorganisms might improve White blood cells' effector exercises for cancer concealment and prolongation of life [49], [50]. Also, the designing adaptability of OVs and Vehicle Immune system microorganisms empowers the most appropriate mixes of various transgenes and co-feeling of Vehicle White blood cells to be customized to the specific highlights of designated and the growth cancer microenvironment [49]. Various preclinical examinations have been led to decide the adequacy of various transgene-equipped OV related to Vehicle Immune system microorganisms [51]. The discoveries of these examinations give light on the counter disease properties of Vehicle White blood cells when joined with OV transgene conveyance. Regardless of empowering preclinical discoveries, single approved clinical (NCT03740256) inspected the blend of Vehicle T and OV treatment for HER2-positive malignancies [52]. Interpretation of preclinical exploratory outcomes to clinical preliminaries is frequently troublesome because of utilizing immunodeficient Gesture scid gamma (NSG) mice as preclinical models [53]. The aftereffects of this exploratory framework can't show the genuine associations among OV and Vehicle Lymphocytes in the human safe framework. Furthermore, the forecast of the security of joining two strong proinflammatory immunotherapies is troublesome. Albeit the general worth of TVEC is broadly acknowledged, furnished OVs intended to further develop Immune system microorganism capability could build the seriousness of Vehicle White blood cell incidental effects [49]. Subsequently, it is basic to lay out safe dosages of these remedial specialists in mix with one another.

6.2. Combination with chemotherapy and radiotherapy:

It has been shown that chemotherapeutic specialists, for example, cyclophosphamide, doxorubicin, fluorouracil, and so on, can work on the viability of Vehicle Lymphocyte treatment by different systems [43], [54]. One of these systems is to expand the invasion of these cells into strong cancers, conceivably by expanding development of chemokines at the growth site that coordinate with chemokine receptors on Vehicle Lymphocytes [55]. The alternate way is to sharpen the growth cells to granzyme B, i.e., the granzyme B liberated by the Vehicle Immune system microorganisms can all the more effectively enter the layer of growth cells. The liberation of antigens is expanded by chemotherapy. It additionally makes it simpler for Vehicle Immune system microorganisms to distinguish them [56].

Many investigates stand out to the synergistic impacts of radiotherapy with Vehicle Lymphocyte treatment. Since radiotherapy can build the arrival of antigens or even increment the presence of growth antigens by MHC I particles which are communicated on the outer layer of growth cells after radiation [39]. Radiotherapy can likewise build the arrival of harm related sub-atomic examples (DAMPs) at the growth site, which thusly can improve the statement of chemokines and work with the penetration of Vehicle Immune system microorganisms. Then again, following the arrival of DAMPs, natural resistant cells are enacted and can assume a part in enactment of Vehicle Lymphocytes [57], [58].

6.3. Combination with resistant designated spot inhibitors:

As referenced before, one of the issues with Vehicle White blood cell treatment in strong cancers is the presence of immunosuppressive TME. Different variables are engaged with the improvement of this immunosuppressive microenvironment, including inhibitory atoms like PD-1, CTLA-4, Slack 3, and so on. From one viewpoint, the utilization of monoclonal antibodies against these particles (safe designated spot bar) as monoimmunotherapy has major areas of strength for shown growth impacts and has been supported by the FDA [59]. Then again, ongoing reports have demonstrated the way that joining these ICBs with Vehicle Lymphocytes can decisively build the adequacy of Vehicle Immune system microorganism treatment. These antibodies can forestall fatigue in Vehicle Immune system microorganisms and keep up with their effector capabilities [60]. In late examinations, new Vehicle White blood cells have additionally been intended to deliver these antibodies at the cancer site (NCT01454596, NCT03030001, NCT02873390, NCT03179007, NCT02862028, NCT03182803, clinicaltrails.gov).

