

A Review: Efficacy of Some Natural Compounds as Antifungal Agents

Tangade Abhay Sanjay

Pratibhatai Pawar College Pharmacy, Shrirampur

Abstract:

Natural sources have been important for the development of new active molecules for many years. Various small molecules with unique chemical skeleton and potent bioactivities were discovered through various sources like plants, marine products, and microorganisms, etc., which are considered as very important part of the nature. A number of potent antifungal have been originated from various natural sources. This account describes structure and activities of selected agents isolated from various natural sources. The increased number of immunocompromised patients has led to the emergence of many forms of fungal infections. Furthermore, there are a restricted arsenal of antifungals available and an increase in the development of resistance to antifungal drugs. Because of these disadvantages, the search for new antifungal agent in natural sources has increased.

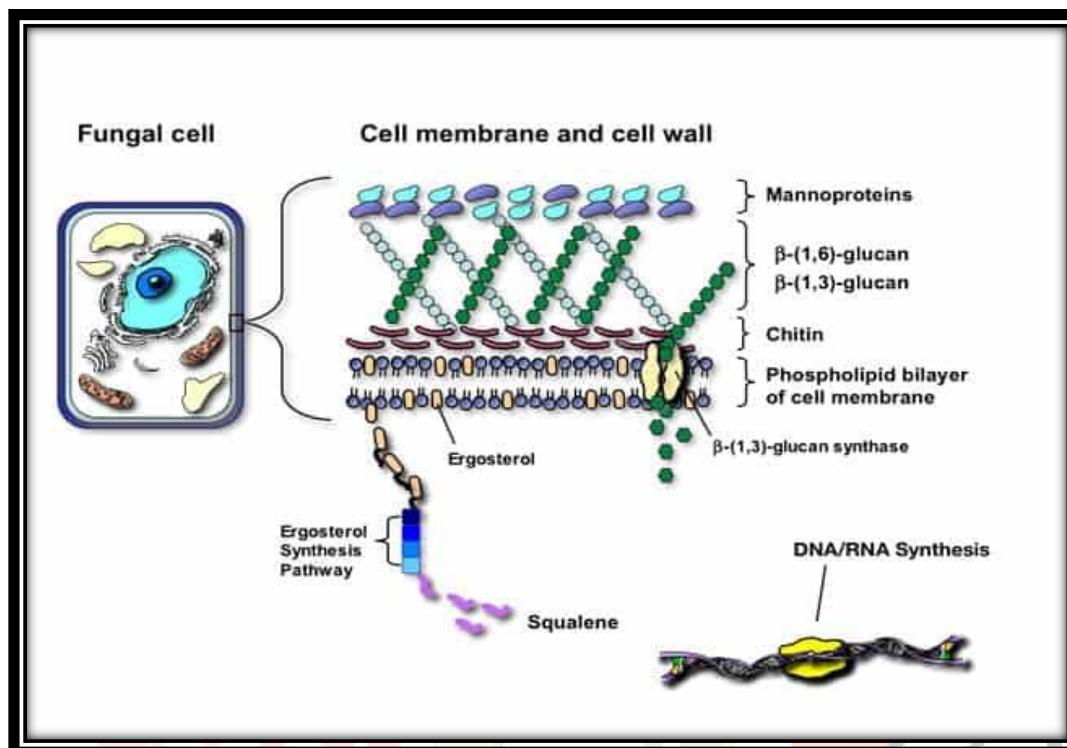
Keywords: Antifungals, biological activities, chemical structure, natural sources.

Introduction:

Fungal infections are among the worst illnesses, causing more than 1.5 million fatalities annually in the world. The primary cause of fungal infections' increased hazard to life is society's ignorance of them. Although there have been numerous advancements in the detection and treatment of fungal illness over the past 20 years, the majority of the population has yet to reap their advantages [1]. Skin infection is the fourth most common fungal disease overall and also causes the majority of fatalities [2]. The plant world has long been a centre for numerous naturally occurring substances with new structures, which keeps researchers interested in studying various plant species even now. The findings of recent studies revealed that plants are abundant in bioactive secondary metabolites such saponins, alkaloids, and terpenoids, which are known for their antifungal properties. Depending on that, these plant could be viewed as a promising source for anti-fungal medications in the future [3]. It has been seen that the development of fungus resistance against the currently used antifungal medications has increased [4] when the contemporary situation about fungal illnesses and antifungal treatments is taken into consideration. Since some of the molecular processes of fungi are similar to those of humans, toxicity to fungal cells could affect human cells as well, antifungal treatment for patients receiving therapy for AIDS, diabetes, chemotherapy, or organ transplant has always been difficult due to challenges like morbidity and mortality.

