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Abstract 

Distribution shift, where the test-time data distribution differs from that of the training data, is a critical 

challenge in real-world machine learning deployments. This paper presents an empirical study of model 

brittleness under naturalistic distribution shifts in tabular datasets, a domain that remains understudied 

despite tabular data being central to applications in finance, healthcare, and public policy. We assess the 

stability of various machine learning models, including logistic regression, gradient-boosted decision trees, 

and multilayer perceptrons, in response to deployment-driven shifts that alter feature distributions while 

maintaining the semantics of the prediction task. In addition to these naturalistic shifts, we implement 

controlled feature-level perturbations as stress tests. Across five classification datasets, all models exhibit 

significant performance degradation under distribution shift, with vanilla neural networks generally showing 

larger robustness gaps than tree-based methods, although these gaps can be substantially reduced by 

standardization and regularization. The study provides an empirical foundation for understanding robustness 

trade-offs across model classes in structured data settings and highlights open challenges for robust tabular 

machine learning 

Keywords: distribution shift, covariate shift, model robustness, tabular data, generalization, machine 

learning 

 

1 Introduction 

Machine learning models are typically trained on historical data but deployed into environments where 

the data distribution has evolved. This mismatch, known as distribution shift, can lead to sharp performance 

degradation and unreliable predictions, especially in high-stakes settings. Tabular data underpins many such 

applications, including credit scoring, clinical risk prediction, and public policy screening, yet the robustness 

of tabular models under realistic deployment shifts has received far less attention than robustness in 

computer vision or natural language processing. 

 

Tabular data presents special difficulties with robustness analysis. Features often mix heterogeneous types 

(continuous, ordinal, and categorical), exhibit complex interactions, and may encode demographic or 

institutional information that is ordinal and changes over time. While work on distribution shift has produced 

benchmarks and methods for images and text,  such as WILDS, which curates naturally shifted datasets 

across modalities,  there is no consensus on how to systematically characterize and evaluate robustness for 

tabular domains. 

 

The primary motivation for this study is twofold. First, tabular data remains the dominant format in 

operational machine learning systems, so understanding robustness in this setting is practically important. 

Second, recent results comparing gradient-boosting decision trees and deep learning for tabular data show 
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that neither paradigm is uniformly superior in-distribution, but the relative robustness of these models under 

a shift remains poorly understood. A careful empirical characterization of how standard tabular models fail 

under deployment-motivated shifts can inform both model selection and the development of future 

robustness methods. 

 

In this work, naturalistic distribution shifts are constructed by partitioning real tabular datasets along 

semantically meaningful axes  such as demographic attributes, risk scores, or feature clusters  that 

approximate realistic changes in deployed systems. These naturalistic shifts are complemented with feature-

level perturbations that serve as stress tests around the test distribution. On both in-distribution and out-of-

distribution data, we benchmark linear models, gradient-boosted decision trees, and neural networks, and we 

analyze robustness gaps across datasets and model classes. 

 

The main contributions are 

 

● Naturalistic tabular shifts: Construction of deployment-motivated train–test splits on real tabular 

datasets that induce covariate changes while preserving the prediction task. 

● Cross-model robustness comparison: Empirical evaluation of logistic regression, tuned gradient 

boosting, and multilayer perceptrons under both naturalistic and synthetic shifts. 

● Robustness gap analysis: Systematic measurement of in-distribution versus out-of-distribution 

performance to quantify and compare robustness gaps across models and datasets. 

● Simple mitigation strategies: Evaluation of standardization and regularization techniques for neural 

networks, showing that basic choices can substantially reduce brittleness without eliminating it.  

 

These results provide an early but detailed view of robustness in tabular ML under realistic shifts and 

suggest that model choice, data partitioning, and training protocol all play important roles in determining 

deployment performance. 

 

1.1 Research Questions 

This study focuses on the following research questions: 

1. RQ1: How significantly do different model types linear models, tree-based models, and neural 

networks  degrade under deployment-motivated covariate shifts in tabular data? 

2. RQ2: How do robustness gaps vary across datasets, and which dataset characteristics appear to 

correlate with brittleness? 

3. RQ3: How do simple feature-level perturbations compare to naturalistic shifts in terms of induced 

performance degradation? 

4. RQ4: To what extent can basic mitigation strategies, such as feature standardization and 

regularization, reduce the robustness gaps observed for neural networks? 

