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Abstract

Distribution shift, where the test-time data distribution differs from that of the training data, is a critical
challenge in real-world machine learning deployments. This paper presents an empirical study of model
brittleness under naturalistic distribution shifts in tabular datasets, a domain that remains understudied
despite tabular data being central to applications in finance, healthcare, and public policy. We assess the
stability of various machine learning models, including logistic regression, gradient-boosted decision trees,
and multilayer perceptrons, in response to deployment-driven shifts that alter feature distributions while
maintaining the semantics of the prediction task. In addition to these naturalistic shifts, we implement
controlled feature-level perturbations as stress tests. Across five classification datasets, all models exhibit
significant performance degradation under distribution shift, with vanilla neural networks generally showing
larger robustness gaps than tree-based methods, although these gaps can be substantially reduced by
standardization and regularization. The study provides an empirical foundation for understanding robustness
trade-offs across model classes in structured data settings and highlights open challenges for robust tabular
machine learning

Keywords: distribution shift, covariate shift, model robustness, tabular data, generalization, machine
learning

1 Introduction

Machine learning models are typically trained on historical data but deployed into environments where
the data distribution has evolved. This mismatch, known as distribution shift, can lead to sharp performance
degradation and unreliable predictions, especially in high-stakes settings. Tabular data underpins many such
applications, including credit scoring, clinical risk prediction, and public policy screening, yet the robustness
of tabular models under realistic deployment shifts has received far less attention than robustness in
computer vision or natural language processing.

Tabular data presents special difficulties with robustness analysis. Features often mix heterogeneous types
(continuous, ordinal, and categorical), exhibit complex interactions, and may encode demographic or
institutional information that is ordinal and changes over time. While work on distribution shift has produced
benchmarks and methods for images and text, such as WILDS, which curates naturally shifted datasets
across modalities, there is no consensus on how to systematically characterize and evaluate robustness for
tabular domains.

The primary motivation for this study is twofold. First, tabular data remains the dominant format in
operational machine learning systems, so understanding robustness in this setting is practically important.
Second, recent results comparing gradient-boosting decision trees and deep learning for tabular data show
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that neither paradigm is uniformly superior in-distribution, but the relative robustness of these models under
a shift remains poorly understood. A careful empirical characterization of how standard tabular models fail
under deployment-motivated shifts can inform both model selection and the development of future
robustness methods.

In this work, naturalistic distribution shifts are constructed by partitioning real tabular datasets along
semantically meaningful axes such as demographic attributes, risk scores, or feature clusters that
approximate realistic changes in deployed systems. These naturalistic shifts are complemented with feature-
level perturbations that serve as stress tests around the test distribution. On both in-distribution and out-of-
distribution data, we benchmark linear models, gradient-boosted decision trees, and neural networks, and we
analyze robustness gaps across datasets and model classes.

The main contributions are

e Naturalistic tabular shifts: Construction of deployment-motivated train—test splits on real tabular
datasets that induce covariate changes while preserving the prediction task.

e Cross-model robustness comparison: Empirical evaluation of logistic regression, tuned gradient
boosting, and multilayer perceptrons under both naturalistic and synthetic shifts.

e Robustness gap analysis: Systematic measurement of in-distribution versus out-of-distribution
performance to quantify and compare robustness gaps across models and datasets.

e Simple mitigation strategies: Evaluation of standardization and regularization techniques for neural
networks, showing that basic choices can substantially reduce brittleness without eliminating it.

These results provide an early but detailed view of robustness in tabular ML under realistic shifts and
suggest that model choice, data partitioning, and training protocol all play important roles in determining
deployment performance.

1.1 Research Questions
This study focuses on the following research questions:

7.RQ1: How significantly do different model types linear models, tree-based maodels, and neural
networks degrade under deployment-motivated covariate shifts in tabular data?

2.RQ2: How do robustness gaps vary across datasets, and which dataset characteristics appear to
correlate with brittleness?

3.RQ3: How do simple feature-level perturbations compare to naturalistic shifts in terms of induced
performance degradation?

4.RQ4: To what extent can basic mitigation strategies, such as feature standardization and
regularization, reduce the robustness gaps observed for neural networks?

