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ABSTRACT 
This paper advocates an information summarization for every 
fleet, the methodology should apply and adapt to approach 

supported distance instead of the standard period of several 
completely different vehicle technologies (including time once 
developing personal machine learning models for fuel future 
ones) and configurations while not elaborated data of the 
consumption. This approach is employed in conjunction with 
some vehicles specific physical characteristics and 
measurements. predictors derived from speed and road grade to 
provide whole fleet. The predictors of the model square measure 
collective over mounted window sizes of distance traveled. 
completely different window sizes square measure evaluated and 
also the results show that a one-kilometer window is in a position 
to predict fuel consumption with a zero.91 constant of 
determination and mean absolute peak-to-peak % error but four-
dimensional for routes that embrace each town and main road 
duty cycle segments. [9]. 
 
Index Terms: vehicle modeling, neural networks, average fuel 
consumption, data summarization, fleet management. 

 

I. INTRODUCTION 
Fuel consumption models for vehicles are of interest to makers, 

regulators, and customers. they're required across all the phases 

of the vehicle life-cycle. In this paper, we tend to specialize in 

modeling average fuel consumption for significant vehicles 

throughout the operation and maintenance part. In general, 

techniques won’t to develop models for fuel consumption make 

up 3 main categories: 

 Physics-based models, that are derived from AN in- 

depth understanding of the physical system. These models 

describe the dynamics of the elements of the vehicle at whenever 

step victimization careful mathematical equations [1], [2]. 

 Machine learning models, that are data-driven And 

rep- resent AN abstract mapping from AN input house consisting 

of a specific set of predictors to an output house that represents the 

target output, during this case average fuel consumption [3], [4]. 

 Statistical models, that also are data-driven and estab- 

lish a mapping between the likelihood distribution of a specific 

set of predictors and also the target outcome [5], [6]. 

Trade-offs among the on top of techniques are primarily with 

relevance value and accuracy as per the necessities of the meant 

application. 

 
In this paper, a model that may be simply developed for 

individual significant vehicles in a very massive fleet is 

projected. hoping on correct models of all of the vehicles in a very 

fleet, a fleet manager will optimize the route designing for all of 

the vehicles supported every distinctive vehicle foretold fuel 

consumption thereby guaranteeing the route assignments are 

aligned to attenuate overall fleet fuel consumption. These forms 

of fleets exist in numerous sectors together with, road 

transportation of products public transportation construction 

trucks  and refuse trucks [7], [3], [8]. 

 
 

These necessities   build   machine   learning   the   technique 

of an extremely prognosticative neural network model for 
average fuel  selection once taking into thought the required 
accuracy consumption in significant vehicles. The projected 
versus model will the value of the event associated adaptation 
of an          individualized an exceedingly fleet so as to optimize fuel 
consumption over the model for every vehicle within the fleet. 
 

Several previous models for each fast and average fuel 

consumption are projected. Physics-based models are best fitted 

to predicting fast fuel consumption as a result of they will capture 

the dynamics of the behavior of the system at completely 

different time steps. Machine learning models aren't ready to 

predict fast fuel consumption with a high level of accuracy owing 

to the issue related to distinctive patterns in fast knowledge. 

However, these models are ready to establish associated learn 

trends in average fuel consumption with an adequate level of 

accuracy [4],[1],[2],[3]. 

Previously projected machine learning models for average fuel 

consumption use a group of predictors that are collected over a 

period of time to predict the corresponding fuel consumption in 

terms of either gallons per mile or liters per kilometer. whereas 

still specializing in average fuel consumption, our projected 

approach differs from that employed in previous models as a 

result of the input house of the predictors is quantal with relation 

to fastened a hard and fast a set} distance as against a fixed 

period of time. within the projected model, all the predictors ar 

aggregate with relation to a hard and fast window that represents 

{the distance the house the gap} traveled by the vehicle thereby 

providing a stronger mapping from the input house to the output 

space of the model. In distinction, previous machine learning 

models should not solely learn the patterns within the input file 

however additionally perform a conversion from the time- 

primarily based scale of the input domain to the distance-based 

scale of the output domain (i.e., average fuel consumption). 