7. CAR T-Cell Treatment Medications:

Tisagenlecleucel [61] (Novartis Worldwide AG)

Vehicle Lymphocytes accomplished ideal clinical viability at a portion of 50-100 million cells/kg

Generic Name	Brand Name	Target Antigen	Targeted Disease	Patient Population
Tisagenlecleucel	Kymriah	CD19	B-cell acute lymphoblastic leukemia (ALL)	Children and young adults with refractory or relapsed B-cell ALL
			B-cell non-Hodgkin lymphoma (NHL)	Adults with relapsed or refractory B-cell NHL
Axicabtagene ciloleucel	Yescarta	CD19	B-cell non-Hodgkin lymphoma (NHL)	Adults with relapsed or refractory B-cell NHL
			Follicular lymphoma	Adults with relapsed or refractory follicular lymphoma
Brexucabtagene autoleucei	Tecartus	CD19	Mantle cell lymphoma (MCL)	Adults with relapsed or refractory MCL
			B-cell acute lymphoblastic leukemia (ALL)	Adults with refractory or relapsed B-cell ALL
Lisocabtagene maraleucel	Breyanzi	CD19	B-cell non-Hodgkin lymphoma (NHL)	Adults with relapsed or refractory B-cell NHL
Idecabtagene vicleucel	Abecma	всма	Multiple myeloma	Adults with relapsed or refractory multiple myeloma
Ciltacabtagene autoleucel	Carvykti	всма	Multiple myeloma	Adults with relapsed or refractory multiple myeloma

and axicabtagene ciloleucel [61] (Kite Pharma; Gilead Sciences, Inc.) have been supported by the U.S. Food and Medication Organization (FDA) and the European Drugs Office. They are utilized for the treatment of backslid/stubborn B-NHL in grown-ups [62]. Likewise, TecartusTM [63] is a Vehicle Lymphocyte treatment drug, created by Gilead Sciences, Inc., for the treatment of backslid/obstinate B-ALL in grown-ups (Table I). Bristol-Myers Squibb Organization created Breyanzi (lisocabtagene maraleucel) for the treatment of grown-up backslid/stubborn huge Bcell lymphoma [63]. There are likewise various Vehicle T drugs in clinical preliminaries including bb2121, which is a Vehicle Lymphocyte treatment that objectives the B-cell development antigen (BCMA) that has been utilized for the treatment of numerous myeloma [64,65]. Moreover, CD22 Vehicle Immune system microorganism treatments, in which CD22 is the objective antigen are utilized for the therapy of B-ALL, HER2 Vehicle Lymphocyte treatment for metastatic colorectal disease and IL13Rα2/EGFRvIII Vehicle White blood cell treatment for glioblastoma are all in clinical preliminaries [66-69].

[Table: 01: FDA Endorsed CAR T-Cell Therapies] [88]

The measurement and fractionation of Vehicle T drugs are pivotal variables that can impact key perspectives, for example, drug viability and wellbeing [70]. The measurement of Feline T drugs is by and large customized in light of variables like the weight and state of being of the patient (98). Studies have uncovered that enemy of CD19 body weight, while hostile to BCMA Vehicle Immune system microorganisms exhibited ideal adequacy at a portion >100 million cells/kg body weight, inside a specific portion range [72,73]. Expanding the portion might prompt an expansion in true reaction rates (ORRs) until an edge is reached [70]. Nonetheless, when the ORR starts to settle, further portion acceleration is probably not going to work on the ORR, however it might expand the rate and additionally seriousness of unfriendly occasions related with the component [70]. Extreme measurement might possibly prompt serious safe responses and extreme aftereffects, while deficient dose might bring about unfortunate helpful results [71]. In any case, in a strategic relapse examination concerning B-Every one of Vehicle the, higher Immune system microorganism portion was related with a higher likelihood of reaction, there was no expansion in CRS occurrence or seriousness across portion reaches and patients accomplished practically identical early reaction rates freely of portion, yet, expanding the portion of Vehicle Lymphocytes might prompt an expanded gamble of CRS or neurotoxicity, which is a typical concern [72]. Further examination is justified to clarify the relationship between edge dosing and post-Vehicle results [72]. In this manner, a far reaching assessment and customized measurements changes are important to accomplish ideal treatment impacts. Also, portion fractionation is a significant procedure for Feline T drugs [72]. Research has demonstrated that treatment viability antagonistically impacted by portion fractionation. It has been recommended that, rather than a solitary

e224

portion imbuement, portion parts of Vehicle Lymphocytes controlled north of 2-3 days might diminish the occurrence as well as seriousness of Vehicle Immune system microorganism harmfulness including CRS and neurotoxicity, particularly in patients with a high growth trouble and for patients that require Vehicle White blood cell treatment in higher dosages for viability [73]. The impacts created by a sluggish and constant organization of medication frequently display longer-enduring and more steady results contrasted and a solitary high portion [73]. This approach includes separating the medication into a few equivalent parts and regulating them step by step throughout various time spans with the mean to upgrade treatment viability and diminish secondary effects [73]. Portion separation of Vehicle Lymphocyte therapy in light of explicit item attributes or sickness trouble, the utilization of stage I preliminary plans that consolidate viability pharmacokinetic information. and advancement of Vehicle Immune system microorganisms with diminished potential for harmfulness, could all help clinicians and analysts to upgrade Vehicle White blood cell dosing, extend the restorative window and work on the accessibility of this arising disease immunotherapy [71]. These systems could limit drug harmfulness and opposition as well as diminish the recurrence of unfriendly responses during treatment.