 

2 Background and Motivation 

2.1 Distribution Shift in Machine Learning 

Distribution shift occurs when the joint probability distribution  at test time differs from the training 

distribution. We denote the training distribution as  and the test distribution as , where 

. 

This phenomenon, known as covariate shift, occurs when the marginal distribution of features changes while 

the conditional distribution of labels given those features remains approximately constant [6]. The 

conditional distribution of labels given features remains approximately constant [6]: 
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This assumption holds in many practical scenarios, such as shifts in feature distributions due to measurement 

drift, seasonal variations, or changes in data collection procedures [6]. 

Classical approaches to covariate shift and domain adaptation include importance weighting, feature 

alignment, and representation learning methods that seek invariances across distributions. However, most 

modern benchmarks for distribution shift, such as WILDS, focus on images, text, or specialized modalities 

rather than structured tabular features. Understanding how tabular models behave in analogous settings 

remains an open practical question. 

2.2 Model Brittleness 

Model brittleness refers to large drops in performance under modest changes to the data distribution, even 

when models generalize well on held-out data drawn from the same distribution as the training set. Empirical 

work in deep learning has shown that overparameterized neural networks can fit random labels yet still 

generalize in distribution, highlighting the fact that generalization is governed by more than just model 

capacity. This raises natural questions about how architectural biases, optimization dynamics, and training 

procedures interact with non-stationary data. 

 

In the tabular domain, gradient-boosted decision trees and related ensembles remain strong baselines and 

often outperform standard neural networks on static benchmarks. However, the degree to which these 

performance differences persist or reverse under distribution shift is not well characterized, particularly 

when models are trained and tuned under comparable protocols. 

 

2.3 Tabular Data and Deep Learning 

Recent work has revisited deep learning architectures for tabular data, proposing ResNet-like models and 

Transformer-based architectures adapted to structured features. In particular, FT-Transformer introduces a 

feature tokenization mechanism combined with Transformer layers and demonstrates competitive in-

distribution performance across a range of tabular benchmarks. These advances suggest that neural 

architectures can match or approach tree-based models on static data, although their robustness properties 

under distribution shift remain largely unexplored. 

 

Tree-based methods such as XGBoost and CatBoost provide strong baselines with inductive biases that 

differ markedly from neural networks; they construct axis-aligned partitions and ensemble them, which can 

affect how they respond to changes in feature distributions. Understanding how these different biases 

translate into robustness under deployment-motivated shifts is a key aim of this work. 

 

3 Related Work 

3.1 Experimental Overview 

 

The experimental pipeline consists of three main components. First, five real tabular classification datasets 

are selected and partitioned into train, validation, and test sets, with test sets constructed to induce 

naturalistic covariate shifts. Second, a suite of models  (logistic regression, gradient-boosted decision trees, 

and multilayer perceptrons)  is trained with hyperparameter tuning and early stopping using only in-

distribution data. Third, models are evaluated on both in-distribution and shifted test sets, with robustness 

gaps computed as differences between in-distribution and shifted performance. 

3.2 Datasets and Naturalistic Shifts 

The study uses five publicly available binary classification datasets drawn from commonly used tabular 

benchmarks. For each dataset, train–test splits are constructed to approximate realistic deployment shifts by 

partitioning along semantically meaningful feature dimensions rather than random splits. The resulting shifts 

are naturalistic in the sense that they are derived from real data and induce structured changes in feature 

distributions, though explicit metadata such as timestamps or institution identifiers are not always available. 
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A representative configuration is 

Dataset Sample
s 

Features Naturalistic shift construction 

Adult 
(income) 

30,162 14 

Train/test populations are stratified by age, 
education, and occupation groups to induce 
demographic shifts in P(X) 

We stratify P(X) while preserving the income 
prediction task. 

Credit Card 
Default 

30,000 23 
Train/test splits are constructed using billing cycle 
indices and account status proxies to emulate drift 
in financial behavior over time. 

Breast 
Cancer 
Wisconsin 

569 30 

Patients are partitioned by clusters in tumor 
feature space to induce shifts in clinical 
characteristics between training and test 
populations. 

Diabetes 
(Pima) 

768 8 
Stratification by age and BMI bands approximates 
demographic shifts in the at-risk population. 

Mushroom 8,124 22 
Partitioning by combinations of cap and gill 
attributes induces covariate shifts in 
morphological feature distributions. 