 

Here we using the same scale for both the input and output 

spaces of the model offers several benefits: 

 The data is collected at a rate that is proportional to its 

impact on the outcome. When the input space is sampled with 

respect to time, the amount of data collected from a vehicle at a 

stop is the same as the amount of data collected when the vehicle 

is moving. 

  The predictors within the model are able and ready to 

capture the impact of each the duty cycle and therefore the 

atmosphere on the common fuel consumption of the vehicle 

(e.g., the amount of stops in Associate in Nursing urban traffic 

over a given distance). 
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 New technologies such as V2I and dynamic traffic man- 

agreement can be leveraged for additional fuel efficiency 

optimization at the level of each specific vehicle, route and time 

of day. [10]–[12]. 

The remainder of the paper is organized as follows: Section II 

includes a review of previous connected work, Section III 

introduces the planned machine learning model, Section IV 

describes the method used for data collection and data 

summarization, Section V presents the results of applying the 

planned model underneath totally different configurations, and 

Section VI summarizes the principle findings of this study and 

offers direction for future work. 

 

II. RELATED WORK 
As mentioned on top of, physics-based, machine learning, and 

applied mathematics models have all been wont to model average 

fuel consumption. The EPA and also the European Commission 

developed physics- based, full vehicle simulation models for 

significant duty vehicles [1], [2].  

These models area unit capable of predicting average fuel 

consumption with associate accuracy of±3% compared to real 

measurements obtained from a flowmeter [2]. This level of 

accuracy comes at the value of a considerable development 

effort. At the opposite finish of the modeling spectrum area unit 

applied mathematics procedures that area unit applied 

underneath strict testing conditions to make sure that the 

reportable results area unit standardized and repeatable. for 

instance, the model projected by the Code of Federal Regulation 

(CFR) estimates fuel consumption for brand spanking new 

vehicles by exploitation well outlined applied mathematics 

strategies for specific duty cycles created from segments of planet 

journeys. Similarly, the SAE J1321 normal is used to estimate 

fuel consumption when market modifications or underneath 

varied operative conditions for trucks and buses[5][6] . This 

normal com- pares similar vehicles following identical route 

underneath similar operative conditions exploitation real 

knowledge collected from the sector. for instance, the quality 

was utilized in to match the fuel consumption of an impression 

vehicle thereto of 2 take a look at vehicles when dynamical 

lubrication fluids within the engine, transmission and shaft. the 

quality was conjointly used in to live the performance of 3 fuel 

technologies in 2 vehicles operative in coal mines. The 

generalizable characteristics of machine learning mod- else to 

completely different completely different} vehicles and different 

operative conditions created this modeling methodology 

engaging for fuel consumption prediction in several studies. 

within the remainder of this section we have a tendency to 

discuss these models with regard to the underlying machine 

learning technique, the illustration of the input area and also the 

illustration of the output area[8]. 

Different types of machine learning techniques are used and 

compared for the aim of modeling fuel con- Sumption. as an 

example, gradient boosting, neural networks and random forest 

area unit compared in neural networks and variable regression 

splines area unit compared in and support vector machine, neural 

networks and random forest area unit compared in [7][3][4]. 

supported the results, these studies determine a way of selection. 

but the variations between these techniques area unit principally 

marginal and as declared in [7] and [14], the techniques area unit 

comparable. we tend to believe that the variations area unit 

primarily because of completely different knowledge assortment 

and knowledge summarization methodologies. during this paper, 

we tend to opted to use neural networks as a result of this system 

is best suited to models with continuous input and output 

variables. furthermore, neural networks area unit less vulnerable 

to shire knowledge. 