8. Side Effects and Toxicity of CAR T-Cell Therapy:

Finding a disease treatment with next to zero poisonousness is intriguing. Albeit the autologous idea of Vehicle Immune system microorganism treatment from the start seems like it very well may be the exemption, actually Vehicle Lymphocyte treatment can have serious unfavourable occasions and shifting degrees of poisonousness separately. A typical issue experienced especially in fruitful Vehicle Lymphocyte treatment could incorporate CRS which can genuinely hurt or imperil a patient [87]. The impacts of CRS might incorporate, hypotension, hypoxia, high-grade fever, and neurological aggravation.

There are multiple ways of alleviating a portion of these unfavourable occasions related with Vehicle Lymphocyte treatment. These techniques incorporate, yet are not restricted to, hindering the impact of cytokines or by lessening how much cytokines through backhanded strategy [86].

Tocilizumab works by impeding cytokines at the receptor which reduces issues with CRS yet ought to be kept away from if macrophage enactment disorder (MAS) is thought [86]. Corticosteroids then again in a roundabout way decrease cytokine levels through the decrease of transduced White blood cells that are separately causing the CRS and can likewise be utilized to diminish irritation and unite versus have illness [86]. Methotrexate may likewise have a useful roundabout method of activity as well as treating entanglements related with an immune system infection that can be brought about by askew Vehicle White blood cells.

9. Progressing advancement in CAR T-Cell Therapy:

The future advancement heading intends to grow the scope of utilizations, work on the restorative impacts, diminish the serious aftereffects and lower the expense of treatment [75]. Studies are as of now chipping away at additional improvement measures to propel the adequacy and wellbeing of Vehicle Immune system microorganism treatment [76, 77]. Potential measures include: I) Presenting a movable changing framework to begin or stop the action of Vehicle Lymphocytes on time to relieve the event of unfavourable responses [78]; ii) investigating the utilization of various Vehicle designs to perceive different antigens [79] or the utilization of bispecific Vehicles to perceive two antigens simultaneously to defeat resistant departure [80]; iii) and using quality altering innovation to definitively hereditarily adjust Vehicle Lymphocytes to upgrade their phone enactment, suitability and antitumor impacts to moderate antitumor safe break components [81]. Changing to Vehicle NK cells, notwithstanding Lymphocytes, may likewise be gainful, as there is a class of NK cells that additionally has antitumor impacts [82]. NK cells are perhaps of the main cell in the resistant framework; Vehicle NK cells, otherwise called improved NK cells, can enact NK cells by getting through the impediments of executioner immunoglobulin-like receptors, which are a class of receptors communicated on the outer layer of NK cells that tight spot to HLA-C-like particles, in this way hindering NK cell movement, to upgrade the particular killing impact of NK cells on growth cells [83]. A few elements in the cancer microenvironment, like immunosuppressive cells, cytokines and penetrating cells, may influence the capability and viability of Vehicle Lymphocytes [84]. Subsequently, studies are meaning to upgrade

the endurance and antitumor impacts of Vehicle Immune system microorganisms in the cancer microenvironment utilizing explicit atomic focusing on methodologies, for example, receptors or antibodies on the outer layer of Vehicle Lymphocytes [85, 77]. These further upgrades and methodologies are completely focused on further improving the adequacy, strength and security of Vehicle Immune system microorganism treatment. With top to bottom exploration on Vehicle Immune system microorganisms and ceaseless mechanical developments, it is normal that Vehicle White blood cell treatment will serve a more noteworthy job in the field of malignant growth treatment later

10. Conclusion:

All in all, Vehicle White blood cell treatment is a momentous headway in disease treatment, offering expect patients with safe hematologic malignancies. By hereditarily designing Immune system microorganisms to target and obliterate disease cells, the treatment has shown wonderful viability, especially in B-cell malignancies like intense lymphoblastic leukaemia (ALL) and certain lymphomas. Despite its commitment, Vehicle Lymphocyte treatment faces difficulties like serious secondary effects (CRS and neurotoxicity), significant expenses, and complex assembling. Progressing research means to further develop wellbeing, adequacy, and availability, advancements like double focusing on Vehicles, Vehicle Lymphocytes, allogeneic and therapies. While still right off the bat being developed, Vehicle Immune system microorganism treatment can possibly alter disease treatment. Proceeded with progressions and joint effort will be fundamental for enhancing and growing this extraordinary treatment.

