ISSN: 2320-2882 JCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

UNVEILING THE MICROCOSM WITHIN: EXPLORING THE GUT MICROBIOME, CCOMPOSITION, FACTORS, AND DISEASE **ASSOCIATIONS**

¹Anjali Godiyal, ²Soibam Princy Chanu, ³Priyanka Sharma ¹Student, ²Student, ³Assistant Professor-II ¹Amity Institute of Virology and Immunology, ¹ Amity University, Noida, India

Abstract: The human gut microbiome, a complex ecosystem of trillions of microorganisms, plays a critical role in human health and disease. This review delves into the intricate world within our gut, exploring its definition, composition, and the diverse factors that influence its delicate balance (diet, genetics, lifestyle, medications). We then navigate the potential links between gut microbiome dysbiosis (imbalance) and various diseases, including inflammatory bowel disease, obesity, type 2 diabetes, and even neurological disorders. Finally, the review explores emerging areas of research, such as the role of the gut microbiome and its therapeutic Interventions with future directions. By understanding the intricate relationship between the gut microbiome and human health, we can pave the way for novel therapeutic strategies and personalized approaches to disease prevention and management.

Index Terms - human gut microbiome, health, disease, dysbiosis, pathogenic

I. INTRODUCTION

Trillions of microorganism's dwells and interact in the human body, which is a complex ecosystem that is crucial for both preventing and treating disease.[1] The human body is made up of an enormous variety of microorganisms, including bacteria, viruses, fungus, and archaea microbiota. These microscopic residents can be found in many different areas of the body [2]. The gut is an example of distinct and important microbial community that have attracted a lot of attention recently because of their crucial role in determining human health and disease susceptibility. [3] Soon after birth, an infant's sterile gastrointestinal tract start to progressively become colonized by microbes, marking the beginning of the human microbiome voyage. The method of birth, the mother's microbiota, breastfeeding, and environmental exposures are some of the variables that affect this process. A person's health and well-being are shaped by these unique microbial populations, which are closely related despite their separate anatomical sites. Early childhood experiences play a crucial role in the dynamic and complex process of establishing an individual's gut microbiota, which can have long-term consequences for their health.[4] The gut microbiome has roughly 3 million genes that create thousands of chemicals, whereas the human genome only has about 23,000 genes [5]. The gut microbiota aids in the body's defense against bacterial invasion by maintaining the integrity of the intestinal epithelium [6]. Microorganisms inhibit pathogenic colonization by a range of competing mechanisms, including as food consumption, pH modification, synthesis of antimicrobial peptides, and effects on cell signaling pathways. Moreover, recent studies have demonstrated the critical role commensal bacteria and the chemicals they generate play in regulating the development, homeostasis, and functionality of innate and adaptive immune cells [7].

Understanding the intricate role of gut microbiota and its impact on health and disease is essential for advancing clinical interventions and public health strategies. This review aims to unravel the intimate role of gut and microbiota, dysbiosis and explore its implications for human health. By elucidating the mechanisms underlying microbiota dysbiosis and its consequences, we can pave the way for innovative therapeutic interventions and preventive measures to promote optimal microbiome health and improve overall wellbeing.

II. Microbiota Dysbiosis of the Gut

A disturbance in the delicate equilibrium of the trillions of bacteria living in your gut is known as gut microbiome dysbiosis. A wide range of distinct microbial species can be found in a healthy gut microbiome. The resilience of the system as a whole decline when this variety declines.

