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Abstract: The aim of this paper is to discuss weakly compatible mappings and to obtain the fixed point theorems for
two pairs of weakly compatible mappings in b-metric space. The b-metric need not be a continuous function. Here in this
paper, the b-metric under consideration is a continuous function.
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1. INTRODUCTION.

The Banach fixed Point theorem is very popular and useful theorem in Mathematics as well as in other
subjects. In 1989, Bakhtin [1] introduced the concept of generalized b—metric spaces. Boriceanu [2], Mehmat
Kir [3] extended the fixed point theorem in b—metric space. Borkar [4] obtained the common fixed point theorem
for non expansive type mapping. Czerwik [5-6] presented the generalization of Banach fixed point theorem in
b-metric spaces. Using this idea many researchers presented a generalization of the renowned Banach fixed
point theorem in b-metric space. Agrawal [7] presented the existence and uniqueness theorem in b-—Metric
Space. Chopade [8] given common fixed point theorems for contractive type mapping in metric space.
Borgaonkar V.D. and K.L. Bondar [9-10] has obtained the fixed point theorems in b -metric spaces. Roshan
[11] obtained common fixed point of four maps in b—Metric space. Suzuki [12] obtained some basic inequalities
and it’s applications in a b—Metric space.

To generalize the fixed point theorems, the concept of commuting mappings is proven to be very useful.
Jungck [13] has generalized the Banach’s Contraction Principle and proved a fixed point theorem for
commuting mappings. Later, many researchers have obtained the fixed point theorems for commuting
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mappings. Sessa [14] has introduced the notion of weakly commuting mapping and obtained the fixed point
results for such mappings. Later Jungck [15] generalized the concept of commuting mappings and he introduced
the notion of compatible mappings. After that many fixed point results are obtained for compatible mappings.
Jungck et.al. [16] defined the compatible mappings of type (A). In (1998), Jungck and Rhodes [17] have given
the concept of weakly compatible mappings. Many researchers have obtained the fixed point theorems for
weakly compatible mappings assuming the continuity of at least one mapping in various metric spaces.

In this paper, we will obtain the fixed point theorem for two pairs of weakly compatible mappings in b-metric
space for a continuous b-metric.

2. SOME BASIC DEFINITIONS AND PRELIMINARIES

Definition 2.1: Let X be a non-empty set. A function 6: X X X — R is called as a metric provided that for
all u,v,w € X we have,

(i) 8(u,v) =0

(i) 6(u,v) = Oifand onlyifu=v

(iii) 8(u,v) =6(v, u)

(iv) 6(u,v) < 6(u,w) + 6(w,v)
A pair (X, 8) is called as metric space.

Definition 2.2: By Czerwik [5], Let X be a non-empty set and s = 1 be a given real number. A function
6:X X X — R is called as a b- metric provided that for all u,v,w € X we have,

(i) S(u,v) =0

(i)  6(u,v) = 0 ifand onlyifu=v

@iiy  6(u,v) =6(v, u)

(iv)  8(u,v) < s{é6(u,w) + 6(w,v)}
A pair (X, 8) is called as b- metric space. b-metric space is an extension of the usual metric space.

Remark 2.1: If s = 1, then the b-metric space is a usual metric space.

Example 2.1: If X = R, be the set of all real numbersand  d(u,v) = |u—v| V.u,v € R be a usual metric
defined on R, then &§(u,v) = (u—v)? is a b-metric on R with s = 2.

Example 2.2: If (X,d) be a metric space and 8(u,v) = d(u,v)¥ Vu,v € X, where k > 1 is a real number.
Clearly (X, 8) is a b- metric space with s = 2K-1,

Example 2.3: By Boriceanu [2], Let A ={0,1,2} and 6: A X A — R is defined as,

i) 8(0,2) = 6(2,0) =m>2

i) 8(0,1) = 8(1,0) =6(2,1) = 6(1,2) =1

i)  6(0,0) = 6(1,1) =6(2,2) =0
Here, §(a,b) is a metric on A with s = ?
Definition2.3: By Boriceanu [2], Let (X, 8) be a b-metric space then a sequence {u,} in X is said to be a
convergent sequence if there exist u € X such that for all e > 0 there exists n(e) € N such that for n >
n(e) we have §(u,, u) < €. In this case we writelim u, = u

n—oo

Definition2.4: By Boriceanu [2], Let (X,8) be a b-metric space then a sequence {u,} in X is called as
Cauchy sequence if for all e > 0 there exists n(e) € N such that for m,n > n(e) we have §(u,, u,, ) < €.

