

MORINGA OLEIFERA: AN OVERVIEW OF ITS PHARMACOLOGICAL PROPERTIES

Sanika Kesarkar, Harshal Gaitir, Dr Pooja Gupta, Dr Shivani Kakkar Khanna

Department Of Food Science and Nutraceutical

B.K Birla College (Autonomous) Kalyan

Abstract:

The genus Moringaceae includes munga, also known as *Moringa oleifera* Lam. The plant *Moringa oleifera* Lam. is used extensively as a nutritional supplement and has valuable pharmacological properties including anti-asthmatic, anti-diabetic, hepatoprotective, anti-inflammatory, anti-cancer, anti-microbial, anti-oxidant, cardiovascular, anti-ulcer, CNS activity, anti-allergic, wound healing, analgesic, and antipyretic action. This plant has important medicinal properties in every part. It is a good supply of vitamin A and vitamin C. Alkaloids, protein, quinine, saponins, flavonoids, tannin, steroids, glycosides, fixed oil, and lipids are just a few examples of the various active phytoconstituents that are present. The shrub is a evergreen perennial tree. Tropical areas are where you can find this shrub as well.

Introduction:

The cruciferous plant *Moringa oleifera* Lam. (M. oleifera) is a member of the Moringaceae family [10]. Locals refer to *M. oleifera* as the drumstick tree or the horse-radish tree, and it is an ubiquitous food worldwide [10]. It is found in the sub-Himalayan tract of India including Bangladesh and Pakistan [5][45]. *M. oleifera* is eaten for both its nutritional and therapeutic qualities [7]. Beta-carotene, vitamin C, vitamin E, and polyphenols are abundant in *M. oleifera* leaves, which are also an excellent source of natural antioxidants [5][6]. A wide range of biological functions, including anti-inflammatory, anti-cancer, hepatoprotective, and neuroprotective functions, are currently reported to be improved by *M. oleifera* [23]. Numerous studies have also demonstrated its therapeutic benefits, including those for the treatment of diabetes, rheumatoid arthritis, atherosclerosis, infertility, pain relief, anti-depression, thyroid and diuretic control [28][29]. Large and uncommon combinations of zeatin, quercetin, beta-sitosterol, kaemop ferol, and caffeoyl guinic acid are found in munga vegetable. Iron, potassium, calcium, copper, zinc, magnesium, manganese, and other essential elements are found in *Moringa oleifera* [30]. Various plant components, including the bark, leaves, seeds, blossoms, roots, and immature pods, includes a significant number of valuable phytoconstituents, including reducing sugars, terpenoids, alkaloids, tannins, and steroid aglycones [9][13]. The essential amino acids found in plant leaves help to create robust, healthy bodies [3]. Because of its ability to purify water and high nutritional value, *M. oleifera* leaves have been used in traditional medicine systems for millennia [31]. This includes the ayurvedic system of medicine, which is associated with the treatment or prevention of diseases with the use of traditional natural herbs and plant-based medicine. Plant leaves are small and challenging to collect [41]. Leaf's rich nutrient profile includes vitamins, minerals, and vital amino acids and are also abundant source of antioxidants, including chlorogenic acid, quercetin, beta carotene, and vitamin C [40][22].

Taxonomical Classification:

KINGDOM	Plantae
DIVISION	Magnoliophyta
CLASS	Magnoliopsida
SUB-CLASS	Dilleniidae
ORDER	Capparales
FAMILY	Moringaceae

GENUS	Moringa
SPECIES	oleifera

The plant *Moringa oleifera* Lam. is notable for its isothiocyanates, which have anti-bacterial activity and may help to rid your body of *H. pylori*, a bacteria linked to gastritis, ulcers, and gastric cancer [24][28]. It is also noteworthy for its high fibre content, which, as the epoch times put it, acts like a mop in your intestines to clean up any extra grime left over from a greasy diet [33]. Due to these reported functions, *M. oleifera*'s bioactivity has received a lot of attention over the past ten years, which has sparked an increased interest in and investigation of its pharmacological functions and underlying mechanisms [29]. In this overview, we highlight recent developments in research pertaining to its pharmacological or nutraceutical functions and associated mechanisms of action [4][22]. In this review, we will give an outline of its pharmacological potential benefits for human wellbeing [36].