2 Background and Motivation

2.1 Distribution Shift in Machine Learning

Distribution shift occurs when the joint probability distribution P(X,Y) at test time differs from the training

distribution. We denote the training distribution as P;,,;,, (X, ¥) and the test distribution as P;.;:(X, ¥), where
Ptra:‘n * Ptest-

This phenomenon, known as covariate shift, occurs when the marginal distribution of features changes while
the conditional distribution of labels given those features remains approximately constant [6]. The
conditional distribution of labels given features remains approximately constant [6]:

Pt}'ain (X) + Ptest (X)

Ptr'a:'n (le) ~ Ptest(Y|X)
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This assumption holds in many practical scenarios, such as shifts in feature distributions due to measurement
drift, seasonal variations, or changes in data collection procedures [6].

Classical approaches to covariate shift and domain adaptation include importance weighting, feature
alignment, and representation learning methods that seek invariances across distributions. However, most
modern benchmarks for distribution shift, such as WILDS, focus on images, text, or specialized modalities
rather than structured tabular features. Understanding how tabular models behave in analogous settings
remains an open practical question.

2.2 Model Brittleness

Model brittleness refers to large drops in performance under modest changes to the data distribution, even
when models generalize well on held-out data drawn from the same distribution as the training set. Empirical
work in deep learning has shown that overparameterized neural networks can fit random labels yet still
generalize in distribution, highlighting the fact that generalization is governed by more than just model
capacity. This raises natural questions about how architectural biases, optimization dynamics, and training
procedures interact with non-stationary data.

In the tabular domain, gradient-boosted decision trees and related ensembles remain strong baselines and
often outperform standard neural networks on static benchmarks. However, the degree to which these
performance differences persist or reverse under distribution shift is not well characterized, particularly
when models are trained and tuned under comparable protocols.

2.3 Tabular Data and Deep Learning

Recent work has revisited deep learning architectures for tabular data, proposing ResNet-like models and
Transformer-based architectures adapted to structured features. In particular, FT-Transformer introduces a
feature tokenization mechanism combined with Transformer layers and demonstrates competitive in-
distribution performance across a range of tabular benchmarks. These advances suggest that neural
architectures can match or approach tree-based models on static data, although their robustness properties
under distribution shift remain largely unexplored.

Tree-based methods such as XGBoost and CatBoost provide strong baselines with inductive biases that
differ markedly from neural networks; they construct axis-aligned partitions and ensemble them, which can
affect how they respond to changes in feature distributions. Understanding how these different biases
translate into robustness under deployment-motivated shifts is a key aim of this work.

3 Related Work

3.1 Experimental Overview

The experimental pipeline consists of three main components. First, five real tabular classification datasets
are selected and partitioned into train, validation, and test sets, with test sets constructed to induce
naturalistic covariate shifts. Second, a suite of models (logistic regression, gradient-boosted decision trees,
and multilayer perceptrons) is trained with hyperparameter tuning and early stopping using only in-
distribution data. Third, models are evaluated on both in-distribution and shifted test sets, with robustness
gaps computed as differences between in-distribution and shifted performance.

3.2 Datasets and Naturalistic Shifts

The study uses five publicly available binary classification datasets drawn from commonly used tabular
benchmarks. For each dataset, train—test splits are constructed to approximate realistic deployment shifts by
partitioning along semantically meaningful feature dimensions rather than random splits. The resulting shifts
are naturalistic in the sense that they are derived from real data and induce structured changes in feature
distributions, though explicit metadata such as timestamps or institution identifiers are not always available.
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A representative configuration is

Dataset Sample | Features Naturalistic shift construction
s

Train/test populations are stratified by age,
education, and occupation groups to induce

éggétme) 30,162 14 demographic shifts in P(X)
We stratify P(X) while preserving the income
prediction task.

Train/test splits are constructed using billing cycle

Credit Card 30,000 23 indices and account status proxies to emulate drift
Default L ) . .

in financial behavior over time.

Patients are partitioned by clusters in tumor
Breast . . . .

feature space to induce shifts in clinical
Cancer 569 30 . .

. . characteristics between training and test

Wisconsin .

populations.
Diabetes 768 8 Stratification by age and BMI bands approximates
(Pima) demographic shifts in the at-risk population.

Partitioning by combinations of cap and gill
Mushroom 8,124 22 attributes induces covariate shifts in
morphological feature distributions.