Reference:

- 1. Wu W, Zhou Q, Masubuchi T, Shi X, Li H, Xu X, Huang M, Meng L, He X, Zhu H, et al. Multiple Signaling Roles of CD3ε and Its Application in CAR-T Cell Therapy. *Cell*. 2020;182:855–871. e23. doi: 10.1016/j.cell.2020.07.018. [PubMed] [CrossRef] [Google Scholar]
- 2. Parker KR, Migliorini D, Perkey E, Yost KE, Bhaduri A, Bagga P, Haris M, Wilson NE, Liu F, Gabunia K, et al. Single-Cell analyses identify brain mural cells expressing CD19 as Potential Off-Tumor Targets for CAR-T

- Immunotherapies. *Cell*. 2020;183:126–142. e17. doi: 10.1016/j.cell.2020.08.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 3. Sterner RC, Sterner RM. CAR-T cell therapy: Current limitations and potential strategies. *Blood Cancer J.* 2021;11:69. doi: 10.1038/s41408-021-00459-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 4. Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: From CAR T, CAR NK to CAR macrophage therapy. *J Exp Clin Cancer Res.* 2022;41:119. doi: 10.1186/s13046-022-02327-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 5. Ahmad A. CAR-T Cell Therapy. *Int J Mol Sci.* 2020;21:4303.
- doi: 10.3390/ijms21124303. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 6. Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. *Am J Hematol.* 2019;94((S1)):S3–S9. [PubMed] [Google Scholar]
- 7. Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. *Cancer Discov.* 2018;8:1219–1226. doi: 10.1158/2159-8290.CD-18-0442. [PubMed] [CrossRef] [Google Scholar]
- 8. Abreu TR, Fonseca NA, Gonçalves N, Moreira JN. Current challenges and emerging opportunities of CAR-T cell therapies. *J Control Release*. 2020;319:246–261. doi: 10.1016/j.jconrel.2019.12.047. [PubMed] [CrossRef] [Google Scholar]
- 9. Labanieh L, Majzner RG, Klysz D, Sotillo E, Fisher CJ, Vilches-Moure JG, Pacheco KZB, Malipatlolla M, Xu P, Hui JH, et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. *Cell.* 2022;185:1745–1763. e22. doi: 10.1016/j.cell.2022.03.041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 10. Haji-Fatahaliha M, Hosseini M, Akbarian A, Sadreddini S, Jadidi-Niaragh F, Yousefi M. CARmodified T-cell therapy for Cancer: an updated review. Artificial Cells, Nanomedicine, and Biotechnology. 2016;44(6):1339–49. PMID: 26068778. Available from: 10.3109/21691401.2015.1052465.

- 11. Eggermont LJ, Paulis LE, Tel J, Figdor CG. **Towards** efficient cancer immunotherapy: advances in developing artificial antigenpresenting cells. **Trends** in Biotechnology.2014;32(9):456-65. PMID: 24998519. Available from: 10.1016/j.tibtech.2014.06.007.
- 12. Miliotou AN, Papadopoulou LC. CAR T-cell therapy: a new era in cancer immunotherapy. Current Pharmaceutical Biotechnology. 2018;19(1):5–18. PMID: 29667553. Available from:10.2174/1389201019666180418095526.
- 13. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE. Observations on systemic administration of autologous the lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. The New **England** Journal of Medicine.1985;313(23):1485–92. PMID: 3903508. Available from:10.1056/NEJM198512053132327.
- 14. Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends in Immunology. 2015;36(8):494–502. PMID:26169254. Available from: 10.1016/j.it.2015.06.004.
- 15.Park JH, Brentjens RJ. Adoptive immunotherapy for B-Cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells. Discovery Medicine. 2010;9(47):277–88. PMID: 20423671.
- 16. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. The New England Journal of Medicine. 2018;378(5):449–59. PMID: 29385376. Available from: 10.1056/NEJMoa1709919.
- 17. Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications Modifications for enhanced T-cell function. Molecular Therapy Oncolytics. 2016;3:16014. PMID: 27231717. Available From: 10.1038/mto.2016.14.
- 18. Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nature Reviews Cancer. 2003;3(1):35–45. PMID: 12509765. Available from: 10.1038/Nrc971.
- 19. Wu WT, Lin WY, Chen YW, Lin CF, Wang HH, Wu SH. New Era of Immunotherapy in Pediatric Brain Tumors: Chimeric Antigen Receptor T-Cell Therapy. International Journal of