.Only a small number of pharmaceuticals have had a significant impact in the last 30 years on the treatment of fungi. Amphotericin B is one of the few fungicidal medications currently used in antifungal therapy, but it has also been linked to a number of serious adverse effects . In addition, the rise of imidazoles and triazoles was seen between the end of the 1980s and the beginning of the 1990s. These medication classes were effective at preventing activities linked to fungi cells. Recurring infections and the fungus's established tolerance to them were their main drawbacks . Therefore, the development of novel, effective, and secure anti-fungal medications from fresh sources like plants has become necessary. In order to further explain the existing situation about significant plants and the antifungal compounds they produce, the current chapter makes an effort to find potential future research areas for the production of more effective antifungal medications.[5]

Despite the limited supply of antifungal medicines, the higher toxicity commonly associated with antifungal therapy is mostly caused by the similarities between fungal and mammalian cells (Ostrosky-Zeichner et al., 2010; Pierce et al., 2013). The demand for new antifungal drugs and the characterisation of novel targets persists despite the availability of improved formulations that boost absorption while decreasing toxicity (Agarwal et al., 2008; Martinez-Rossi et al., 2008; Wiederhold and Patterson, 2015). According to Carrillo-Muoz et al. (2006), the ideal antifungal agent should have a broad spectrum and few adverse effects. Due to their broad biosynthetic capability, plants, animals, and terrestrial or marine microbes make attractive sources for prospective antifungals (Cruz et al., 2007; Rajeshkumar and Sundararaman, 2012; Rojas et al., 2006). They are therefore a valuable source of medicinal substances (Schmidt et al., 2008). The molecules found in plants, such as essential oils, flavonoids, alkaloids, proteins, peptides, glycoproteins, and tannins, can be used as models for the synthesis of novel compounds. Satya et al (Newman and Cragg, 2007). A quarter of all medications used today were found to be natural compounds or their derivatives in recent decades (Balunas and Kinghorn, 2005).Antifungal medication caspofungin and micafungin are produced from the fungus *Glarea lozoyensi* and *Coleophoma empetri*, respectively (Jarvis et al., 2004). Both are echinocandin class antifungal medications (Abruzzo et al., 2000). The approaches used to assess the efficacy and safety of natural products with antifungal potential in vitro and in vivo will be discussed in this paper. These methodologies cover all the steps that a natural product must pass through to qualify for usage as an antifungal medicine.[6]


Some Marketed Product Of Natural Antifungal Compound

Natural Compound	Marketed Product
Curcuma Longa	CURCUVON CURCUMIN 95% CURCUMINOIOS+Curcuma Longa root powder
Eugenia Uniflora	FUNGAS FIGHTER Herbal Supplement
Mimosa Tenuiflora	Maltodextrin and Mimosa Tenuiflora Bark Extret

Rubia Tinctorium	Mother Tincture, Geranium M.
Datura Metal	Liquid Dilution Datura Metal CH
Classia Tora	Avoaram poo powder Tanners assia flower
Ginger	Sunthee (Ginger)Powder Zingiber officinale

[7]

Mechanism of fungal cell:

[8]

The antifungal azole medications work by preventing the production of the sterol elements of the fungal membrane. Azoles have a strong fungistatic effect. They prevent the demethylation of lanosterol into ergosterol, the main sterol of fungal membranes, by inhibiting the cytochrome P450 [CYP450] enzyme C-14 - demethylase.[9]

Marketed products having antifungal properties:

Amphotericin B

Antifungal therapy for invasive and serious mycoses has long relied heavily on a powerful but highly toxic medication. Echinocandins and newer, more powerful triazoles, however, are now often suggested as first-line treatments for many invasive fungal diseases. Invasive and dangerous mycoses have traditionally been treated with amphotericin B, but other antifungals (such as fluconazole, voriconazole, posaconazole, and the echinocandins) are now thought of as first-line treatments for many of these infections. Despite having poor cerebrospinal fluid penetration, amphotericin B is nonetheless effective against several mycoses, including cryptococcal meningitis.

Azole Antifungals

A crucial element of the fungal cell membrane, ergosterol, cannot be produced when azoles are present. The chronic mycoses they treat can be administered orally. Ketoconazole, the earliest of these oral medications, has been replaced by more potent triazole derivatives like fluconazole, isavuconazole, itraconazole, posaconazole, and voriconazole.

Fluconazole

After an oral dose, this water-soluble medication is almost entirely absorbed. Fluconazole has a half-life of more than 24 hours and is mostly excreted unchanged in urine, allowing for single daily dosages.

Isavuconazole

A broad-spectrum triazole called isavuconazole is used to treat aspergillosis and mucormycosis. Both an oral capsule and an IV formulation are available. Monitoring of drug levels is not necessary.

