IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

The Nature Of The Black Matter: An Extrapolation Of Pair Creation

Author: Pascal Wery*, Catholic University of Louvain, Walloon Brabant, Belgium

https://www.pascalwery.com Orcid: 0000-0002-5028-7869 E-mail: pascal.wery@gmx.fr

<u>Abstract</u>

Dark Matter is one of the greatest unknowns in the cosmos, despite being the most important gravitational component. Indeed, Dark Matter is the most prevalent matter, and its bulk has an impact on the design of the universe. It has permitted the construction and preservation of cosmic structures. Thus, understanding the cosmos without knowing its properties is extremely difficult. However, it only reacts to gravity.

In the microworld, there are no direct interactions with Dark Matter that have been identified. Due to this lack of interactions, Wimps or supersymmetric particles also appear to be doubtful concepts. In fact, do the Dark Matter we're seeking react little or not at all? For example, the sun only combines a few ions because it is a rare quantum fusion due to the tunnel effect. Thus, only the exception fuses, not the mass. So, the sun has been shining for a very long time and will continue to do so for billions of years. However, only a small amount of mass is transformed into energy in this fusion. As a result, the sun beams "little" with "little"... a gigantic mass! This limitless number of particles multiplies the likelihood of combining, causing the sun to shine brightly. It is believed that Dark Matter is abundant, as it is responsible for the majority of the universe's gravity. Thus, reacting a "little" with a "little" bit, with all this mass, must inevitably result in consequences, even if they are minor, like neutrinos. Surprisingly, it doesn't seem to be a weak reaction, but rather the complete lack of direct reactivity with half-integer spin or whole-number spin, even in our particle accelerators. Indeed, Dark Matter is not only invisible to us because it lacks a measurable electromagnetic field, but it also exhibits no nuclear reaction at all. The only effects observed are gravitational. This absence of interaction leads to the conclusion that Dark Matter appears to be completely unresponsive to our matter or energetic forces.

In the macroworld, there are also contradictions between predictions (the quantity of small galaxies and their orbits) and some observations about Dark Matter. It appears that its distribution is unexpected. Indeed, the absence of a gravitational core indicates that Dark Matter can only affect large areas without any concentrated gravitational field, suggesting that it lacks concentration.

In conclusion, the only thing we know about it is its non-properties, or what it does not do, which is react with our own matter and fundamental forces (except gravity). It also cover only enormous areas (big gravitational lenses). Therefore, it remains a big mystery that does not match any model predictions, leading to the suggestion of alternative models for Dark Matter.

The starting point is to apply the right symmetry. Indeed, if supersymmetry is failing because it is not generating results, what about pair production symmetry? Indeed, this is the only other symmetry that could possibly exist: in essence, the opposite of everything is generated, therefore, each North Pole is produced with its corresponding South Pole, each charge with its opposite and each polarity with its corresponding inverted rotation. Even the EPR paradox is based on pair production, which is a quantum entanglement that generates a pair of antisymmetric spins. Therefore, it seems that the production of opposite pairs is a recurrent phenomenon. I refer to this symmetry as a type of universal equilibrium as the others (translation, rotation, temporality and charges).

In this setting, energy is not linked to mass (supersymmetry), but rather to its opposite (pair production symmetry). Therefore, we are looking for characteristics of energies that are opposite to our own, just as antimatter is opposite to matter. In summary, we extrapolate the half-integer spin conflict with the whole-number spin.

Keywords: DM, black force, black matter, dark force, dark matter, Dark Matter, pair production, gravity, symmetry, supersymmetry, wimps

Discussion

What about opposing pair production symmetry with energy? There would be two types of energy: one positive and one negative. However, since energy can take on the same quantum state in the same space-time, these two forms can coexist without touching. In fact, energy does not interact with itself; rather, it concentrates on matter. Lasers that intersect do not make contact between themselves, they just mix their presences. Their interactions do not oppose each other but add up on matter! As a result, positive and negative energies can coexist in the same world; there is no annihilation between these two opposites since they do not touch each other.

But what do the terms "positive" and "negative" energy mean? This means that the properties of energies need to be reversed, but these are identical to our own: electromagnetic and nuclear forces. In short, these antisymmetric forces are essentially our own inverted energy forces. The idea is that what attracts turns into what repels. The powerful inverted nuclear force, for instance, is a repulsive force instead of a binding one. As a result, it does not bind its quarks together, but rather drives them apart.

The force of gravity, on the other hand, is an exception: the Higgs' boson that begins the mass has a spin of zero, not a whole-number spin. Indeed, a spin zero has quite different features than a whole spin: the direction of the whole spin (vector) is important, whereas the orientation of the zero spin (scalar) has no significance. Therefore, as soon as quanta of energy ignites a field of fermion or antifermion, it also ignites the Higgs' field, which gives a mass to any half-integer spin; matter, or antimatter. As a result, we can conclude that this inversion of forces has no impact on any mass. To sum up, the inverse of gravity caused by mass is itself.

These opposing energies, like ours, produce matters whose masses will follow gravity automatically. However, these are only affected by those opposing forces and not ours. Repulsive forces that speak of matters spreading in space. As a result, Pauli's exclusion principle has no effect on these. This one prohibits identical material particles with the same properties from sharing the same space-time. However, because these particles have different attributes, they can do so. Furthermore, because they do not react to our fundamental forces, they are completely invisible and undetectable to us. As a result, even if they covered our entire horizon, we would not be able to tell them apart! Except for their gravity, because they still are material forms, therefore half-integer spin. Because of these characteristics, they interact with the Higgs' field, which gives them a mass that can grow in response to energies such as heat.