Anti-microbial properties:

According to reports, extracts from the *M. oleifera* plant's seeds, stem bark, leaves, and root bark can exhibit antimicrobial potential [37]. Several studies have been performed to assess the antimicrobial activity of Moringa species [38]. For instance, the water-soluble lectin isolated from the extract of *M. oleifera* seeds inhibits multiple species of pathological bacteria's ability to develop, survive, and have permeable cells [35]. The extract of *M. oleifera* stems is also said to contain pterygospermin, an active antibiotic with potent antibacterial and fungicidal properties [39][27]. Micro-organism resistant *M. oleifera* seeds, stems, bark, and leaves exhibit anti-bacterial and anti-fungal properties [26]. The plant exhibits in vitro resistance to dermatophytes, yeast, bacteria, and helminths using the disc-diffusion technique [14][18].

Anti-Inflammatory:

A physiological reaction called inflammation helps the body fight illness and repair tissue damage [13]. However, persistent chronic inflammation can result in the onset of conditions like diabetes, cancer, inflammatory diseases, cardiovascular diseases, sepsis, colitis, and arthritis that are linked to persistent chronic inflammation [16]. Target cells' expression or activity of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and microsomal PGE synthase-1 (mPGES-1) is stimulated or increased by inflammatory cytokines like interleukin-1 beta (IL-1beta), tumour necrosis factor alpha (TNF-alpha), and nitric oxide (NO), as well as prostaglandin E2 (PGE-2) [16]. Root and bark extracts in methanolic and liquid form, as well as blossoms and leaf extracts in methanol, and an ethanolic extract of the seeds all have anti-inflammatory properties [15].

Antioxidant properties:

Strong in-vitro antioxidant and radical scavenging activity is shown by aqueous and alcoholic extracts (methanolic and ethanolic) of *Moringa oleifera* stems and leaves [20]. As an abundant source of antioxidant compounds, its leaves may shield animals from diseases brought on by oxidative stress [19][17]. Administration of an extract from *M. oleifera* leaves appears to stop the oxidative harm brought on by a high-fat diet [20].

Hepatoprotective properties:

It was determined that the ethanolic extract of *Moringa oleifera* leaves and the alcoholic extract of the seed have in-vivo hepatoprotective activity against isoniazid, rifampicin, and pyrazinamide-induced liver damage [11][14]. The effects of doses of the crude extract (CE) on the liver and kidney functions, as well as hemological and hepato-renal functions of the methanolic extract of *Moringa oleifera* roots, were also described [16]. Typically, polyphenol-rich natural compounds have potent antioxidant qualities and can reduce oxidative damage by acting as free radical scavengers [7].

Anti-Cancer activity:

In the United States and across the globe, cancer is one of the main causes of mortality [1][15]. Effective therapeutic strategies have been used to treat a variety of cancer types, but the need for more effective treatment choices is now being driven by resistance and/or toxicity [3]. The precursor form of isothiocyanates, glucosinolates, which has been characterized as a powerful anticancer compound, is found naturally in an intact plant [6]. When the intact plant is disturbed, glucosinolates are hydrolyzed in a reaction facilitated by the enzyme myrosinase to generate isothiocyanate [3][18].

There has been a lot of research done on isothiocyanates' potential cancerous effects. According to Xiao et al., the growth of both androgen independent (PC-3) and androgen-reliant (LNCaP) human prostate cancer cells is inhibited by allyl isothiocyanates (AITC). It was stated that ethanolic extracts of *Moringa oleifera*'s leaves and seeds exhibit strong anti-tumor action. Compounds linked to thiocarbamate and isothiocyanate were discovered and functioned as tumor promoter inhibitors [18]. Interestingly, three known thiocarbamate and isothiocyanate related compounds that work as inhibitors of tumor promoter teleocidin B-4-induced Epstein-barr virus were present, which contributed to the in-vivo antitumor activity [18].

Anti-Diabetic activity:

The pharmacological actions of the leaves of *M. oleifera* have been described for the conventional treatment of diabetes mellitus (DM), a chronic metabolic disorder [9]. A previous study found that *M. oleifera* can reduce glucose intolerance, and this study supports this finding by showing that supplementing with the aqueous extract of *M. oleifera* leaves at a dose of 100 mg/kg can improve insulin sensitivity, boost total antioxidant capacity (TAC), and improve immune tolerance [9][40]. Can also lessen difficulties brought on by diabetes [21]. Similar to this, its fruit powder's methanol extract is abundant in N-benzyl thiocarbamates, N-benzyl carbamates, and benzyl nitriles, which can cause pancreatic beta cells to release insulin, which in turn reduce the activity of cyclooxygenase and inhibit lipid peroxidation [29].

