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ABSTRACT

This paper advocates an information summarization for ever
fleet, the methodology should apply and adapt to approacl

supported distance instead, of the standard period of Several
completely different vehicle technologies (including time once
developing personal machine learning models for fuel future
ones) and configurations while not elaborated data of the
consumption. This approach is employed in conjunction with
some vehicles specific physical characteristics and
measurements. predictors derived from speed and road grade to
provide whole fleet. The predictors of the model square measure
collective over mounted window sizes of distance traveled.
completely different window sizes square measure evaluated and
also the results show that a one-kilometer window is in a position
to predict fuel consumption with a zero.91 constant of
determination and mean absolute peak-to-peak % error but four-
dimensional forroutes that embrace each town and main road
duty cycle segments. [9].

Index Terms: vehicle modeling, neural networks, average fuel
consumption, data summarization, fleet management.

l. INTRODUCTION

Fuel consumption models for vehicles are of interest to makers,
regulators, and customers. they're required across all the phases
of the vehicle life-cycle. In this paper, we tend to specialize in
modeling average fuel consumption for significant vehicles
throughout the operation and maintenance part. In general,
techniques won’t to develop models for fuel consumption make
up 3 main categories:

Physics-based models, that are derived from AN in-
depth understanding of the physical system. These models
describe the dynamics of the elements of the vehicle at whenever
step victimization careful mathematical equations [1], [2].

Machine learning models, that are data-driven And
rep-resent AN abstract mapping from AN input house consisting
ofa specific set of predictors to an output house that represents the
target output, during this case average fuel consumption [3], [4].

Statistical models, that also are data-driven and estab-
lish a mapping between the likelihood distribution of a specific
set of predictors and also the target outcome [5], [6].

Trade-offs among the on top of techniques are primarily with
relevance value and accuracy as per the necessities of the meant
application.

In this paper, a model that may be simply developed for
individual significant vehicles in a very massive fleet is
projected. hoping on correct models of all of the vehicles in avery
fleet, a fleet manager will optimize the route designing for all of
the vehicles supported every distinctive vehicle foretold fuel
consumption thereby guaranteeing the route assignments are
aligned to attenuate overall fleet fuel consumption. These forms
of fleets exist in numerous sectors together with, road
transportation of products public transportation construction
trucks and refuse trucks [7], [3], [8].

These necessities build machine learning the technique
of an extremely prognosticative neural network model for

average fuel selection once taking into thought the required
accuracy consumption in significant vehicles. The projected
versus model will the value of the event associated adaptation
of anindividualized an exceedingly fleet so as to optimize fuel
consumption over the model for every vehicle within the fleet.

Several previous models for each fast and average fuel
consumption are projected. Physics-based models are best fitted
to predicting fast fuel consumption as a result of they will capture
the dynamics of the behavior of the system at completely
different time steps. Machine learning models aren'tready to
predict fast fuel consumption with a high level of accuracy owing
to the issue related to distinctive patterns in fast knowledge.
However, these models are ready to establish associated learn
trends in average fuel consumption with an adequate level of
accuracy [4],[1].[2].[3].

Previously projected machine learning models for average fuel
consumption use a group of predictors that are collected over a
period of time to predict the corresponding fuel consumption in
terms of either gallons per mile or liters per kilometer. whereas
still specializing in average fuel consumption, our projected
approach differs from that employed in previous models as a
result of the input house of the predictors is quantal with relation
to fastened a hard and fast a set} distance as against a fixed
period of time. within theprojected model, all the predictors ar
aggregate with relation toa hard and fast window that represents
{the distance the house the gap} traveled by the vehicle thereby
providing a stronger mapping from the input house to the output
space of the model. In distinction, previous machine learning
models should not solely learn the patterns within the input file
however additionally perform a conversion from the time-
primarily based scale of the input domain to the distance-based
scale of the output domain (i.e., average fuel consumption).

Here we using the same scale for both the input and output
spaces of the model offers several benefits:

The data is collected at a rate that is proportional to its
impact on the outcome. When the input space is sampledwith
respect to time, the amount of data collected from avehicleata
stop is the same as the amount of data collectedwhen the vehicle
is moving.

The predictors within the model are able and ready to
capture theimpact of each the duty cycle and therefore the
atmosphere on the common fuel consumption of the vehicle
(e.g., the amount of stopsin Associate in Nursing urban traffic
over a given distance).
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New technologies such as V2I and dynamic traffic man-

agreement can be leveraged for additional fuel efficiency
optimization at the level of each specific vehicle, route and time
of day. [10]-[12].
The remainder of the paper is organized as follows: Section Il
includes a review of previous connected work, Section 11l
introduces the planned machine learning model, Section IV
describes the method used for data collection and data
summarization, Section V presents the results of applying the
planned model underneath totally different configurations, and
Section VI summarizes the principle findings of this study and
offers direction for future work.