- Molecular Sciences. 2021;22(5):2404. PMID: 33673696. Available from:10.3390/ijms22052404.
- 20. Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomarker Research. 2017;5(1):22. PMID: 28652918. Available From: 10.1186/s40364-017-0102-y.
- 21. Gross, G., T. Waks, Z. Eshhar, Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences, 1989. 86(24): pp. 10024–10028.

[Google Scholar]

- 22. Eshhar, Z., et al., Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences, 1993. 90(2): pp. 720–724.

 [Google Scholar]
- 23. H.M. Finney, et al. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product J. Immunol., 161 (6) (1998), pp. 2791-2797 [View at publisher_] [CrossRef] View in [Scopus] [Google Scholar]
- 24. H.M. Finney, A.N. Akbar, A.D. Lawson Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR ζ chain J. Immunol., 172 (1) (2004), pp. 104-113 [View at publisher_] [CrossRef]View in [Scopus] [Google Scholar]
- 25. F.L. Locke, *et al.* Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial Lancet Oncol., 20 (1) (2019), pp. 31-42 View [PDFView] [article] View in [Scopus] [Google Scholar]
- 26. F.L. Locke, *et al.* Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma Mol. Ther., 25 (1) (2017), pp. 285-295 View [PDFView] [article] View in [Scopus] [Google Scholar]

- 27. B.G. Till, *et al.* CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results Blood, 119 (17) (2012), pp. 3940-3950 View [PDFView] [article] [CrossRef] View in [Scopus] [Google Scholar]
- 28. V. Marin, *et al.* Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors Haematologica, 95 (12) (2010), p. 2144 View at [publisher_] [CrossRef] View in [Scopus] [Google Scholar]
- 29. M. Chmielewski, H. Abken TRUCKs: the fourth generation of CARs Expert Opin. Biol. Ther., 15 (8) (2015), pp. 1145-1154 [View at publisher_] [CrossRef] View in [Scopus] [Google Scholar]
- 30. M. Chmielewski, H. Abken TRUCKS, the fourth-generation CAR T cells: current developments and clinical translation Adv. Cell Gene Ther., 3 (3) (2020), Article e84 [Google Scholar]
- 31. Y. Kagoya, *et al.* A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects Nat. Med., 24 (3) (2018), pp. 352-359 [View at publisher_] [CrossRef] View in [Scopus] [Google Scholar]

32.

https://bmrat.com/index.php/BMRAT/article/view/726

- 33. Haslauer T, Greil R, Zaborsky N, Geisberger R. CAR T-Cell therapy in hematological malignancies. *Int J Mol Sci.* 2021;22:8996. doi: 10.3390/ijms22168996. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 34. Jin X, Xu Q, Pu C, Zhu K, Lu C, Jiang Y, Xiao L, Han Y, Lu L. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. *Cell Mol Immunol*. 2021;18:1896–1903. doi: 10.1038/s41423-020-0472-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 35. Denlinger N, Bond D, Jaglowski S. CAR T-cell therapy for B-cell lymphoma. *Curr Probl*

Cancer. 2022;46:100826.

doi: 10.1016/j.currproblcancer.2021.100826. [PM C free article] [PubMed] [CrossRef] [Google Scholar]

36. Shalabi H, Qin H, Su A, Yates B, Wolters PL, Steinberg SM, Ligon JA, Silbert S, DéDé K, Benzaoui M, et al. CD19/22 CAR T cells in children and young adults with B-ALL: Phase 1 results and development of a novel bicistronic CAR. *Blood.* 2022;140:451–463.

doi: 10.1182/blood.2022015795. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z, Qian Q. Current Progress in CAR-T cell therapy for solid tumors. *Int J Biol Sci.* 2019;15:2548–2560.