Definition2.4: By Boriceanu [2], Let (X, &) be a b-metric space then X is said to be complete if every
Cauchy sequence in X is a convergent sequence in X.
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Definition 2.5: Let X be any nonempty  set then two self mappings
P:X — X and Q: X — X are said to be weakly compatible if, PQ(x) = QP(x) whenever, Px = Qx for
some x € X.

Example 2.3: Let X = R. Define P,Q:X - X as P(x) = x? + x — 4 and Q(x) = x. Here, P(2) =2 and
Q(2) =2, Hence, QP(2) =2 and PQ(2) = 2.
~ P and Q are weakly compatible.

Example 2.4: Let X = R. Define P,Q:X - X as P(x) = x? —x—1 and Q(x) = —x. Here, P(1) = —1 and
Q(1) = —1and QP(1) = —1 Hence, PQ(1) = —1.
~ P and Q are weakly compatible.

Remark 2.2: The b-metric under consideration in this chapter is a continuous function.

Lemma 2.1: Let (X, 5) be a complete b-metric space with s > 1, and let {x,} be a sequence in X. Assume
that there exist r € [0,1) satisfying,

8(Xp+1,Xnt2) < 1é8(Xpy, Xp41) forany n € N.

Then {x,} is Cauchy sequence in X.

3. MAIN RESULT.
Theorem 3.1: Let P,Q,R and S be self-mappings of a complete b-metric space (X, d) with s > 1 such that,
(3.1) P(X) c S(X) and Q(X) < R(X).
(3.2) [1 + ad(Rx,Sy)]d(Px,Qy) < a max{d(Qy, Sy).d(Px, Rx), d(Px, Sy).d(Rx, Qy)}
+ B max{d(Rx, Sy), d(Sy, Qy)} holds for all x,y € X,
+2[d(Px, Sy) + d(Px, Rx)],
where, 0 <a<1,0<B<land0<y< 1satisfying,[3+2ys<§.

(3.3) The pairs (P,R) and (Q, S) are weakly compatible.
(3.4.) One of the P,Q,R and S is continuous.
Then prove that P, Q, R and S have a unique common fixed point in X,

Proof: Existence of Fixed Point:

Let x, € X be an arbitrary point. For x, € X, choose a point x; € X, such that, Px, = Sx;. Also, for x; € X,
choose a point x, € X, such that, Qx; = Rx,. By continuing this process, we define a sequence {y,,} in X as,

Yon = PXxyn = Sxppy1 and Yopiq = QXzp41 = RXopip, V. n=0,12,....

Firstly, we will prove that, {y,,} is a Cauchy sequence in X.
Putx = x,,4, and y = x,,,44 In condition (3.2) then we get,

[1+ a d(Rx2n42, SXon4+1)]1d(PXan42, QXony1) < a max {d(QXzpn41, SX2n41). A(PXopny2, RXon42),
A(Pxan+2, SXan+1)- A(RXopn42, QXon41)}
+B max {d(RXzn+2, SXon+1), A(SX2n11, QXon1)}

14
+ > [d(PX2n42,SXan41) + A(PXopn42, RXon42)]
[1+a dWons1, Yo )ldWons2: Yons1) < @ max {d(Vont1, Yon)- AVant2, Yons1),

dYVan+2: Yon) - AWVan+1, Yon+1)}
+ﬁ max {d(y2n+1' yZn): d(yan YZn+1)}

Y
+ > [dY2n+2,Y2n) + AVan+2s Yan+1)]
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AdWan+1,Yan+2) T @ AVon Yont1)-AVans1, Yonez) < @ max {d(Van, Yon+1) - AVont1, Yan+2)s
d(yZn' y2n+2)- 0} + Bd()’Zn' YZn+1)

ys ys
+ > AdYVon Yon+1) + > d(YVan+1) Yan+2)

Y
+ > d(Yan+1 Yon+2)

AdWVon+1, Yont2) T & AWon Yont1)- AVons1, Yoni2) < @dVon, Yont1)- d()’2n+1')’2n+2)

+Bd(Yan, Yan+1) + d(yan Yan+1)

ys+vy

+ > d(Yan+1) 3’2n+2)

[1 - ()/ ST )/)] dYan+1, Yans2) < (ﬁ + )d(yZn'y2n+1)

¥s
B+5

 dVane1, Yanez) < @) 42 Yans1)
2

o dWan+1 Yon+2) < 1dVon Yon+1)

4
where r = lTﬁy <1
1-(5%)

=~ In general, we have, forany n € N,

wf+2ys<1

S AWns1, Yne2) < 1AV Yne1)
Therefore, by Lemma (2.1), {y,,} is a Cauchy sequence in X, hence it converges to a point y, in X.