. RELATED WORK

As mentioned on top of, physics-based, machine learning, and
applied mathematics models have all beenwont to model average
fuel consumption. The EPA and also the European Commission
developed physics- based, full vehicle simulation models for
significant dutyvehicles [1], [2].

These models area unit capable of predicting average fuel
consumption with associate accuracy of+3% compared to real
measurements obtained from a flowmeter [2]. This level of
accuracy comes at the value of a considerable development
effort. At the opposite finish of the modeling spectrum area unit
applied mathematics procedures that area unit applied
underneath strict testing conditions to make sure that the
reportable results area unit standardized and repeatable. for
instance, the model projected by the Code of Federal Regulation
(CFR) estimates fuel consumption for brand spanking new
vehicles by exploitation well outlined applied mathematics
strategies for specific duty cycles created from segmentsof planet
journeys. Similarly, the SAE J1321 normal isused to estimate
fuel consumption when market modifications or underneath
varied operative conditions for trucks and buses[5][6] . This
normal com- pares similar vehicles following identical route
underneath similar operative conditions exploitation real
knowledge collected from the sector. for instance, the quality
was utilized in to match the fuel consumption of animpression
vehicle thereto of 2 take a look at vehicles when dynamical
lubrication fluids within the engine, transmission and shaft. the
quality was conjointly used in to live the performance of 3 fuel
technologies in 2 vehicles operative in coal mines. The
generalizable characteristics of machine learning mod- else to
completely different completely different} vehicles and different
operative conditions created this modeling methodology
engaging for fuel consumption prediction in several studies.
within the remainder of this section we have a tendency to
discuss these models with regardto the underlying machine
learning technique, the illustration of the input area and also the
illustration of the output area[8].

Different types of machine learning techniques are used and
compared for the aim of modeling fuel con- Sumption. as an
example, gradient boosting, neural networks and random forest
area unit compared in neural networks and variable regression
splines area unit compared in and support vectormachine, neural
networks and random forest area unitcompared in [7][3][4].
supported the results, these studies determinea way of selection.
but the variations between these techniquesarea unit principally
marginal and as declared in [7] and [14], the techniques area unit
comparable. we tend to believe that the variations area unit
primarily because of completely different knowledge assortment
and knowledge summarization methodologies. during this paper,
we tend to opted to use neuralnetworks as a result of this system
is best suited to models with continuous input and output
variables. furthermore, neural networks area unit less vulnerable
to shire knowledge.

The input of antecedently projected fuel consumption models
conjointly varies significantly. A holistic model would possibly
conceive to capture driver behavior, vehicle dynamics and also
the impact of the surroundings on the vehicle. as an example, the
models introduced in use mixtures of 1st, second, third and
fourth orders of auto acceleration and speed as predictors[4]. In
the predictors embrace vehicle speed, distance traveled,
elevation, longitude, latitude and day of the week. Predictors
associated with the road condition (e.g., grade, curvature and
roughness) and also the vehicle’s in operation conditions (e.g.,
vehicle speed, acceleration, gear, and a couple of torque) area
unit employed in the foremost necessary predictors during this
previous study were found to be acceleration, % torque, and
gradient. Vehicle speed wasn't necessary as a result of it had been
maintained nearly constant throughout knowledge assortment. In
far more than thirty predictors were investigated in as well as
wind speed, platooning, engine strength and breaking rate and
also the most vital predictors were found tobe road grade, vehicle
speed and vehicle weight. Vehicle weightisn't usually offered as
a customary device and also the weight in was calculable
mistreatment the ‘suspension. during this paper, we tend to
conjointly use vehicle speed and road gradeto derive the
predictors of the projected model. These variables are often
directly obtained from non-invasive, reasonable and wide
offered telematics devices[7][3].