The input of antecedently projected fuel consumption models 

conjointly varies significantly. A holistic model would possibly 

conceive to capture driver behavior, vehicle dynamics and also 

the impact of the surroundings on the vehicle. as an example, the 

models introduced in use mixtures of 1st, second, third and 

fourth orders of auto acceleration and speed as predictors[4]. In 

the predictors embrace vehicle speed, distance traveled, 

elevation, longitude, latitude and day of the week. Predictors 

associated with the road condition (e.g., grade, curvature and 

roughness) and also the vehicle’s in operation conditions (e.g., 

vehicle speed, acceleration, gear, and a couple of torque) area 

unit employed in the foremost necessary predictors during this 

previous study were found to be acceleration, % torque, and 

gradient. Vehicle speed wasn't necessary as a result of it had been 

maintained nearly constant throughout knowledge assortment. In 

far more than thirty predictors were investigated          in as well as 

wind speed, platooning, engine strength and breaking rate and 

also the most vital predictors were found to be road grade, vehicle 

speed and vehicle weight. Vehicle weight isn't usually offered as 

a customary device and also the weight in was calculable 

mistreatment the suspension. during this paper, we tend to 

conjointly use vehicle speed and road grade to derive the 

predictors of the projected model. These variables are often 

directly obtained from non-invasive, reasonable and wide 

offered telematics devices[7][3]. 

Typically, the predictors of the models area unit derived from 

completely different device values that area unit sampled at 

mounted time intervals [3],[4].The author compares the accuracy 

of the projected fuel consumption models with reference to 

computer file collected at one minute and ten minute intervals 

and concludes that the ten minute interval yields additional 

correct models. In [7], measurements area unit collected every 

one minute or one mile, whichever is that the smallest. on 

condition that the vehicles were traveling at constant speed 

during this study, this amounts to aggregation computer file over 

a hard and fast a hard and fast mile. Each seem to hint that 

aggregation computer file over distance traveled is more suited 

to fuel consumption modeling. 
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III. DATACOLLECTION AND SUMMARIZATION 
The model is developed by using duty cycles collected from a 

single truck, with an approximate mass of 8, 700 kg exposed to a 

variety of transients including both urban and highway traffic in 

the Indianapolis area. Data was collected using the SAE J1939 

standard for serial control and communications in heavy duty 

vehicle networks . 

Twelve drivers were asked to exhibit good or bad behavior over 

two different routes. Drivers exhibiting good behavior 

anticipated braking and allowed the vehicle to coast when 

possible. Some drivers participated more than others and as a 
result the distribution of drivers and routes is not uniform across 

the data set. This field test generated 3, 302, 890 data points 

sampled at 50 Hz from the vehicle CAN bus and a total distance 

of 778.89 km over 56 trips with varying distances. Most of the 

trips covered a distance of 10 km to 15 km. 

In order to increase the number of data points, synthetic duty 

cycles over an extended distance were obtained by assembling 

segments from the field duty cycles selected at random. 

Moreover, a set of drivers are assigned to the training segments 

and a different set of drivers are assigned to the testing segments, 

thereby ensuring that the training (Ftr) and testing (Fts) data sets 

derived from the respective segments are completely separate. 

A. Model Predictors 

Several processing steps were needed in order to generate the 

predictors of the model. These predictors are derived from two 

measurements, namely, road grade and transmission output 

speed. The first processing step consisted of down sampling the 

road grade and obtaining the vehicle speed from the 

transmission output speed. The road grade was measured using 

an on-board inclinometer and down- sampled to 1 Hz. A review 

of the data also showed that there is a linear relationship 

between the vehicle speed and the transmission output speed 

given by the following equation: 

Vehicle Speed ≈ 59.3 × Transmission Output Speed  

 

In order to reduce the noise in the variable, a moving average 

low pass filter was applied to the vehicle speed obtained by using 

(15) and the variable was down-sampled from 50 Hz to 1 Hz. The 

purpose of the second processing step was to derive the synthetic 
duty cycles. Towards this objective, the duty cycles in the real 

data were split into segments defined by intervals between 

consecutive vehicle stops (Figure 1). A total of 455 real data 

segments were obtained from all the twelve drivers in the study. 

Out of these, 358 segments from nine drivers were used to derive 

the training data set and the remaining 97 segments, obtained 

from the remaining three drivers in the study, were used to derive 

the testing data set Fts. 