Table 1: Representative Dataset and Shift Configuration

These splits follow prior empirical robustness work in which, when explicit deployment metadata are
unavailable, train—test partitions are constructed by structured partitioning of the feature space to emulate
realistic changes in population or measurement conditions. The resulting shifts alter P(X) while leaving the
label semantics unchanged, approximating covariate shift scenarios of practical interest.

3.3 Models
Three main model families are evaluated:

e Logistic Regression: A linear classifier with L2 regularization, serving as a simple, well-calibrated
baseline.

e Gradient-Boosted Decision Trees (XGBoost): Tree ensembles optimized with gradient boosting,
representing standard strong baselines for tabular data.

e Multilayer Perceptrons (MLP): Feedforward neural networks with 2—-3 hidden layers and RelLU
activations, trained with the Adam optimizer.

To connect with recent advances in tabular deep learning, the experiments also include a limited evaluation
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of an FT-Transformer-style architecture on a subset of datasets, following the feature tokenization and
Transformer blocks proposed in prior work. This evaluation probes whether architectural advances change
the robustness patterns observed for vanilla MLPs.

3.4 Training and Hyperparameter Tuning

All models are trained using a common protocol to ensure comparability. The available in-distribution data
are split into training and validation sets, with the validation set used for hyperparameter tuning and early

stopping.

e Logistic Regression: Regularization strength is selected from a logarithmic grid by validation
performance.

e XGBoost: Hyperparameters such as maximum depth, learning rate, number of trees, and subsampling
ratios are tuned over a small grid using validation accuracy.

e MLP: Hidden layer width, number of layers, dropout rate, and L2 weight decay are tuned over
discrete grids. Models are trained with Adam, and early stopping with patience is applied based on
validation loss.

e FT-Transformer (subset): Embedding dimension, number of attention layers, and dropout rates are
tuned on the tasks where this model is evaluated, using the same validation protocol as for MLPs.

Early stopping is applied to all neural models to prevent overfitting and to approximate realistic model
selection under limited validation data. This tuning procedure addresses concerns that comparisons based on
default parameters might understate the robustness of more flexible architectures.

3.5 Synthetic Stress Tests

To complement the naturalistic shifts induced by feature-based partitioning, synthetic perturbations are
applied to the shifted test sets as stress tests. These perturbations operate on top of the naturalistic test
distribution rather than constructing fully synthetic test distributions.

The following perturbations are considered:
e Feature scaling: Multiplying selected continuous features by factors between 2 and 5.

e Additive noise: Adding Gaussian noise with standard deviations in a set of increasing values to
continuous features.

e Feature masking: Randomly zeroing out a fraction of features to simulate missingness or sensor
dropout.

These stress tests help disentangle sensitivity to local feature perturbations from robustness to global shifts in
the underlying population.

3.6 Evaluation Metrics

Performance is measured using classification accuracy. For each dataset and model, three quantities are
reported:

e In-distribution accuracy (ID): Accuracy on a held-out test set drawn from the same distribution as the
training data (random split).

e Qut-of-distribution accuracy (OOD): Accuracy on the naturalistic shifted test set constructed as
described above.

e Robustness gap: The difference between in-distribution (ID) accuracy and out-of-distribution
(OOD) accuracy, represented as AAcc = AccID - AccOOD.

AAcc=AccID-AccOOD, summarizing the degree of brittleness.

Results are averaged over multiple random seeds for data splits and model initialization, and standard
deviations are reported to capture variability across runs.
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4 Related Results

4.1 Overall Robustness Patterns

Across datasets, all model classes exhibit nontrivial robustness gaps between in-distribution and naturalistic
out-of-distribution test performance. Gradient-boosted trees achieve the highest average in-distribution
accuracy and typically have smaller robustness gaps than logistic regression and vanilla MLPs, indicating
relatively better stability under the constructed shifts. Neural networks that were trained without careful
preprocessing or regularization have the largest gaps, which shows how fragile they are to changes in feature
distributions.

The FT-Transformer-style model outperforms baseline MLPs on tasks, achieving higher in-distribution and
out-of-distribution accuracy and exhibiting reduced robustness gaps. This suggests that architectural
advances in tabular deep learning can improve robustness, although they generally remain comparable to,
rather than decisively superior to, strong tree-based baselines on these datasets.