~ limy, =y,
n—-oo

s limyy, = llm}’2n+1 Yo

n—->oo

=~ The subsequences Px,,, Sx254+1, QX251 @aNd Rx,, CONverges to y,.
Now, suppose P is continuous. Therefore, the sequences P2x,,, and PRx,,, converges to Py,. As the
mappings P and R are weakly compatible therefore by proposition 2.8. in [19], We have,

limRRx,, = Py,.
n—-oo

Now, put x = Rx,, and y = x,,,, in condition (3.2) then we get,

[1+ a d(RRx2p, Sx2n41)]d(PRX3p, QX2pt1) < @ max{d(QX2pn 41, SX2p41)- Ad(PRX2p, RRX5p),
d(PRx2p, SX2n41)- A(RRX2y, Qx2n+1)}
+B max{d(RRx2p, Sx2n+1), A(SX2n41, QX2n4+1)}

Y
+ 3 [d(PRx5,, SX9n41) + A(PRx5,, RRX5,)].

Taking lim as n — oo, on both sides then we get,

[1+ a d(Pyo,yo)ld(Pyo,yo) < a max{d(yo,Yo).-d(Pyo, PYo), d(Pyo,¥o)- Ad(PYo,Yo)}
+B max{d(Pyo,¥o), d(Vo,Y0)}

Y
+E [d(Pyo, ¥0) + d(Pyo, Pyo)]

~ d(Pyo,yo) + @ d(Pyo,¥0)-d(Pyo,¥o) < a d(Pyo,¥o)-d(Pyo,¥o)

Y
+B d(Pyo,yo) + Ed(PYO;}’o)
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|4
= d(Pyo, ¥0) < B d(Pyo,¥o) +5d(Pyo, ¥o)

(1 —B- %) d(Pyo,y0) <0

<1 ~(p+ g)) d(Pyo, yo) < 0

asﬁ+g<ﬁ+2ys<1therefore1—(ﬁ+§)>0

0 < d(Pyp,y0) <0
= d(Pyo,y0) =0
= Pyo = Yo

~ v, Is fixed point of mapping P.
We have P(X) c S(X), therefore, there exists a point y, € X, such that y, = Sy;.
Now, put x = Rx,, and y = y; in condition (3.2), then we get,

[1+ a d(RRx2p, Sy1)]d(PRx2,, Qy1) < a max{d(Qy;,Sy1). d(PRX;pn, RRX;y),
d(PRx3,,Sy1).d(RRX2p, Qy1)}
+p max{d(RRx;,,Sy1),d(Sy1, Qy1)}

+ % [d(PRx, Sy1) + d(PRxyy, RR%p)].

Taking lim as n — oo on both sides then we get,

[1+a d(Pyo,yo)ld(Pyo, Qy:) < a max{d(Qy1,Yo).-d(PYo,PYo),
d(Pyo,¥o)-d(Pyo, Qy1)}
+B max{d(Pyo, ¥o), d(¥o, Qy1)}

Y
+51d(Pyo, yo) +d(Pyo, Pyo)l.
But, Py, = y, and Sy; = y, then we get,

S [+ a d(yo, ¥0)1d(o, Qy1) < a max{d(Qy1,¥0)-d(¥o, ¥0), d(¥o, ¥o)- d(¥o, Qy1)}
+p maX{d(YO'YO):d(YO' QY1)}

Y Y
+ > d(yo,y0) + 5 d(Yo,¥o)

= d(yo, Qy1) = B d(¥o, Qy1)
~0=<(1-p)doQy:) =0
= d(y0,Qy1) =0 v p<1
QY1 = Yo
= Qy1 = Sy1 = Yo.
But, Q and S are weakly compatible, therefore QSy; = SQy,
= Qyo = Syo.