 

 
 

 

 

Fig. 1. The first four segments of a sample real duty cycle (top). 

A sample synthetic duty cycle created by concatenating 

segments 24, 8, 79, and 14 from the real data (bottom) 

 

One synthetic duty cycle is generated by sampling, without 

replacement, from the real data segments and concatenating the 

selected segments until a total distance of 15 km is reached. The 

total distance of 15 km was selected in order to mimic the real 

routes used for the field data collection. It was found that an 

average of five segments are needed to create 15 km of data. 
Figure 1 shows an example synthetic duty cycle generated using 

this process. Combining segments using the above approach 

resulted in a continuous vehicle speed. However, discontinuities 

were observed in road grade from one segment to the next as 

shown in the example of Figure 2. These duty cycles are then 

aggregated over a fixed distance traveled based on the desired 

window (x). Table I shows the total number of data points (i.e., 

windows) as well as the total distance for each data set and for 

each window size being considered in this paper. The third step 

in the input data processing consists of generating the predictors 

for the proposed model. As previously mentioned, these 

predictors are calculated for each window and derived from 
vehicle speed and road grade. The selected predictors consist of: 

• number of stops. 

• time stopped. 
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TABLE I 

NUMBER OF DATA POINTS (I.E., WINDOWS) AND 

TOTAL DISTANCE FOR THE TRAINING (F(x)tr ) AND 

THE TESTING (F(x)ts) DATA SETS WITH VARYING 

SIZE WINDOWS (I.E., 1, 2, AND 5 km.) 

 

Window size 

F(x)tr F(x)ts 

Number of 
Points 

Distance 
(km) 

Number of 
Points 

Distance 
(km) 

x = 1 km 20,000 20,000 32,089 32,089 
x = 2 km 20,000 40,000 23,106 46,212 

x = 5 km 20,000 100,000 6,061 30,305 

• average moving speed, 

• characteristic acceleration, 

• aerodynamic speed squared, 

• change in kinetic energy and 

• change in potential energy. 
The on top of predictors were selected as a result of they're 

believed to capture the vehicle dynamics additionally because 

the driver’s behavior and also the impact of the route on the 

target output of the model (i.e., fuel consumption). especially, a 

previous study states  that characteristic acceleration and 

mechanics speed square area unit extremely indicative of the fuel 

consumption for a given duty cycle. This study argues that 

characteristic acceleration is directly associated with the inertia 

work required to accelerate the vehicle and mechanics speed 

square captures the impact of aeromechanics on fuel 

consumption . 

It is important to capture the change in kinetic and potential 

energy during the duty cycle because these changes in the energy 

state of the vehicle can be significant for short distances when 

compared to the amount of total energy consumed by fuel. Over 

an extended distance, the percentage of fuel energy converted to 

kinetic and/or potential energy is reduced. 

 

B. Model Output 
 The output of the model is average fuel consumption in 

l/100km for every window. so as to get the common 

consumption, fuel rates area unit collected from the will bus. As 

within the case of road grade, and since artificial duty cycles area 

unit derived from a random choice of real duty cycle segments, 

discontinuities within the fuel rate area unit discovered from one 

phase to successive (Figure 2). The impact of those 

discontinuities isn't important as a result of the fuel rates area unit 

averaged over the complete window so as to calculate the output 

of the model (i.e., average fuel consumption). 

 An analysis of the segments in the real data collected 

from the field shows a variance in average fuel consumption over 

all the trips. For example, a 20% difference in fuel consumption 

was observed between good and bad driver behavior over entire 

trips. Moreover, variances in average fuel consumption are also 

observed for different window sizes. 

Table II shows the mean and standard deviation of the average 

fuel consumption for the 1, 2, and 5 km windows across all trips. 

While the mean fuel consumption across all windows is 

relatively constant, the standard deviation decreases as the 

window size increases. 