A. The gut microbiota's definition and composition

The gut microbiota is made up of a variety of microbial species, such as viruses, yeast, and bacteria. Ninety percent of the gut microbiota is made up of the key phyla Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia [8]. It may come as a surprise that the microbial community in the human gut remains mostly unaltered even at the phylum level, given that the microbiota is made up of several variables that affect the makeup of the intestinal microbiota. Every individual has the same Bacteroidetes and Firmicutes, even if their relative proportions may change[9]. Within the phylum Firmicutes, there are about 200 different genera, such as Lactobacillus, Bacillus, Clostridium, Enterococcus, and Ruminicoccus. Clostridium genera make roughly 95 percent of the Firmicutes phylum. Within the Bacteroidetes family, two of the most prevalent genera are Prevotella and Bacteroides. Though proportionately less frequent, the Actinobacteria phylum is dominated by the Bifidobacterium genus[10]. Many species, such as Lactobacillus, Bacillus, Clostridium, Enterococcus, and Ruminicoccus, are included in the Firmicutes phylum, which makes up a sizable fraction of the gut microbiota [11]. Clostridium genera comprise approximately 95% of the Firmicute taxonomic group. The two most prevalent genera in the Bacteroidetes phylum are Bacteroides and Prevotella. They are essential for both maintaining a healthy gut microbiome and breaking down complex carbohydrates[12]. Actinobacteria: Although less widespread, this phylum contains important taxa like Bifidobacterium. Certain food components are fermented by Bifidobacterium species, which are recognized for their probiotic qualities and support gut health [13]. Furthermore, the gut microbiota contains organisms like Clostridium difficile and Escherichia coli, which when their populations rise as a result of dysbiosis, can develop into opportunistic pathogens. Serious health problems, including as infections and diarrhea brought on by antibiotics, can result from these overgrowths [14].

B. Factors influencing gut microbiota composition

The composition of this microbial community is far from static, varying significantly between individuals and even within a single person over time. This variability underscores the intricate interplay between host factors and external influences in shaping the gut microbiome and its susceptibility to dysbiosis. When a newborn is delivered vaginally, their microbiota contains a high abundance of lactobacilli for the first few days, reflecting the high load of lactobacilli in the vaginal flora. This suggests that the mode of delivery may also have an impact on the microbiota composition [15]. Contrarily, the microbiota of newborns delivered via C-section is diminished and colonisation by the Bacteroides genus is delayed, but is instead populated by facultative anaerobes like Clostridium species [16]. A child's gut microbiota composition and diversity are most similar to that of adults after the age of two [17]. In individuals over the age of 65, the microbial community shifts, with an increased abundance of Bacteroidetes phyla [18]. Individuals over the age of 70, gut microbiota composition can be affected by metabolic changes and decrease in immune activity. A decrease in anaerobic bacteria such as Bifidobacterium spp. and an increase in Clostridium and Proteobacteria have been observed [19]. While the microbiome of a healthy person is usually stable, lifestyle and dietary culture decisions can surely alter gut microbial dynamics [20]. A study[21] was conducted in Japan between two large Japanese cohorts to analyse the Gut Microbiota.It was resulted that thirteen thirteen genera, including Alistipes, Anaerostipes, Bacteroides, Bifidobacterium, Blautia, Eubacterium halli group, Faecalibacterium, Fusicatenibacter, Lachnoclostridium, Parabacteroides, Roseburia, and Subdoligranulum were predominant among the two cohorts.

C. Effects of gut microbiota dysbiosis on health and Diseases

The intricate relationship between the human gut microbiome and various diseases has garnered significant scientific interest. Beyond its traditional role in digestion, the gut microbiome has been associated with conditions ranging from gastrointestinal disorders to obesity, diabetes, autoimmune diseases, and even mental health issues. IBS has become the most common gastrointestinal disease that can be manifested by symptoms such as headache, fatigue, and fibromyalgia as well as social and mental health impairment.[22] Although IBS does not lead to increased mortality or cancer incidence [23], the severity of symptoms reduces patients' quality of life. In recent systematic reviews involving IBS patients, there is consensus that IBS is associated with an increased Firmicutes/Bacteroidetes ratio, but lower-level taxonomic data show inconsistencies[24] IBD is associated with gut dysbiosis, marked by reduced diversity in beneficial bacteria like Faecalibacterium prausnitzii, Eubacterium spp., and Akkermansia muciniphila and an increase in Escherichia Coli, Enterococcus faecium and Bacteroides spp. [25]. Specific bacteria like Ruminococcus gnavus and Bifidobacterium adolescentis are linked to IBD[26]. Recent studies also highlight disruptions in Lachnospiraceae and Ruminococcaceae families and their associated networks in IBD development[27]. Gastroesophageal reflux disease (GERD) is defined by the regurgitation of stomach contents into the esophagus. Clinically, GERD is frequently associated with symptoms of regurgitation and heartburn. Additionally, it may exhibit unusual extra-esophageal symptoms as chest pain, tooth erosions, a persistent cough, etc[28]. Gluten consumption causes the immune-mediated condition known as celiac disease (CeD) in people who are genetically predisposed to it[29]. Comprehensive evidence from the literature indicates CeD is characterized by microbiota changes, and this dysbiosis, coupled with genetic and environmental variables, may play a significant role in the pathogenesis of CeD[30]. Overall most of the studies from CeD patients showed dysbiosis and revealed an increased number of Gram-negative bacteria, Bacteroides, Firmicutes, E. Coli, Enterobacteriaceae, Staphylococcus, and a decrease in Bifidobacterium, Streptococcus, Provetella and Lactobacillus spp[31]. Anxiety and depression, affecting a quarter of the global population, often coexist and share a strong relationship [32].