Put, x = x,, and y = y, in condition (3.2) then we get,
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[1+ a d(Rxzn, SYo)1d(Px2n, Q¥o) < a max{d(QYyo,Syo)- d(Pxzp, Rx2p),
d(Px2n,S¥0)- d(Rx2n, Q¥o)}
+B max{d(Rxzn, S¥o), d(Syo, Q¥0)}

Y Y
+Ed(Px2nr 53’0) + Ed(PxZn' RxZn)-

Taking lim as n — oo on both sides then we get,

[1+ a d(¥e,Syo)ld(Ve, Qyo) < a max{d(Qyo,SYo).-d(YVo,Y0), d(Vo,SY0)-d(¥o, QY0)}
+B max{d(¥o,S¥o), d(Sy0, Qyo)}

Y Y
+ Ed(YO»SYO) + Ed(}’o;%)
Ao, Qyo) + @ d(¥o,5¥0)-d(¥0, Q¥o) =< a d(¥o,Sy0)-d(¥o, QYo)
Y
+B d(¥o,Syo) + Ed(}’ms)’o)

- (v, Qy0) < (B +2) d0vo,5y0)

“ d(yo,Syo) < (ﬁ + g) d (Yo, S¥o) by (5.3.1)
(1 - (,8 + g)) d(¥0,5y0) <0

20<d(yeSy) <0 ﬁ+§<ﬁ+2ys< 1

~d(Y0,5y0) =0

= SYyo = Yo-

Therefore, by (3.1) we have, Qy, = yo.

Hence y, is fixed point of both S and Q.

Now, Q(X) c R(X) therefore there exist a point y, € X, such that Ry, = y,.
Putx =y, and y = x,,.,, in condition (3.2.) then we get,

[1+ a d(Ryz, SXon41)]1d(PY2, Qx2p41) < a max{d(QXzn+1, SX2n+1)- A(PY2, Ry2),
d(Py,, Sxon41)-A(RY2, QXon41)}
+B max{d(Ry, SX2n+1), A(SX2n+1, QX2n+1)}

Y
+§ [d(Py,, SxX2n41) + d(Py2, Ry,)].
Taking lim as n — oo on both sides, then we get,

[1+ a d(yo,y0)1d(Py2,¥0) < a max{d(yo,Yo) - d(PY2,¥0), d(PYy2, Vo). d(Vo, ¥o)}
+B max{d(yo,¥o), d(Yo, ¥0)}

Y
+§ [d(Py2,y0) + d(Py,,¥o)]
d(Py2,¥0) < vd(Py,, ¥o)
(1 -y)d(Py2,y0) <0
but (1 — y) # 0, therefore we get,
0<d(Pyzy) <0

Py, =yo
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~ Py; = Ry, = Y.

The mappings P and R are weakly compatible mappings.

. Py, = Ry,
= PRyZ ES prz
= Pyo = Ry,

=>Yo=Ry, =~ Pys=Yo

~ v, Is fixed point of mapping R.
Hence, the mappings P, Q, R and S have a common fixed point y,.

Uniqueness of Fixed Point:
Suppose y', be another common fixed point of P, Q, R and S. We have,

Py s =Qy's=Ry'o =5y's =¥0.
Put x = y, and y = vy, in condition (3.2) then we get

[1+ a d(Ry,, Sy'0)]1d(Pye, Qy'o) < a max{d(Qy',Sy's). d(Pyo, Ryy),
d(Pyo,Sy'0). d(Ryy, leo)}
+ﬁ maX{d(RYO; Sy,o), d(Sy,Ol QYIO)}

14 ;
+§ [d(Pyo, Sy'o) + d(Pyo, Ry,)]

[1+adyey )ldWey'o) <amax{d('o,¥'0)-d¥Vo Yo), d¥0,¥'0)- Ao,y 0)}
+B max{d(¥0,¥'0), Ay 0,¥'0)}

Y ;
+§ [d(yo, ¥ 0) + d Vo, ¥0)]

A I 1A ! A 1A y !
Ao, ¥'0) + a d(¥e,¥'0)- Ao, ¥'0) < a d(¥o,¥'0)- Ao, ¥ 0) + B.d(ye, o) +zd(y0,y 0)
[1—(B+Z)]d(y Y'o)<0

2 0 0 —_
/ Y
~0=<dyo,yo) <0 "'ﬁ+§< 1

~d(¥o,¥'0) =0
“Yo =Y
Hence, the mappings P, @, R and S have a unique common fixed point y, in X.
Corollary 3.1: Let P,Q, R and S be the self maps of a complete b—metric space (X, d) with s=>1
satisfying condition (3.1) and
d(Px,Qy) < B max {d(Rx,Sy),d(Sy,Qy)} + g [d(Px,Sy) + d(Px, Rx)]

where, 0 < f < 1and 0 <y <1 are such that g + 2ys < 1. Suppose one of the mappings P,Q,R and S is
continuous. If the pairs (P, R) and (Q, S) are weakly compatible then P, Q, R and S have unique common fixed
pointin X.
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4.

DISCUSSION AND THE CONCLUDING REMARKS

In this paper, we have proved the existence and uniqueness of common fixed points for two pairs of weakly
compatible mappings in b—metric space.
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