doi: 10.7150/ijbs.34213. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

- 38. Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, Schultz LM, Richards RM, Jiang L, Barsan V, Mancusi R, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. *Nature*. 2022;603:934–941.
- doi: 10.1038/s41586-022-04489-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 39. Zarrabi KK, Narayan V, Mille PJ, Zibelman MR, Miron B, Bashir B, Kelly WK. Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate cancer. *Ther Adv Urol.* 2023;15:17562872231182219.

doi: 10.1177/17562872231182219. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

- 40. Narayan V, Barber-Rotenberg JS, Jung IY, Lacey SF, Rech AJ, Davis MM, Hwang WT, Lal P, Carpenter EL, Maude SL, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: A phase 1 trial. *Nat Med.* 2022;28:724–734. doi: 10.1038/s41591-022-01726-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 41. Miller IC, Zamat A, Sun LK, Phuengkham H, Harris AM, Gamboa L, Yang J, Murad JP, Priceman SJ, Kwong GA. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. *Nat Biomed Eng.* 2021;5:1348–1359. doi: 10.1038/s41551-021-00781-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 42.A. Rosewell Shaw, M. Suzuki Oncolytic viruses partner with T-cell therapy for solid tumor

- treatment Front. Immunol., 9 (2018), p. 2103 [View in ScopusGoogle Scholar]
- 43. J. Xu, *et al.* Combination therapy: a feasibility strategy for CAR-T cell therapy in the treatment of solid tumors Oncol. Lett., 16 (2) (2018), pp. 2063-2070 [View in ScopusGoogle Scholar]
- 44.H.L. Kaufman, F.J. Kohlhapp, A. Zloza Oncolytic viruses: a new class of immunotherapy drugs Nat. Rev. Drug Disco, 14 (9) (2015), pp. 642-662 [View at publisher_] [CrossRefView] in [Scopus][Google Scholar]
- 45. G. Alvanegh, *et al.* Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer Biomed. Pharmacother., 140 (2021), Article 111755 View [PDFView] [articleView] [Scopus][Google Scholar]
- 46.R. Andtbacka, *et al.* Talimogene laherparepvec improves durable response rate in patients with advanced melanoma J. Clin. Oncol., 33 (25) (2015), pp. 2780-2788 View in [Scopus] [Google Scholar]
- 47.R.M. Conry, *et al.* Talimogene laherparepvec: first in class oncolytic virotherapy Hum. Vaccine Immunother., 14 (4) (2018), pp. 839-846m [View at publisher_] [CrossRefView] in [Scopus] [Google Scholar]
- 48.E. Donnadieu, *et al.* Surmounting the obstacles that impede effective CAR T cell trafficking to solid tumors J. Leukoc. Biol., 108 (4) (2020), pp. 1067-1079 [View at publisher] [CrossRef] in [Scopus][Google Scholar]
- 49. S. Guedan, R. Alemany CAR-T cells and oncolytic viruses: joining forces to overcome the solid tumor challenge Front. Immunol., 9 (2018), p. 2460 View in [Scopus][Google Scholar]
- 50. N. Watanabe, *et al.* Clinical CAR-T cell and oncolytic virotherapy for cancer treatment Mol. Ther. (2020) [Google Scholar]
- 51. A. Ajina, J. Maher Prospects for combined use of oncolytic viruses and CAR T-cells J. Immunother. Cancer, 5 (1) (2017), p. 90 View in [Scopus] [Google Scholar]
- 52. X. Jiang, *et al.* Adoptive CD8(+) T cell therapy against cancer: challenges and opportunities Cancer Lett., 462 (2019), pp. 23-32 View [PDFView] [article] View in [Scopus][Google Scholar]