III. Conclusion

In conclusion, recognizing the intricate dialogue of the gut microbiomes offers a groundbreaking perspective on human health. Understanding these links could unlock the potential for manipulating the microbiome to prevent or manage chronic diseases in a non-invasive manner. By fostering a deeper understanding of these microbial ecosystems and their intricate communication, we can pave the way for innovative therapeutic strategies. As research continues to unravel the complexities of the human microbiome, we stand poised to unlock a new era of personalized medicine centered on promoting a healthy gut.

REFERENCES

- [1] Huttenhower, C., Gevers, D., Knight, Rob., Abubucker, S., Badger, J. H., Chinwalla, A. T., ... & White, O. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.
- [2] Dekaboruah, E., Suryavanshi, M. V., Chettri, D., & Verma, A. K. (2020). Human microbiome: an academic update on human body site specific surveillance and its possible role. *Archives of Microbiology*, 202, 2147-2167.
- [3] Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., ... & Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. *Nature*, *464*(7285), 59-65.
- [4] Rodríguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I., Juge, N., ... & Collado, M. C. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. *Microbial ecology in health and disease*, 26(1), 26050.
- [5] Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. *Bmj*, *361*.
- [6] Kumar, A., Priyamvada, S., Ge, Y., Jayawardena, D., Singhal, M., Anbazhagan, A. N., ... & Dudeja, P. K. (2021). A novel role of SLC26A3 in the maintenance of intestinal epithelial barrier integrity. *Gastroenterology*, 160(4), 1240-1255.