Conclusion:

The genus of Moringaceae family, *Moringa oleifera* has a wide range of pharmacological properties [36]. Additionally, the majority of plant components, including seeds, leaves, flowers, and roots, are used in the therapy of numerous diseases [29]. Aqueous, ethanolic, and methanolic extracts are reportedly frequently used for research, identifying, and estimation purposes [33]. In the future, the active ingredients can be separated and created into dosage forms and transport systems that are appropriate [38]. Additionally, in vivo research based on animal models can be carried out in the future for improved results [48].

Through the execution of its powerful anti-inflammatory activity, inhibition of the activation of the NF-B and PI3K/Akt pathways, mitigating oxidative stress by scavenging free radicals, and enhancing neuroprotective roles, *M. oleifera* possesses a broad variety of medicinal and therapeutic properties [38]. *M. oleifera* can also control blood sugar levels and lower the chance of developing cancer, though the underlying mechanisms need more research [23][46]. As a result, *M. oleifera* offers the possibility of preventing or treating a number of chronic illnesses [27][39].

Conflict of Interest:

There are no conflicts of interest, according to the writers.

References:

1. Abdull, R.A.; Ibrahim, M.D.; Kntayya, S.B. Health benefits of *Moringa oleifera*. *Asian Pac. J. Cancer Prev. APJCP* 2014, 15, 8571–8576. [CrossRef]
2. Agrawal B, Mehta A. Antiasthmatic activity of *Moringa oleifera* Lam: a clinical study. *Indian J Pharmacol.* 2008;40(1):28–31.
3. Al-Asmari, A.K.; Albalawi, S.M.; Athar, M.T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. *Moringa oleifera* as an anti-cancer agent against breast and colorectal cancer cell lines. *PLoS ONE* 2015, 10, e0135814. [CrossRef] [PubMed]
4. Al-Malki AL, El Rabey HA. The antidiabetic effect of low doses of *Moringa oleifera* Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. *Biomed Res Int.* 2015;2015:DOI: 10.1155/2015/381040.
5. Amrutia J, Lala M, Srinivasa, Moses RS. Anticonvulsant activity of *Moringa oleifera* leaf. *International Research Journal of Pharmacy.* 2011;2(7):160-2.
6. Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. *Moringa oleifera*: A food plant with multiple medicinal uses. *Phytother. Res.* 2007, 21, 17–25. [CrossRef] [PubMed]
7. Ariel, A.; Serhan, C.N. Resolvins and protectins in the termination program of acute inflammation. *Trends Immunol.* 2007, 28, 176–183. [CrossRef] [PubMed]
8. Atawodi, S.E.; Atawodi, J.C.; Idakwo, G.A.; Pfundstein, B.; Haubner, R.; Wurtele, G.; Bartsch, H.; Owen, R.W. Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of *Moringa oleifera* Lam. *J. Med. Food* 2010, 13, 710–716. [CrossRef] [PubMed]
9. Banji, O.J.; Banji, D.; Kavitha, R. Immunomodulatory effects of alcbholic and hydroalcoholic extracts of *Moringa olifera* Lam. leaves. *Indian J. Exp. Biol.* 2012, 50, 270–276. [PubMed]
10. Basu BD, Kirtikar KR, Basu K. Indian medicinal plants. Delhi: Bishen Singh Mahendra Pal Singh; 2005. 678 p.
11. Berkovich, L.; Earon, G.; Ron, I.; Rimmon, A.; Vexler, A.; Lev-Ari, S. *Moringa oleifera* aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. *BMC Complement. Altern. Med.* 2013, 13, 212. [CrossRef] [PubMed]
12. Boggs, D.A.; Palmer, J.R.; Wise, L.A.; Spiegelman, D.; Stampfer, M.J.; Adams-Campbell, L.L.; Rosenberg, L. Fruit and vegetable intake in relation to risk of breast cancer in the Black Women's Health Study. *Am. J. Epidemiol.* 2010, 172, 1268–1279. [CrossRef] [PubMed]
13. Caceres A, Cabrera O, Morales O, Mollinedo P, Mendoza P. Pharmacological properties of *Moringa oleifera*: preliminary screening for antimicrobial activity. *J Ethnopharmacol.* 1991;33(3):213–6.
14. Caceres A, Saravia A, Rizzo S, Zabala L, Leon ED, Nave F. Pharmacological properties of *Moringa oleifera*: screening for antispasmodic, anti-inflammatory and diuretic activity. *J Ethnopharmacol.* 1992;36(3):233-7.
15. Chumark, P.; Khunawat, P.; Sanvarinda, Y.; Phornchirasilp, S.; Morales, N.P.; Phivthong-Ngam, L.; Ratanachamnong, P.; Srisawat, S.; Pongrapeeporn, K.U. The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of *Moringa oleifera* Lam. leaves. *J. Ethnopharmacol.* 2008, 116, 439–446. [CrossRef] [PubMed]
16. Elgamily, H.; Moussa, A.; Elboraey, A.; El-Sayed, H.; Al-Moghazy, M.; Abdalla, A. Microbiological assessment of *Moringa oleifera* extracts and its incorporation in novel dental remedies against some oral pathogens. *Open Access Maced. J. Med. Sci.* 2016, 4, 585–590. [CrossRef] [PubMed]
17. Fahad J, Vijayalakshmi, Satish Kumar MC, Sanjeeva, Kodancha GP, Adarsh B, et al. Antiulcer activity of aqueous extract of bark of *Moringa oleifera* (lam.) in rats. *Health.* 2010;2(4):352-5.

18. Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. *Phytochemistry* 2001, 56, 5–51. [CrossRef]
19. Foidl N, Makkar HPS, Becker K. The potential use of *Moringa oleifera* for agriculture and industrial uses. Managua, Nicaragua. 2001;1-20.
20. Gilani AH, Aftab K, Suria A, Siddiqui S, Salem R, Siddiqui BS, et al. Pharmacological studies on hypotensive and spasmolytic activities of pure compounds from *Moringa oleifera*. *Phytother Res.* 1994;8(2):87-91.
21. Gupta R, Mathur M, Bajaj VK, Katariya P, Yadav S, Kamal R, et al. Evaluation of antidiabetic and antioxidant activity of *Moringa oleifera* in experimental diabetes. *J Diabetes.* 2012;4(2):164-71.
22. Gupta RK. Medicinal & aromatic plants: with colour plates (hb). Delhi: CBS publishers & distributors; 2010. p. 151-2.
23. Joy AE, Kunhikatta SB, Manikkoth S. Anti-convulsant activity of ethanolic extract of *Moringa concanensis* leaves in Swiss albino mice. *Arch Med Health Sci.* 2013;1(1):6-9.
24. Kou, X.; Qi, S.; Dai, W.; Luo, L.; Yin, Z. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. *Int. Immunopharmacol.* 2011, 11, 1095–1102. [CrossRef] [PubMed]
25. Mahmood, K.T.; Mugal, T.; Haq, I.U. *Moringa oleifera*: A natural gift—A review. *J. Pharm. Sci. Res.* 2010, 2, 775–781.
26. Mehta A, Agrawal B. Investigation into the mechanism of action *Moringa oleifera* for its anti- asthmatic activity. *Orient Pharm Exp Med.* 2008;8(1):24-31.
27. Mehta, K.; Balaraman, R.; Amin, A.H.; Bafna, P.A.; Gulati, O.D. Effect of fruits of *Moringa oleifera* on the lipid profile of normal and hypercholesterolaemic rabbits. *J. Ethnopharmacol.* 2003, 86, 191–195. [CrossRef]
28. Mishra G, Singh P, Verma R, Kumar S, Srivastav S, Jha KK, et al. Traditional uses, phytochemistry and pharmacological properties of *Moringa oleifera* plant: an overview. *Scholars Research Library.* 2011;3(2):141-64.
29. Moura, M.C.; Napoleao, T.H.; Coriolano, M.C.; Paiva, P.M.; Figueiredo, R.C.; Coelho, L.C. Water-soluble *Moringa oleifera* lectin interferes with growth, survival and cell permeability of corrosive and pathogenic bacteria. *J. Appl. Microbiol.* 2015, 119, 666–676. [CrossRef] [PubMed]
30. Nadkarni KM. *Indian materia medica*. Mumbai: Popular Prakashan; 1994. 1319 p.
31. Ndong M, Uehara M, Katsumata S, Suzuki K. Effects of oral administration of *Moringa oleifera* Lam on glucose tolerance in gotokakizaki and wistar rats. *J of Clin Biochem and Nutri.* 2007;40:229-33.
32. Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. *Nutrients* 2016, 8, 552. [CrossRef] [PubMed]
33. Nikkon, F.; Saud, Z.A.; Rahman, M.H.; Haque, M.E. In vitro antimicrobial activity of the compound isolated from chloroform extract of *Moringa oleifera* Lam. *Pakistan J. Biol. Sci.* 2003, 6, 1888–1890.