Typically, the predictors of the models area unit derived from
completely different device values that area unit sampled at
mounted time intervals [3],[4]. The author compares theaccuracy
of the projected fuel consumption models with reference to
computer file collected at one minute and ten minute intervals
and concludes that the ten minute interval yields additional
correct models. In [7], measurements area unitcollected every
one minute or one mile, whichever is that the smallest. on
condition that the vehicles were traveling at constant speed
during this study, this amounts to aggregation computer file over
a hard and fast a hard and fast mile. Each seem to hint that
aggregation computer file over distance traveled is more suited
to fuel consumption modeling.
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Ill.  DATACOLLECTION AND SUMMARIZATION

The model is developed by using duty cycles collected from a
single truck, with an approximate mass of 8, 700kg exposed to a
variety of transients including both urbanand highway traffic in
the Indianapolis area. Data was collected using the SAE J1939
standard for serial controland communications in heavy duty
vehicle networks.
Twelve drivers were asked to exhibit good or bad behavior over
two different routes. Drivers exhibiting good behavior
anticipated braking and allowed the wvehicle to coast when
possible. Some drivers participated more than others and as a
result the distribution of driversand routes is not uniform across
the data set. This field test generated 3, 302, 890 data points
sampled at 50 Hz from the vehicle CAN bus and a total distance
of 778.89km over 56 trips with varying distances. Most of the
tripscovered a distance of 10 km to 15 km.

In order to increase the number of data points, synthetic duty
cycles over an extended distance were obtained by assembling
segments from the field duty cycles selected at random.
Moreover, a set of drivers are assigned to thetraining segments
and a different set of drivers are assigned to the testing segments,
thereby ensuring that the training (Ftr) and testing (Fts) data sets
derived fromthe respective segments are completely separate.

A. Model Predictors

Several processing steps were needed in order to generate the
predictors of the model. These predictors are derived from two
measurements, namely, road grade and transmission output
speed. The first processing step consisted of down sampling the
road grade and obtaining the vehicle speed from the
transmission output speed. The road grade was measured using
an on-board inclinometer and down- sampled to 1 Hz. A review
of the data also showed thatthere is a linear relationship
between the vehicle speed and the transmission output speed
given by the following equation:

Vehicle Speed =~ 59.3 x Transmission Output Speed

In order to reduce the noise in the variable, a moving average
low pass filter was applied to the vehicle speed obtained by using
(15) and the variable was down-sampledfrom 50 Hz to 1 Hz. The
purpose of the second processing step was to derive the synthetic
duty cycles. Towards this objective, the duty cycles in the real
data were split into segments defined by intervals between
consecutive vehiclestops (Figure 1). A total of 455 real data
segments were obtained from all the twelve drivers in the study.
Out of these, 358 segments from nine drivers were used to derive
the training data set and the remaining 97 segments, obtained
from the remaining three drivers in the study, wereused to derive
the testing data set Fts.
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Fig. 1. The first four segments of a sample real duty cycle (top).
A sample synthetic duty cycle created by concatenating
segments 24, 8, 79, and 14 from the realdata (bottom)

One synthetic duty cycle is generated by sampling, without
replacement, from the real data segments and concatenating the
selected segments until a total distance of 15 km is reached. The
total distance of 15 km was selected in order to mimic the real
routes used for the fielddata collection. It was found that an
average of five segments are needed to create 15 km of data.
Figure 1 shows an example synthetic duty cycle generated using
thisprocess. Combining segments using the above approach
resulted in a continuous vehicle speed. However, discontinuities
were observed in road grade from one segment to the next as
shown in the example of Figure 2. These duty cycles are then
aggregated over a fixed distancetraveled based on the desired
window (x). Table | shows the total number of data points (i.e.,
windows) as well as the total distance for each data set and for
each window size being considered in this paper. The third step
in the input data processing consists of generating the predictors
for the proposed model. As previously mentioned, these
predictors are calculated for each window and derived from
vehicle speed and road grade. The selected predictorsconsist of:
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TABLE I

NUMBER OF DATA POINTS (l.E., WINDOWS) AND
TOTAL DISTANCE FOR THE TRAINING (F(x)tr ) AND
THE TESTING (F(x)ts) DATA SETS WITH VARYING
SIZE WINDOWS (I.E., 1, 2, AND 5 km.)

F(X)tr FX)ts
\Windowsize [Number of Distance |[Number of Distance
Points (km)  [Points (km)
X =1 Kkm 20,0000 20,000 32,080 32,089
X = 2 km 20,0000 40,000 23,106 46,212
X = 5 km 20,0000 100,000 6,061 30,305
- average moving speed,
- characteristic acceleration,
- aerodynamic speed squared,

- change in kinetic energy and

- change in potential energy.

The on top of predictors were selected as a result of they're
believed to capture the vehicle dynamics additionally because
the driver’s behavior and also the impact of the route on the
target output of the model (i.e., fuel consumption). especially, a
previous study states that characteristic acceleration and
mechanics speed square area unit extremely indicative of the fuel
consumption for a given duty cycle. This study argues that
characteristic acceleration is directly associated with the inertia
work required to accelerate the vehicle and mechanics speed
square captures the impact of aeromechanics on fuel
consumption .