d640

- [7] Khan, I., Bai, Y., Zha, L., Ullah, N., Ullah, H., Shah, S. R. H., ... & Zhang, C. (2021). Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. *Frontiers in Cellular and Infection Microbiology*, 11, 716299.
- [8] Wang, S., Song, F., Gu, H., Shu, Z., Wei, X., Zhang, K., ... & Liang, W. (2022). Assess the diversity of gut microbiota among healthy adults for forensic application. *Microbial Cell Factories*, 21(1), 46.
- [9] Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. *Cell*, 124(4), 837-848.
- [10] Martens, E. C., Chiang, H. C., & Gordon, J. I. (2008). Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. *Cell host & microbe*, 4(5), 447-457.
- [11] Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., ... & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. *Science*, *334*(6052), 105-108.
- [12] Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L. G., Gratadoux, J. J., ... & Langella, P. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. *Proceedings of the National Academy of Sciences*, 105(43), 16731-16736.
- [13] Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015). Role of the normal gut microbiota. *World journal of gastroenterology: WJG*, 21(29), 8787.
- [14] Akagawa, S., Tsuji, S., Onuma, C., Akagawa, Y., Yamaguchi, T., Yamagishi, M., ... & Kaneko, K. (2019). Effect of delivery mode and nutrition on gut microbiota in neonates. *Annals of Nutrition and Metabolism*, 74(2), 132-139.
- [15] Zhang, C., Li, L., Jin, B., Xu, X., Zuo, X., Li, Y., & Li, Z. (2021). The effects of delivery mode on the gut microbiota and health: state of art. *Frontiers in Microbiology*, *12*, 724449.
- [16] Davis, E. C., Dinsmoor, A. M., Wang, M., & Donovan, S. M. (2020). Microbiome composition in pediatric populations from birth to adolescence: impact of diet and prebiotic and probiotic interventions. *Digestive diseases and sciences*, 65(3), 706-722.
- [17] Martino, C., Dilmore, A. H., Burcham, Z. M., Metcalf, J. L., Jeste, D., & Knight, R. (2022). Microbiota succession throughout life from the cradle to the grave. *Nature Reviews Microbiology*, 20(12), 707-720.
- [18] Hou, K., Wu, Z. X., Chen, X. Y., Wang, J. Q., Zhang, D., Xiao, C., ... & Chen, Z. S. (2022). Microbiota in health and diseases. *Signal transduction and targeted therapy*, 7(1), 1-28.
- [19] Dwiyanto, J., Hussain, M. H., Reidpath, D., Ong, K. S., Qasim, A., Lee, S. W. H., ... & Rahman, S. (2021). Ethnicity influences the gut microbiota of individuals sharing a geographical location: a cross-sectional study from a middle-income country. *Scientific Reports*, 11(1), 2618.
- [20] Park, J., Kato, K., Murakami, H., Hosomi, K., Tanisawa, K., Nakagata, T., ... & Miyachi, M. (2021). Comprehensive analysis of gut microbiota of a healthy population and covariates affecting microbial variation in two large Japanese cohorts. *BMC microbiology*, 21(1), 151.
- [21] Dziewiecka, H., Buttar, H. S., Kasperska, A., Ostapiuk–Karolczuk, J., Domagalska, M., Cichoń, J., & Skarpańska-Stejnborn, A. (2022). Physical activity induced alterations of gut microbiota in humans: a systematic review. *BMC Sports Science, Medicine and Rehabilitation*, 14(1), 122.
- [22] Mazzawi, T. (2022). Gut microbiota manipulation in irritable bowel syndrome. *Microorganisms*, 10(7), 1332.
- [23] Wu, X., Wang, J., Ye, Z., Wang, J., Liao, X., Liv, M., & Svn, Z. (2022). Risk of colorectal cancer in patients with irritable bowel syndrome: A meta-analysis of population-based observational studies. *Frontiers in Medicine*, *9*, 819122.
- [24] Yañez, C. M., Hernández, A. M., Sandoval, A. M., Domínguez, M. A. M., Muñiz, S. A. Z., & Gómez, J. O. G. (2021). Prevalence of Blastocystis and its association with Firmicutes/Bacteroidetes ratio in clinically healthy and metabolically ill subjects. BMC microbiology, 21(1), 339.
- [25] Dahal, R. H., Kim, S., Kim, Y. K., Kim, E. S., & Kim, J. (2023). Insight into gut dysbiosis of patients with inflammatory bowel disease and ischemic colitis. *Frontiers in Microbiology*, 14, 1174832.
- [26] Yilmaz, B., Juillerat, P., Øyås, O., Ramon, C., Bravo, F. D., Franc, Y., ... & Macpherson, A. J. (2019). Microbial network disturbances in relapsing refractory Crohn's disease. *Nature medicine*, 25(2), 323-336.

- [27] Santana, P. T., Rosas, S. L. B., Ribeiro, B. E., Marinho, Y., & de Souza, H. S. (2022). Dysbiosis in inflammatory bowel disease: pathogenic role and potential therapeutic targets. *International journal of molecular sciences*, 23(7), 3464.
- [28] Qiu, X., Zhao, X., Cui, X., Mao, X., Tang, N., Jiao, C., ... & Zhang, H. (2020). Characterization of fungal and bacterial dysbiosis in young adult Chinese patients with Crohn's disease. *Therapeutic advances in gastroenterology*, 13, 1756284820971202.
- [29] Sugihartono, T., Fauzia, K. A., Miftahussurur, M., Waskito, L. A., Rejeki, P. S., I'tishom, R., ... & Yamaoka, Y. (2022). Analysis of gastric microbiota and Helicobacter pylori infection in gastroesophageal reflux disease. Gut pathogens, 14(1), 38.
- [30] Pecora, F., Persico, F., Gismondi, P., Fornaroli, F., Iuliano, S., De'Angelis, G. L., & Esposito, S. (2020). Gut microbiota in celiac disease: is there any role for probiotics?. Frontiers in Immunology, 11, 957.
- [31] Caio, G., Volta, U., Sapone, A., Leffler, D. A., De Giorgio, R., Catassi, C., & Fasano, A. (2019). Celiac disease: a comprehensive current review. *BMC medicine*, *17*, 1-20.
- [32] Jedwab, C. F., Roston, B. C. D. M. B., Toge, A. B. F. D. S., Echeverria, I. F., Tavares, G. O. G., Alvares, M. A., ... & Oliveira, M. R. M. D. (2021). The role of probiotics in the immune response and intestinal microbiota of children with celiac disease: a systematic review. *Revista Paulista de Pediatria*, 40, e2020447.

