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Abstract- In this paper, we provide the analysis of the natural transformation for certain distribution spaces
in terms of the fractional integral and differential operators of the transform. There are two parts to this
composition. The first is a brief introduction to fractional operators and the less researched and well-known
natural transform. The basis for the research study is the understanding that the fractional integral and the
Laplace and Sumudu transforms may be expressed as one of the appropriate representations of the Abel

integral problem.
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Introduction

Laplace and Sumudu transformations are closely linked to the natural transform. Khan and Khan (1)
introduced the natural transform, often known as the N-transform, and (2, 5) studied its characteristics.
Maxwell's equations (3,4) were solved using the natural transform; more research on the natural transform
might be explored. The natural transform often works with functions that are continuous and continuously
differentiable, or if we suppose that the function is both continuous and fractionally derivative. The natural
transform does not work as well as the Laplace and Sumudu transforms, however, since the function is not
derivative. Therefore, in a same vein, we must redefine "natural transform.” The integral transform approach
has several applications in a wide range of technological and scientific fields. Ordinary and partial differential
equations, which are often derived from physical occurrences, may be resolved using the integral transform
approach. This is the basic principle that motivates researchers to create new integral transformations that
are used to solve a number of problems in applied mathematics. The natural transform (N-transform), a novel

integral transform, was recently introduced by academics, who also looked at its properties and its
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applications (1). Later, several of the properties and applications of natural transforms were discussed, and

the inverse natural transform was defined (1, 2). The powerful analytical tools of the distribution theory may
be used to tackle many problems that arise in the applied sector. Consequently, the various integral
transformations to the distribution space (6, 7, 8, 9, 10, 11, 12, 13, and 14) are defined. The objective of this
study is to extend the Natural transform in the distributional space with compact support and investigate

some properties and theorems of the generalized integral transform.

Natural Transform

With reference to the articles [13] [14], the basic definitions of natural transform and its properties are
introduced as follows:

o S -— 1 F= . o—1 -~
5 0)(x): —r(m-a{“ N @(t)dt . x> a "

(IEh)(x) = r( . [ -0 g@dr . x<b. o

where 0 > o, (o being the order). These integrals are also known as the Riemann-Liouville fractional integrals

or the left - sided and right - sided fractional integrals, respectively. The integrals given in (1) and (2) are
extensions to half and (or) whole axis finite interval [a, b]. These may be used on the half axis) (a, «) or (—o,

b) respectively, subject to the variable limit of integration. For the half axis, we write

vl +¢')( X) = —— (T — I)a - {f)di‘ 0= x<w
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and on the whole real axis, it is given by
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and

(IZo)(x) = —J (t—-x)pt)dt , —om<x<®
()

Fractional derivatives of order o,0< a <1 are also called Riemann-Liouville fractional derivatives or the left

- handed and right - handed fractional derivatives, respectively, in the interval [a, b].
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Natural Transform of Fractional Derivative

If N [f (t)] is the natural transform of the function f (t), then the natural transform of fractional derivative of

order a is defined as:

N[ 79 (0)] =R (su)- 5 1" (0)

u k=0 U (6)

Let the function f (t) belongs to set A be multiplied with weight function e*! then,

N[e*f(1)]=— R[ - }

STu | SFu

Let the function f (at) belongs to set A, where a is non zero constant then,

N[ f(at)]= éR[i,u}

a

If w" (t) is given by

:.[(i"'_[,:f(t)(dt

Then the natural transform of w" (t) is
" u
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Proof: Let (s, u) be arbitrary but fixed point in
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Choose the real positive number a,b and r such that
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Let AS be the complex increment such that | , and as
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where M is constant independent of E and t. Moreover
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The RHS is independent of t and converges to zero as |&S‘ —0 :
Was D ‘&5‘ —

This shows that convergestozeroin ¢ b as which completes the proof of theorem.
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Similar proof can be made for another variable u.

Conclusion

In this article, we defined the generalized natural transform and extended the natural transform in the
distributional space with compact support. The inversion and analyticity theorems are shown. This work may
open up new avenues for the study of generalized integral transforms. The Sumudu transform defined for a
particular test function space can also be considered for the Schwartz space (those with similar properties),
since the Riemann-Liouville fractional integral can be expressed as one of the forms of the Abel integral
equation and the solution obtained is one of the fractional derivatives.
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