These matters, being associated with repulsive forces, would reject each other violently. As a result, there would be no baryogenocide (matter annihilation) with baryogenesis (matter production). Indeed, our fundamental forces allow matter to touch antimatter, leading to annihilation and only a small percentage of matter remains. This surviving residue is what makes up our observable cosmos. However, because these strange matters repel each other, there is no conflict; everyone is fleeing. As a result, because they do not interact with each other, these matters and antimatters would coexist peacefully. That would mean that the number of their particles is far greater than ours. Furthermore, owing of the repelling forces, they would never collapse on themselves. Consequently, their mass cannot form concentrated gravity (core/cups). On the contrary, these matters would be fluid and imperceptible, while, due to their large quantity, they would spread over vast areas.

They would prefer to follow a non-repulsive mass, so, a mass that does not react with their own forces. In short, they would prefer to follow our matter rather than theirs and thus follow all these gravitational fields. Fields that they would amplify with their own mass. And because of the large amount of these matters with their antimatters, these fields would be very broad. Doesn't that remind you of something? But yes, the ghost gravity! In other words, we are talking about Dark Matter! Dark Matter: a simple symmetry of pair production that begins with energy! Interesting, isn't it?

Similarly, these particles also react with the effect of vacuum, a quantum vacuum that engages a pressure. With our matter, the vacuum pressure is minute, but with virtual repelling particles, it grows considerably stronger. Because the inverted strong force and electromagnetism are repulsive, they exert maximal pressure on these virtual repelling particles in the quantum vacuum. The whole thing produces a universal repellent field. Is there anything else it reminds you of? But, perhaps, the universal expansion? If that is the case, the spread of space depends on gravity that opposes it. Therefore, the pressure varies with the density of the universe. The expansion of a dense universe, full of gravity, is thin, while an empty universe, that leaks gravity, expands faster. This means that the expansion of the universe is accelerating with time, especially where gravity is weak, as observed.

Going further, we can also consider electromagnetism which is repulsive between the same charges. In this case, an inversion of the fundamental forces gives an attractive effect between the same charges. Thus their opposed leptons could attract between the same charges and repel between different charges. Therefore these electrons repel their positrons but associate with each other and vice versa for the positrons. Considering the incredible mass of these matters, such a disposition would lead to a collapse of its leptons into extremely massive black holes. The smallest would be intermediate but a lot would be super massive black holes. As a result, they would follow and amplify the initial gravitational fluctuations of the universe, which would result in the formation of quasars. Thus, they would be at the origin of a very mature universe because giant galaxies would have formed very early! This is evidenced by the observations of James Webb.

Findings

Thus, by extrapolating the symmetry of pair production, we can discover a very odd energy and matter with features that appear to correspond to Dark Force and Dark Matter. Indeed, these energies not only produce radiation pressure on a universal scale but also compounds with properties comparable to Dark Matter: a huge amount of fermions that do not react with our fundamental forces or matter and which define wide gravitational fields that are incapable of collapsing on themselves. They cannot be created, eliminated, or banged, resulting in no interaction at all in our particle accelerators, not even a weak one! In conclusion, one symmetry is not the same as the other: the pair production symmetry is winning while Suzy is losing. Yet, everyone focuses on losing supersymmetry instead of considering the winning symmetry!

Conclusion

In this cosmos, everything is produced by pairs. It's not a coincidence; it's a result of physical principles. Those are not local but universal; they are applicable throughout the cosmos. Therefore, every North Pole has a South Pole, every spin has a counter rotation, every matter has an antimatter, and every energy has an opposite. Pair formation is a random, equidistant, immediate, and global phenomenon. The only thing that appears to be unique is the space-time itself, which is shared by all particles. A space-time that reacts to gravity because of the mass of all its matters, regardless of the type. Indeed, the fact that the Higgs' boson is scalar prevents it from being reversed.

Demonstration

This theory offers enough arguments to continue the research through simulations that are beyond my reach. Simulations that show particles obeying dark strong nuclear force (taking into account its interactions, in other words, only its repulsive effects) and gravity. Allow everything to simmer before adding a neutral mass (the Milky Way galaxy). Examine what causes all of the movements. They will, in my opinion, all follow the neutral mass and add their own mass along the way (explaining the gravity of every location in the galaxy). If this is the case, the simulation is worthy of a Nobel Prize because whomever created it has also demonstrated the existence of Dark Matter! Best wishes to these knowledge explorers.

Conflict of interest

This theory is related to a book: "The origin of matter". This book is a product of a French encyclopedia named "Les Enseignements de l'Ange". This collection has a lot of theories, including the beginning of life in the second tome (Les origines de la vie). So, there is conflict of interest: being right makes sales while being wrong makes idiots! This can lead to human blunders. This is why we must exercise caution: because conflict is unavoidable, information can only be validated if it is confirmed by a computer simulation.

The debate

Science is strange: we make extraordinary discoveries but since we do not understand them, we often miss out on little wonders. Here is an example: the pair production symmetry is misunderstood and underestimated.

References

Zavala J, Lovell MR, Vogelsberger M, Burger JD. Diverse Dark Matter density at sub-kiloparsec scales in Milky Way satellites: Implications for the nature of Dark Matter. Phys. Rev. D 100, 063007 (2019)

Benito M, Criado JC, Hütsi G, Raidal M, Veermäe H. Implications of Milky Way substructures for the nature of Dark Matter. Physical Review D 101, 103023 (2020)

Beltran M, Hooper D, Kolb EW, Krusberg ZA, Tait TM. Maverick Dark Matter at colliders. Journal of High Energy Physics 1009:037, 2010

Metcalf RB, Silk J. A Fundamental test of the nature of Dark Matter. The Astrophysical Journal May 1999 Volume 519, Number 1