Table 1: Representative Dataset and Shift Configuration 

These splits follow prior empirical robustness work in which, when explicit deployment metadata are 

unavailable, train–test partitions are constructed by structured partitioning of the feature space to emulate 

realistic changes in population or measurement conditions. The resulting shifts alter  P(X) while leaving the 

label semantics unchanged, approximating covariate shift scenarios of practical interest.  

3.3 Models 

Three main model families are evaluated: 

● Logistic Regression: A linear classifier with L2 regularization, serving as a simple, well-calibrated 

baseline. 

● Gradient-Boosted Decision Trees (XGBoost): Tree ensembles optimized with gradient boosting, 

representing standard strong baselines for tabular data. 

● Multilayer Perceptrons (MLP): Feedforward neural networks with 2–3 hidden layers and ReLU 

activations, trained with the Adam optimizer. 

To connect with recent advances in tabular deep learning, the experiments also include a limited evaluation 
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of an FT-Transformer-style architecture on a subset of datasets, following the feature tokenization and 

Transformer blocks proposed in prior work. This evaluation probes whether architectural advances change 

the robustness patterns observed for vanilla MLPs. 

3.4  Training and Hyperparameter Tuning 

All models are trained using a common protocol to ensure comparability. The available in-distribution data 

are split into training and validation sets, with the validation set used for hyperparameter tuning and early 

stopping. 

● Logistic Regression: Regularization strength is selected from a logarithmic grid by validation 

performance. 

● XGBoost: Hyperparameters such as maximum depth, learning rate, number of trees, and subsampling 

ratios are tuned over a small grid using validation accuracy. 

● MLP: Hidden layer width, number of layers, dropout rate, and  L2 weight decay are tuned over 

discrete grids. Models are trained with Adam, and early stopping with patience is applied based on 

validation loss. 

● FT-Transformer (subset): Embedding dimension, number of attention layers, and dropout rates are 

tuned on the tasks where this model is evaluated, using the same validation protocol as for MLPs. 

Early stopping is applied to all neural models to prevent overfitting and to approximate realistic model 

selection under limited validation data. This tuning procedure addresses concerns that comparisons based on 

default parameters might understate the robustness of more flexible architectures. 

3.5 Synthetic Stress Tests 

To complement the naturalistic shifts induced by feature-based partitioning, synthetic perturbations are 

applied to the shifted test sets as stress tests. These perturbations operate on top of the naturalistic test 

distribution rather than constructing fully synthetic test distributions. 

The following perturbations are considered: 

● Feature scaling: Multiplying selected continuous features by factors between 2 and 5. 

● Additive noise: Adding Gaussian noise with standard deviations in a set of increasing values to 

continuous features. 

● Feature masking: Randomly zeroing out a fraction of features to simulate missingness or sensor 

dropout. 

These stress tests help disentangle sensitivity to local feature perturbations from robustness to global shifts in 

the underlying population. 

3.6 Evaluation Metrics 

Performance is measured using classification accuracy. For each dataset and model, three quantities are 

reported: 

● In-distribution accuracy (ID): Accuracy on a held-out test set drawn from the same distribution as the 

training data (random split). 

● Out-of-distribution accuracy (OOD): Accuracy on the naturalistic shifted test set constructed as 

described above. 

● Robustness gap: The difference between in-distribution (ID) accuracy and out-of-distribution 
(OOD) accuracy, represented as ΔAcc = AccID − AccOOD. 

ΔAcc=AccID−AccOOD, summarizing the degree of brittleness. 

Results are averaged over multiple random seeds for data splits and model initialization, and standard 

deviations are reported to capture variability across runs. 
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4 Related Results 

4.1 Overall Robustness Patterns 

Across datasets, all model classes exhibit nontrivial robustness gaps between in-distribution and naturalistic 

out-of-distribution test performance. Gradient-boosted trees achieve the highest average in-distribution 

accuracy and typically have smaller robustness gaps than logistic regression and vanilla MLPs, indicating 

relatively better stability under the constructed shifts. Neural networks that were trained without careful 

preprocessing or regularization have the largest gaps, which shows how fragile they are to changes in feature 

distributions. 

The FT-Transformer-style model outperforms baseline MLPs on tasks, achieving higher in-distribution and 

out-of-distribution accuracy and exhibiting reduced robustness gaps. This suggests that architectural 

advances in tabular deep learning can improve robustness, although they generally remain comparable to, 

rather than decisively superior to, strong tree-based baselines on these datasets. 