4.2 Naturalistic vs Synthetic Shifts

Naturalistic shifts induced by structured partitioning of the feature space produce larger and more
heterogeneous performance drops than small synthetic perturbations applied to the same test distributions. In
particular, models that are relatively stable under moderate scaling or noise can still experience substantial
degradation when the test population differs in terms of demographics or feature clusters.

The ordering of models under synthetic noise and scaling does not always match their ranking under
naturalistic shifts. For example, some models that handle additive noise well may still underperform when
the relative frequencies of important feature combinations change. This divergence indicates that local
perturbation robustness does not fully capture the challenges posed by deployment-motivated shifts.

4.3 Dataset-Dependent Brittleness

Robustness gaps vary substantially across datasets, reflecting differences in class imbalance, feature
heterogeneity, and the severity of the induced shifts. Datasets with more pronounced changes in feature
distributions or label prevalence between train and test splits tend to exhibit larger gaps for all models.

In some cases, neural networks are particularly brittle on datasets with- complex interactions and
heterogeneous feature scales, whereas gradient-boosted trees degrade more gracefully. In other cases, simple
linear models suffer less degradation than expected, suggesting that the optimal choice of model class under
shift is context-dependent and cannot be inferred from in-distribution performance alone.

4.4 Why Tree-Based Models Appear More Robust

The relative robustness of tree-based models can be understood in terms of inductive bias. Decision trees
partition the feature space using axis-aligned thresholds, which are invariant to monotone rescaling of
individual features and less sensitive to moderate noise on non-critical dimensions. When feature
distributions shift, many partition boundaries remain meaningful as long as the relative ordering of feature
values is preserved.

In contrast, multilayer perceptrons learn dense, coupled representations where predictions can depend on
precise scaling relationships between features. Shifts in marginal feature distributions or co-occurrence
patterns can thus perturb learned representations even when the underlying decision rule remains valid. FT -
Transformer partially mitigates this sensitivity by combining per-feature embeddings with attention, which
can provide a form of implicit normalization and more flexible modeling of feature interactions.

4.5 Mitigation Strategies

Simple mitigation strategies can substantially reduce robustness gaps for neural networks. Feature
standardization and appropriate L2 regularization decrease sensitivity to feature scaling and small
distributional changes, bringing robustness closer to that of gradient-boosted trees on several datasets. Early
stopping based on validation performance also prevents overfitting due to the idiosyncrasies of the training
distribution.
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However, these strategies do not fully eliminate robustness gaps, and neural networks still tend to exhibit
greater degradation under the most severe shifts. This suggests that while preprocessing and regularization
are necessary, they are not sufficient; more principled robustness methods tailored to tabular domains are
needed to close the remaining gaps.

5 Discussion and Limitations

The experiments demonstrate that even well-tuned models suffer performance degradation under
deployment-motivated shifts and that the magnitude of this degradation depends on both dataset properties
and model architecture. The results confirm the strong practical position of gradient-boosted trees on tabular
data while showing that recent neural architectures can narrow the robustness gap under careful training.

This study has several limitations. First, the naturalistic shifts are constructed from publicly available
datasets using feature-based partitioning, rather than being derived from explicit temporal or institutional
metadata. As a result, they approximate but do not perfectly reproduce real deployment conditions. Second,
the number of datasets is limited, and broader coverage of domains and shift types would be needed to draw
stronger general conclusions. Third, the analysis focuses on accuracy-based metrics; robustness under
alternative metrics, such as calibration or worst-group performance, remains an important direction.

6 Future Work

Future work could extend this study in several directions. One avenue is to evaluate more specialized
robustness methods, such as distributionally robust optimization and domain generalization algorithms,
within the tabular setting and compare their trade-offs between in-distribution and out-of-distribution
performance. Another direction is to incorporate additional tabular architectures, including attention-based
and hybrid models, under a common training and tuning protocol.

As larger benchmarks for tabular robustness emerge, systematic evaluation on such benchmarks will further
clarify the landscape. Subsequent efforts proposing standardized suites of shifted tabular datasets reinforce
the importance of studying robustness in structured data and provide natural targets for scaling the
methodology used here.
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