 

 In summary, all the input features of the proposed model are 

derived using the above methodology from the vehicle speed and 

the road grade sampled at a rate of 1 Hz. These variables can be 

obtained from a telematics device. In this study, these 

 variables were derived from sensor values broadcasted on the 

CAN bus. The accuracy of the model will vary depending on the 

source of the data and the sampling frequency. The accuracy of 

the model is also subject to the accuracy of the output feature. 

Fuel consumption obtained from the CAN bus can have an error 

as high as 5% compared to the actual fuel consumption. Better  

accuracy can be obtained by using flowmeters. However, 

flowmeters are more expensive. Fuel consumption levels from the 

CAN bus are used in [7] as well as in this paper and high 

precision fuel sensors are used in [3]. Aspects related to the 

accuracy of the data sources will be explored in future work. 

 

C. MODEL VALIDATION 
 The seven predictors listed in Section IV are used as input to 

the neural network model. This constitutes the first layer of the 

network. The first layer then feeds into a hidden layer with 5 

neurons. In turn, the hidden layer feeds into an output player with 

a single neuron. Figure 3 shows the RMSE during training for 

three models with window sizes 1, 2 and 5 km. In the top plot, 

each data point corresponds to the RMSE values after training the 

model with a group of 500 windows.  

This plot indicates that all models converge to a RMSE value less 

than 0.2 l/100km. However, the convergence rates for the models 

are different. In fact, the 5 km starts with a RMSE value of 0.16 

l/100km after 500 training windows and this RMSE value 

reaches 0.08 l/100km when the model converges. The 

corresponding values for the 1 km model are 0.34 l/100km and 

0.14 l/100km, respectively.  

When coupled with the difference in standard deviation of the 

average fuel consumption for the 1 km and the 5 km windows 

(Table II), this trend indicates that aggregating the input and 

output data over 5 km provides a stable profile for the fuel 

consumption of the vehicle over the routes and this profile does 

not necessitate extensive learning. 

 

This finding aligns with previous studies. 

For example,in [14], it was found that the trip distance is an 

important indicator and that predicting fuel consumption over 

long route segments for small vehicles in urban areas has better 

accuracy. In this previous study, 64% of the trips covered a 

distance ≤ 5 km. Similarly, it was found that collecting data 

over 10 minutes intervals resulted in a better accuracy than 1 

minute intervals. In either case, we believe that extending the 

data collection interval promotes a linear relationship between 

fuel consumption and distance traveled. While this approach 

yields a good average fuel consumption prediction over long 

distances, point- wise predicted fuel consumption may not 

adequately track actual values. 
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TABLE III 

PREDICTIVE ACCURACY OF THE FUEL 

CONSUMPTION MODELS FOR 1, 2 AND 5 km 

AGGREGATION WINDOWS. 
Window 1 km 2 km 5 km 
    

CD 0.91 
(0.0066) 

0.87 
(0.0085) 

0.79 
(0.0136) 

RMSE  (l/100km) 0.0132 
(0.0005) 

0.0142 
(0.0005) 

0.0234 
(0.0008) 

MAE  (l/100km) 1.88 
(0.0626) 

1.69 
(0.0515) 

1.43 
(0.0466) 

MAPEpk 3.74% 
(0.12%) 

4.20% 
(0.13%) 

5.83% 
(0.19%) 

Points 32,089 23,106 6,061 

 
Table III shows that the 1 km model has better performance than 

the other two window sizes across all metrics. As previously 

mentioned, these performance metrics evaluate the performance 

of the model point-wise. In particular, the coefficient of 

determination (CD) for the 1 km model is equal to 0.91 which 

indicates that the model is able to track the actual fuel 

consumption for each 1 km of distance traveled. As the window 

size increases, the CD decreases. In terms of MAE and CD, the 

proposed model shows an improvement over  despite the fact 

that high precision fuel sensors are used in [3] [7]. The RMSE of 

the models is also less than 0.025 l/100km which is lower than 

the results obtained. That said, the test distance in this paper is 

higher than the one used in [7]. Longer distances favor lower 

RMSE. The MAP Epk values for the models are also within 

ranges of fuel consumption accuracy for models reported in [4]. 