- 53. R.A. Morgan Human tumor xenografts: the good, the bad, and the ugly Mol. Ther., 20 (5) (2012), pp. 882-884 View [PDFView] [article] [CrossRef] View in [Scopus] [Google Scholar]
- 54. M. Michaud, *et al.* Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice Science, 334 (6062) (2011), pp. 1573-1577 [View at publisher_] [CrossRef] in [Scopus][Google Scholar]
- 55. J. Hu, *et al.* T-cell homing therapy for reducing regulatory T cells and preserving effector T-cell function in large solid tumors Clin. Cancer Res., 24 (12) (2018), pp. 2920-2934 [View at publisher_] [CrossRef] View in [Scopus] [Google Scholar]
- 56. Y. Ma, *et al.* Anticancer chemotherapyinduced intratumoral recruitment and differentiation of antigen-presenting cells Immunity, 38 (4) (2013), pp. 729-741 View [PDFView] [articleView] in [Scopus] [Google Scholar]
- 57. R. Ganss, et al. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication Cancer Res., 62 (5) (2002), pp. 1462-1470 View in [Scopus][Google Scholar]
- 58. S. Matsumura, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells J. Immunol., 181 (5) (2008), pp. 3099-3107 [View at publisher_] [CrossRef] View in [Scopus][Google Scholar]
- 59. R. Grosser, *et al.* Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors Cancer Cell, 36 (5) (2019), pp. 471-482 View [PDFView] [article] View in [Scopus] [Google Scholar]
- 60. B.C. Miller, *et al.* Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade Nat. Immunol., 20 (3) (2019), pp. 326-336 [View at publisher_] [CrossRef] View in [Scopus] [Google Scholar]
- 61. Bachy E, Le Gouill S, Di Blasi R, Sesques P, Manson G, Cartron G, Beauvais D, Roulin L, Gros FX, Rubio MT, et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell

e229

- lymphoma. *Nat Med.* 2022;28:2145–2154. doi: 10.1038/s41591-022-01969-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 62. Han D, Xu Z, Zhuang Y, Ye Z, Qian Q. Current Progress in CAR-T cell therapy for hematological malignancies. *J Cancer*. 2021;12:326–334. doi: 10.7150/jca.48976. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 63. Siddiqi T, Soumerai JD, Dorritie KA, Stephens DM, Riedell PA, Arnason J, Kipps TJ, Gillenwater HH, Gong L, Yang L, et al. Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL. *Blood.* 2022;139:1794–1806.
- doi: 10.1182/blood.2021011895. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 64. Feng D, Sun J. Overview of anti-BCMA CAR-T immunotherapy for multiple myeloma and relapsed/refractory multiple myeloma. *Scand J Immunol.* 2020;92:e12910.

doi: 10.1111/sji.12910. [PubMed] [CrossRef] [Google Scholar]

- 65. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. *N Engl J Med.* 2019;380:1726–1737. doi: 10.1056/NEJMoa1817226. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 66. Curran E, O'Brien M. Role of blinatumomab, inotuzumab, and CAR T-cells: Which to choose and how to sequence for patients with relapsed disease. *Semin Hematol.* 2020;57:157–163. doi: 10.1053/j.seminhematol.2020.11.001. [PubM ed] [CrossRef] [Google Scholar]
- 67. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. *Nat*Med. 2018;24:20–28. doi: 10.1038/nm.4441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 68. Xu J, Meng Q, Sun H, Zhang X, Yun J, Li B, Wu S, Li X, Yang H, Zhu H, et al. HER2-specific chimeric antigen receptor-T cells for targeted therapy of metastatic colorectal cancer. *Cell Death Dis.* 2021;12:1109. doi: 10.1038/s41419-021-04100-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

- 69. Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based immunotherapy for the treatment of glioblastoma. *Front Neurosci.* 2021;15:662064.
- doi: 10.3389/fnins.2021.662064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 70. Rotte A, Frigault MJ, Ansari A, Gliner B, Heery C, Shah B. Dose-response correlation for CAR-T cells: A systematic review of clinical studies. *J Immunother Cancer*. 2022;10:e005678. doi: 10.1136/jitc-2022-005678. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 71. Dasyam N, George P, Weinkove R. Chimeric antigen receptor T-cell therapies: Optimising the dose. *Br J Clin Pharmacol*. 2020;86:1678–1689. doi: 10.1111/bcp.14281. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 72. Stefanski HE, Eaton A, Baggott C, Rossoff J, Verneris MR, Prabhu S, Pacenta HL, Phillips CL, Talano JA, Moskop A, et al. Higher doses of tisagenlecleucel are associated with improved outcomes: A report from the pediatric real-world CAR consortium. *Blood Adv.* 2023;7:541–548. doi: 10.1182/bloodadvances.2022007246. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 73. Frigault M, Rotte A, Ansari A, Gliner B, Heery C, Shah B. Dose fractionation of CAR-T cells. A systematic review of clinical outcomes. *J Exp Clin Cancer Res.* 2023;42:11. doi: 10.1186/s13046-022-02540-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 74. Abreu TR, Fonseca NA, Gonçalves N, Moreira JN. Current challenges and emerging opportunities of CAR-T cell therapies. *J Control Release*. 2020;319:246–261.
- doi: 10.1016/j.jconrel.2019.12.047. [PubMed] [CrossRef] [Google Scholar]
- 75. Miller IC, Zamat A, Sun LK, Phuengkham H, Harris AM, Gamboa L, Yang J, Murad JP, Priceman SJ, Kwong GA. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. *Nat Biomed Eng.* 2021;5:1348–1359. doi: 10.1038/s41551-021-00781-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 76. Corti C, Venetis K, Sajjadi E, Zattoni L, Curigliano G, Fusco N. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress. *Expert*