34. Peixoto, J.R.; Silva, G.C.; Costa, R.A.; de Sousa, F.J.; Vieira, G.H.; Filho, A.A.; Dos, F.V.R. In vitro antibacterial effect of aqueous and ethanolic *Moringa* leaf extracts. *Asian Pac. J. Trop. Med.* 2011, 4, 201–204. [CrossRef]
35. Posmontier, B. The medicinal qualities of *Moringa oleifera*. *Holist. Nurs. Pract.* 2011, 25, 80–87. [CrossRef] [PubMed]
36. Rastogi T, Bhutda V, Moon K, Aswar PB, Khadabad SS. Comparative studies on anthelmintic activity of *Moringa oleifera* and *Vitex Negundo*. *Asian Journal of Research in Chemistry.* 2009;2(2):181-2.
37. Ruckmani, K.; Kavimani, S.; Anandan, R.; Jaykar, B. Effect of *Moringa oleifera* Lam. on paracetamol induced hepatotoxicity. *Indian J. Pharm. Sci.* 1998, 60, 33–35.
38. Sharma VR, Paliwal R, Sharma S. Phytochemical anal-y-sis and evaluation of antioxidant activities of hydroethanolic extract of *Moringa oleifera* Lam. *J Pharm Res.* 2011;4(2):554-7.
39. Shukla S, Mathur R, Prakash AO. Antifertility profile of the aqueous extract of *Moringa oleifera* roots. *J Ethnopharmacol.* 1998;22(1):51-62.
40. Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics for Hispanics/Latinos, 2012. *CA Cancer J. Clin.* 2012, 62, 283–298. [CrossRef] [PubMed]
41. Sreelatha, S.; Padma, P.R. Antioxidant activity and total phenolic content of *Moringa oleifera* leaves in two stages of maturity. *Plant Foods Hum. Nutr.* 2009, 64, 303–311. [CrossRef] [PubMed]
42. Talhaliani P, Kar A. Pharmacological resrch. 2000;41(3):319–23.
43. Tayo GM, Poné JW, Komtangi MC, Yondo J, Ngangout AM, Mbida M. Anthelmintic activity of *Moringa oleifera* leaf extracts evaluated In vitro on four developmental stages of *haemonchus contortus* from goats. *American Journal of Plant Sciences.* 2014;5(11):1702-10.
44. Thapa, A.; Carroll, N.J. Dietary modulation of oxidative stress in Alzheimer’s disease. *Int. J. Mol. Sci.* 2017, 18, 1583. [CrossRef] [PubMed]
45. Vaidya ADB, Devasagayam TPA. Current status of herbal drugs in India: an overview. *J Clin Biochem Nutr.* 2007;41(1):1-11.
46. Verma, A.R.; Vijayakumar, M.; Mathela, C.S.; Rao, C.V. In vitro and in vivo antioxidant properties of different fractions of *Moringa oleifera* leaves. *Food Chem. Toxicol.* 2009, 47, 2196–2201. [CrossRef] [PubMed]
47. Xiao, D.; Srivastava, S.K.; Lew, K.L.; Zeng, Y.; Hershberger, P.; Johnson, C.S.; Trump, D.L.; Singh, S.V. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. *Carcinogenesis* 2003, 24, 891–897. [CrossRef] [PubMed]
48. Zhang, S.F.; Wang, X.L.; Yang, X.Q.; Chen, N. Autophagy-associated targeting pathways of natural products during cancer treatment. *Asian Pac. J. Cancer Prev. APJCP* 2014, 15, 10557–10563. [CrossRef] [PubMed]