It is important to capture the change in kinetic and potential
energy during the duty cycle because these changes in the energy
state of the vehicle can be significant for short distances when
compared to the amount of total energy consumed by fuel. Over
an extended distance, the percentage of fuel energy converted to
kinetic and/or potential energy is reduced.

B. Model Output

The output of the model is average fuel consumptionin
I/100km for every window. so as to get the common
consumption, fuel rates area unit collected from the will bus. As
within the case of road grade, and since artificial duty cycles area
unit derived froma random choice of real duty cycle segments,
discontinuities within the fuel rate area unit discovered from one
phase to successive (Figure 2). The impact of those
discontinuities isn't important asa result of the fuel rates area unit
averaged over the complete window so as to calculate the output
of themodel (i.e., average fuel consumption).

An analysis of the segments in the real data collected
from the field shows a variance in average fuel consumption over
all the trips. For example, a 20% difference in fuel consumption
was observed betweengood and bad driver behavior over entire
trips. Moreover, variances in average fuel consumption arealso
observed for different window sizes.

Table Il shows the mean and standard deviation of the average
fuel consumption for the 1, 2, and 5 km windows acrossall trips.
While the mean fuel consumption across all windows is
relatively constant, the standard deviation decreases as the
window size increases.

In summary, all the input features of the proposed modelare
derived using the above methodology from the vehicle speed and
the road grade sampled at a rate of 1 Hz. These variables can be

obtained from a telematics device. In this study, these

variables were derived from sensor values broadcasted on the
CAN bus. The accuracy of the model will vary depending on the
source of the data and the sampling frequency. The accuracy of
the model is also subject to the accuracy of the output feature.
Fuel consumption obtained from the CAN bus can have an error
as high as5% compared to the actual fuel consumption. Better
accuracy can be obtained by using flowmeters. However,
flowmeters are more expensive. Fuel consumption levelsfrom the
CAN bus are used in [7] as well as in this paper and high
precision fuel sensors are used in [3]. Aspects related to the
accuracy of the data sources will be explored in future work.

C. MODEL VALIDATION

The seven predictors listed in Section 1V are used as input to
the neural network model. This constitutes the first layer of the
network. The first layer then feeds into a hidden layer with 5
neurons. In turn, the hidden layer feeds into an output player with
a single neuron. Figure 3 shows the RMSE during training for
three modelswith window sizes 1, 2 and 5 km. In the top plot,
each data point corresponds to the RMSE values after trainingthe
model with a group of 500 windows.
This plotindicates that all models converge to a RMSE value less
than 0.2 1/100km. However, the convergence rates for themodels
are different. In fact, the 5 km starts with a RMSEvalue of 0.16
1/100km after 500 training windows and this RMSE value
reaches 0.08 1/100km when the model converges. The
corresponding values for the 1 km modelare 0.34 1/200km and
0.14 1/100km, respectively.
Whencoupled with the difference in standard deviation of the
average fuel consumption for the 1 km and the 5 km windows
(Table 1), this trend indicates that aggregatingthe input and
output data over 5 km provides a stable profile for the fuel
consumption of the vehicle over the routes and this profile does
not necessitate extensive learning.

This finding aligns with previous studies.

For example,in [14], it was found that the trip distance is an
importantindicator and that predicting fuel consumption over
longroute segments for small vehicles in urban areas has better
accuracy. In this previous study, 64% of the trips covered a
distance < 5 km. Similarly, it was found that collecting data
over 10 minutes intervals resulted in a better accuracy than 1
minute intervals. In either case, we believe that extending the
data collection interval promotes a linear relationship between
fuel consumption and distance traveled. While this approach
yields a good average fuel consumption prediction over long
distances, point- wise predicted fuel consumption may not
adequatelytrack actual values.

IJCRT22A6074 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | a544


http://www.ijcrt.org/

www.ijcrt.org

© 2022 1JCRT | Volume 10, Issue 6 June 2022 | ISSN: 2320-2882

TABLE Il
PREDICTIVE ACCURACY OF THE FUEL
CONSUMPTION MODELS FOR 1, 2 AND 5 km

AGGREGATION WINDOWS.
Window 1 km 2 km 5 km

CD 001 0.87 0.79
(0.0066) | (0.0085) | (0.0136)
RMSE (I/100km) _ [0.0132  [0.0142  [0.0234
(0.0005) |(0.0005)  |(0.0008)

MAE (I/100km) 1.88 1.6 143
(0.0626) | (0.0515) | (0.0466)
MAPE 374%  |420%  [5.83%
(0.12%)  |(0.13%)  |(0.19%)
Foints 32,080 [23,106 6,061