Opin Investig Drugs. 2022;31:593–605. doi: 10.1080/13543784.2022.2054326. [PubMed] [CrossRef] [Google Scholar]

77. Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: New perspectives, challenges, and clinical developments. *Front Immunol.* 2022;13:925985.

doi: 10.3389/fimmu.2022.925985. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

- 78. Wagner DL, Koehl U, Chmielewski M, Scheid C, Stripecke R. Review: Sustainable Clinical Development of CAR-T Cells-switching from viral transduction towards CRISPR-Cas Gene Editing. Front Immunol. 2022;13:865424. doi: 10.3389/fimmu.2022.865424. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 79. Gagelmann N, Riecken K, Wolschke C, Berger C, Ayuk FA, Fehse B, Kröger N. Development of CAR-T cell therapies for multiple myeloma. *Leukemia*. 2020;34:2317–2332. doi: 10.1038/s41375-020-0930-x. [PubMed] [CrossRef] [Google Scholar]
- 80. Zeng W, Zhang Q, Zhu Y, Ou R, Peng L, Wang B, Shen H, Liu Z, Lu L, Zhang P, Liu S. Engineering Novel CD19/CD22 Dual-Target CAR-T cells for improved anti-tumor activity. *Cancer Invest.* 2022;40:282–292. doi: 10.1080/07357907.2021.2005798. [PubMed] [CrossRef] [Google Scholar]
- 81. Ghaffari S, Khalili N, Rezaei N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. *J Exp Clin Cancer Res.* 2021;40:269. doi: 10.1186/s13046-021-02076-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- 82. Hong M, Chen YY. Killer fatigue: Transition to NK-cell-like phenotype is a signature of CAR-T cell exhaustion. *Cell*. 2021;184:6017–6019. doi: 10.1016/j.cell.2021.11.015. [PubMed] [CrossRef] [Google Scholar]
- 83. Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, Ishiyama K, Wellhausen N, Rennels AK, Ma Y, et al. An NK-like CAR T cell transition in CAR T cell dysfunction. *Cell.* 2021;184:6081–6100. e26. doi: 10.1016/j.cell.2021.11.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Allen GM, Frankel NW, Reddy NR, Bhargava HK, Yoshida MA, Stark SR, Purl M, Lee J, Yee JL, Yu W, et al. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. *Science*. 2022;378:eaba1624.

doi: 10.1126/science.aba1624. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Abreu TR, Fonseca NA, Gonçalves N, Moreira JN. Current challenges and emerging opportunities of CAR-T cell therapies. *J Control Release*. 2020;319:246–261.

doi: 10.1016/j.jconrel.2019.12.047. [PubMed] [CrossRef] [Google Scholar]

86.D. Sommermeyer, M. Hudecek, P.L. Kosasih, T. Gogishvili, D.G. Maloney, C.J. Turtle, *et al.* Chimeric antigen receptor-modified T cells derived from defined CD8(+) and CD4(+) subsets confer superior antitumor reactivity in vivo Leukemia, 30 (2016), pp. 492-500 [View at publisher_] [CrossRef] View in [Scopus] [Google Scholar]

87.

- Q. Tang, K.J. Henriksen, M. Bi, E.B. Finger, G. S zot, J. Ye, *et al.* In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes J Exp Med, 199 (2004), pp. 1455-1465 [View at publisher] View in [Scopus] [Google Scholar]
- 88. <u>https://www.cancer.gov/about-cancer/treatment/research/car-t-cells</u>
- 89. <u>https://www.lls.org/treatment/types-treatment/immunotherapy/chimeric-antigen-receptor-car-t-cell-therapy</u>