4.2 Naturalistic vs Synthetic Shifts 

Naturalistic shifts induced by structured partitioning of the feature space produce larger and more 

heterogeneous performance drops than small synthetic perturbations applied to the same test distributions. In 

particular, models that are relatively stable under moderate scaling or noise can still experience substantial 

degradation when the test population differs in terms of demographics or feature clusters. 

The ordering of models under synthetic noise and scaling does not always match their ranking under 

naturalistic shifts. For example, some models that handle additive noise well may still underperform when 

the relative frequencies of important feature combinations change. This divergence indicates that local 

perturbation robustness does not fully capture the challenges posed by deployment-motivated shifts. 

4.3 Dataset-Dependent Brittleness 

Robustness gaps vary substantially across datasets, reflecting differences in class imbalance, feature 

heterogeneity, and the severity of the induced shifts. Datasets with more pronounced changes in feature 

distributions or label prevalence between train and test splits tend to exhibit larger gaps for all models.  

In some cases, neural networks are particularly brittle on datasets with complex interactions and 

heterogeneous feature scales, whereas gradient-boosted trees degrade more gracefully. In other cases, simple 

linear models suffer less degradation than expected, suggesting that the optimal choice of model class under 

shift is context-dependent and cannot be inferred from in-distribution performance alone. 

4.4 Why Tree-Based Models Appear More Robust 

The relative robustness of tree-based models can be understood in terms of inductive bias. Decision trees 

partition the feature space using axis-aligned thresholds, which are invariant to monotone rescaling of 

individual features and less sensitive to moderate noise on non-critical dimensions. When feature 

distributions shift, many partition boundaries remain meaningful as long as the relative ordering of feature 

values is preserved. 

In contrast, multilayer perceptrons learn dense, coupled representations where predictions can depend on 

precise scaling relationships between features. Shifts in marginal feature distributions or co-occurrence 

patterns can thus perturb learned representations even when the underlying decision rule remains valid. FT-

Transformer partially mitigates this sensitivity by combining per-feature embeddings with attention, which 

can provide a form of implicit normalization and more flexible modeling of feature interactions. 

4.5  Mitigation Strategies 

Simple mitigation strategies can substantially reduce robustness gaps for neural networks. Feature 

standardization and appropriate L2 regularization decrease sensitivity to feature scaling and small 

distributional changes, bringing robustness closer to that of gradient-boosted trees on several datasets. Early 

stopping based on validation performance also prevents overfitting due to the idiosyncrasies of the training 

distribution. 
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However, these strategies do not fully eliminate robustness gaps, and neural networks still tend to exhibit 

greater degradation under the most severe shifts. This suggests that while preprocessing and regularization 

are necessary, they are not sufficient; more principled robustness methods tailored to tabular domains are 

needed to close the remaining gaps. 

 

5 Discussion and Limitations 

The experiments demonstrate that even well-tuned models suffer performance degradation under 

deployment-motivated shifts and that the magnitude of this degradation depends on both dataset properties 

and model architecture. The results confirm the strong practical position of gradient-boosted trees on tabular 

data while showing that recent neural architectures can narrow the robustness gap under careful training. 

This study has several limitations. First, the naturalistic shifts are constructed from publicly available 

datasets using feature-based partitioning, rather than being derived from explicit temporal or institutional 

metadata. As a result, they approximate but do not perfectly reproduce real deployment conditions. Second, 

the number of datasets is limited, and broader coverage of domains and shift types would be needed to draw 

stronger general conclusions. Third, the analysis focuses on accuracy-based metrics; robustness under 

alternative metrics, such as calibration or worst-group performance, remains an important direction. 

 

6 Future Work 

Future work could extend this study in several directions. One avenue is to evaluate more specialized 

robustness methods, such as distributionally robust optimization and domain generalization algorithms, 

within the tabular setting and compare their trade-offs between in-distribution and out-of-distribution 

performance. Another direction is to incorporate additional tabular architectures, including attention-based 

and hybrid models, under a common training and tuning protocol. 

As larger benchmarks for tabular robustness emerge, systematic evaluation on such benchmarks will further 

clarify the landscape. Subsequent efforts proposing standardized suites of shifted tabular datasets reinforce 

the importance of studying robustness in structured data and provide natural targets for scaling the 

methodology used here. 
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