Table I11 shows that the 1 km model has better performancethan
the other two window sizes across all metrics. As previously
mentioned, these performance metrics evaluate the performance
of the model point-wise. In particular, the coefficient of
determination (CD) for the 1 km model is equal to 0.91 which
indicates that the model is able to track the actual fuel
consumption for each 1 km of distance traveled. As the window
size increases, the CD decreases. In terms of MAE and CD, the
proposed model shows an improvement over despite the fact
that high precision fuel sensors are used in [3] [7]. The RMSE of
the models is also less than 0.025 1/200km which is lower than
the results obtained. That said, the test distance in this paper is
higher than the one used in [7]. Longer distances favor lower
RMSE. The MAP Epk values for themodels are also within
ranges of fuel consumption accuracyfor models reported in [4].
However, in this paper the errorbetween actual and predicted is
compared at the level of each window whereas in [4], the error
is reported for the entire trip.

The performance metrics shown in Table 111 seem to indicate that
the proposed models are using highly predictive input features
and that these features are adequately mapped to the output space
of the model. In order to understand the contribution of each
predictor, the AIW values of the predictors are calculated and
summarized in Table IV.

TABLE IV
ADJUSTED INFLUENCE OF WEIGHTS (AIW ) FOR
THE PREDICTORS IN THE PROPOSED MODEL

\Window 1km [km [5km
No. of Stops 1.49 2.29 4.63
Stop Time 0.62 1.24 3.44
IAvg. Moving Speed  [13.73  [10.78 [8.98
a2 12.47 (1432 [12.98
CKE CPE 11.73 [11.64 [10.30
Bias 17.04 [16.13 [12.26
13.73 [11.45 [9.38
29.21 [32.15 [38.03

The importance of the number of stops and the stop time
increases as the window size increases. This is expectedsince
fewer stops are observed in the 1 km window compared to the 2
or 5 km windows. All the remaining predictors have high AIW
across all window sizes. In fact, eliminating any of these
predictors resulted in models with lower predictive accuracy.
The increase in the AIWs for the number of stops and the stop
time withincreasing window sizes coupled with the decrease in
AIWs for the remaining predictors indicates that as the window
size increases, the model relies less on the vehicle’s dynamics
and more on events related to the distance traveled in order to
estimate fuel consumption. Moreover, Table IV indicates that the
two new predictorsintroduced in this paper have comparable
contribution towards fuel consumption prediction to that of
average moving speed, characteristic acceleration and
aerodynamic speed .

1IV. CONCLUSION
- This paper presented a machine learning model that canbe
conveniently developed for each heavy vehicle in a fleet. The
model relies on seven predictors: number of stops, stop time,
average moving speed, characteristic acceleration, aerodynamic
speed squared, change in kinetic energy and change in potential
energy. The last two predictors are introduced in this paper to
help capture the average dynamic behavior of the vehicle. Allof
the predictors of the model are derived from vehicle speed and
road grade. These variablesare readily available from telematics
devices that are becoming an-integral part of connected vehicles.
Moreover, the predictors can be easily computed on-board from
these two variables. The model predictors are aggregated overa
fixed distance traveled (i.e., window) instead of a fixedtime
interval. This mapping of the input space to the distance domain
aligns with the domain of the target output, and produced a
machine learning model for fuelconsumption with an RMSE <
0.015 1/200km.
- Different model configurations with 1, 2, and 5 km
window sizes were evaluated. The results show that the 1 km
window has the highest accuracy. This model is able to predict
the actual fuel consumption on a per 1 km-basis with a CD of
0.91. This performance is closer to that of physics-based models
and the proposed model improves upon previous machine
learning models that show comparable results only for entire
long-distance trips. Selecting an adequate window size should
take into
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consideration the cost of the model in terms of data collection
and on-board computation. Moreover, the window size is likely
to be application-dependent. For fleets with short trips (e.g.,
construction vehicleswithin a site) or urban traffic routes, a 1 km
window size is recommended. For long-haul fleets, a 5 km
window size may be sufficient. In this study, the dutycycles
consisted of both highway and city traffic andtherefore, the 1 km
window was more adequate than the 5 km window. Future work
includes understanding these differentiating factors and the
selection of the appropriate window size. Expandingthe model
to other vehicles with differentcharacteristics such as varying
masses and aging vehicles is being studied. Predictors for these
characteristics will be added in order to allow for thesame model
to capture the impact on fuel consumption due to changes in
vehicle mass and wear. Future work also includes investigating
the minimum distance required for training each model and
analyzing how often does a model need to be synchronized with
the physical system in operation by using online training in order
to maintain theprediction accuracy of the model.
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