However, in this paper the error between actual and predicted is 

compared at the level of each window whereas in [4], the error 

is reported for the entire trip. 

The performance metrics shown in Table III seem to indicate that 

the proposed models are using highly predictive input features 

and that these features are adequately mapped to the output space 

of the model. In order to understand the contribution of each 

predictor, the AIW values of the predictors are calculated and 

summarized in Table IV. 

 

TABLE IV 

ADJUSTED INFLUENCE OF WEIGHTS (AIW ) FOR 

THE PREDICTORS IN THE PROPOSED MODEL 

 
 

Window 1 km 2 km 5 km 

No. of Stops 
Stop Time 

Avg. Moving Speed 

ã v2 
aero 
CKE CPE 

Bias 

1.49 
0.62 

13.73 

12.47 

11.73 
17.04 
13.73 

29.21 

2.29 
1.24 

10.78 

14.32 

11.64 
16.13 
11.45 

32.15 

4.63 
3.44 

8.98 

12.98 

10.30 
12.26 
9.38 

38.03 

  The importance of the number of stops and the stop time 

increases as the window size increases. This is expected since 

fewer stops are observed in the 1 km window compared to the 2 

or 5 km windows. All the remaining predictors have high AIW 

across all window sizes. In fact, eliminating any of these 

predictors resulted in models with lower predictive accuracy. 

The increase in the AIWs for the number of stops and the stop 

time with increasing window sizes coupled with the decrease in 

AIWs for the remaining predictors indicates that as the window 

size increases, the model relies less on the vehicle’s dynamics 

and more on events related to the distance traveled in order to 

estimate fuel consumption. Moreover, Table IV indicates that the 

two new predictors introduced in this paper have comparable 

contribution towards fuel consumption prediction to that of 

average moving speed, characteristic acceleration and 

aerodynamic speed . 

 

IV. CONCLUSION 
• This paper presented a machine learning model that can be 

conveniently developed for each heavy vehicle in a fleet. The 

model relies on seven predictors: number of stops, stop time, 

average moving speed, characteristic acceleration, aerodynamic 

speed squared, change in kinetic energy and change in potential 

energy. The last two predictors are introduced in this paper to 

help capture the average dynamic behavior of the vehicle. All of 

the predictors of the model are derived from vehicle speed and 

road grade. These variables are readily available from telematics 

devices that are becoming an integral part of connected vehicles. 

Moreover, the predictors can be easily computed on-board from 

these two variables. The model predictors are aggregated over a 

fixed distance traveled (i.e., window) instead of a fixed time 

interval. This mapping of the input space to the distance domain 

aligns with the domain of the target output, and produced a 

machine learning model for fuel consumption with an RMSE < 

0.015 l/100km. 

• Different model configurations with 1, 2, and 5 km 

window sizes were evaluated. The results show that the 1 km 

window has the highest accuracy. This model is able to predict 

the actual fuel consumption on a per 1 km- basis with a CD of 

0.91. This performance is closer to that of physics-based models 

and the proposed model improves upon previous machine 

learning models that show comparable results only for entire 

long-distance trips. Selecting an adequate window size should 

take into 
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consideration the cost of the model in terms of data collection 

and on-board computation. Moreover, the window size is likely 

to be application-dependent. For fleets with short trips (e.g., 

construction vehicles within a site) or urban traffic routes, a 1 km 

window size is recommended. For long-haul fleets, a 5 km 

window size may be sufficient. In this study, the duty cycles 

consisted of both highway and city traffic and therefore, the 1 km 

window was more adequate than the 5 km window. Future work 

includes understanding these differentiating factors and the 

selection of the appropriate window size. Expanding the model 

to other vehicles with different characteristics such as varying 

masses and aging vehicles is being studied. Predictors for these 

characteristics will be added in order to allow for the same model 

to capture the impact on fuel consumption due to changes in 

vehicle mass and wear. Future work also includes investigating 

the minimum distance required for training each model and 

analyzing how often does a model need to be synchronized with 

the physical system in operation by using online training in order 

to maintain the prediction accuracy of the model. 
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