Hepatitis and GI distress are among the side effects of isavuconazole, and the QT interval may shorten.

Itraconazole

The conventional therapy for lymphocutaneous sporotrichosis, mild to moderately severe histoplasmosis, blastomycosis, and paracoccidioidomycosis is itraconazole. Additionally, it works well for some cases of invasive aspergillosis, coccidioidomycosis, and some varieties of chromoblastomycosis. Itraconazole can be used to treat some forms of fungal meningitis despite having poor CSF penetration, however it is not the preferred medication. Itraconazole tends to be highly protein bound and has a high lipid solubility, therefore blood levels are normally low while tissue levels are high. Urine and CSF have extremely low drug concentrations. The use of voriconazole and posaconazole has grown while the use of itraconazole has decreased.

Voriconazole

This broad-spectrum triazole is offered as an IV formulation and tablet. It is regarded as the preferred course of action for both immunocompetent and immunocompromised patients with *Aspergillus* infections (aspergillosis). Infections caused by *Scedosporium apiospermum* and *Fusarium* can also be treated with voriconazole. Although it is not typically used as a first-line treatment, the medication also works well for treating invasive candidiasis and candidal esophagitis and has activity against a wider variety of *Candida* species than fluconazole does.[10]

Some natural compounds as Antifungal agents:

1. Curcuma longa:

[11]

Scientific Name: Curcuma longa

Common Name: Turmeric

Morphology of Plant:

Colour: Yellow

Odour: Warm

Taste: Bitter, almost musky

Family: Zingiberaceae

Kingdom: Plantae

Species: C. longa

Genus: Curcuma

Part of Use: Rhizome

Chemical Constituents:

- The major compounds were α-turmerone (20.50 %), β-sesquiphellandrene (5.20 %) and curcumenol (5.11 %). Curcumin was identified using IR, 1H and 13C NMR.

Extraction Process:

- Curcumin from plant materials is obtained using several methodologies, from traditional extraction processes, like Soxhlet extraction, maceration, and solvent extraction to recent extraction technologies, such as extraction by means of ultrasound, microwaves, enzymes, and supercritical liquids. The isolation and purification of curcumin from crude extracts is accomplished by techniques such as column chromatography, high-performance liquid chromatography (HPLC), high-speed counter-current chromatography, supercritical fluid chromatography, either alone or in combination.

Uses:

- Curry powders, mustards, butters, and cheeses can all benefit from the addition of turmeric to add flavour or colour. Saffron and other yellowish pigments can also be replaced with turmeric.[12]

2. Eugenia Uniflora:

[13]

Scientific Name: Eugenia Uniflora

Common Name: Surinam Cherry

Morphology Of Plant:

Colour: Bright reddish-purple

Odour: Resinous

Taste: Sharp and Sweet

Family: Myrtaceae

Kingdom: Plantae

Species: E. uniflora

Genus: Eugenia

Parts of Use: Leaves

Chemical Constituents:

- Selina-1,3,7(11)-trien-8-one (36.37%) and selina-1,3,7(11)-trien-8-one epoxide (27.32%). The concentration that reduced microorganismal growth was $\geq 8,192 \mu\text{g/mL}$ while the IC₅₀ varied, this being between 1892.47 and 12491.80 $\mu\text{g/mL}$ (oil), 10.07 - 80.78 $\mu\text{g/mL}$ (fluconazole) and 18.53 - 295.60 $\mu\text{g/mL}$ (fluconazole + oil).

Extraction Process:

- Present in crude extract (CE), in aqueous fraction (AqF), and ethyl acetate (EAF) treated fractions from *E. uniflora* Linn leaves were shown by chromatographic analysis in order to conduct a phytochemical characterization. Antibacterial activity was assessed based on minimum inhibitory concentrations (MICs) determined using the agar dilution method. Doses of 50, 100, and 200 mg/kg of the CE and fraction were applied for conducting in vivo models (male Swiss mice, 8-10 weeks old).

Uses:

Fruit:

- A berry is a type of edible fruit. Depending on the cultivar and degree of maturity, the flavour might be sweet or sour (the darker red to black range is quite sweet, while the green to orange range is strikingly tart). As a flavour and foundation for jams and jellies, it is mostly used in food. The fruit is a reliable source of provitamin A and is high in vitamin C.

Leaves:

- In some Brazilian homes, the leaves are spread out so that when stepped on, they release a scent that deters insects.
- In some areas of Uruguay, the leaves are also used to make tea.[14]

3. *Piptadenia Colubrina*:

[15]

Scientific Name: *Piptadenia Colubrina*

Common Name: Angico-Coco

Morphology of Plant:

Colour: Yellowish light brown

Odour: No distinct odour

Taste: No distinct taste

Family: Fabaceae

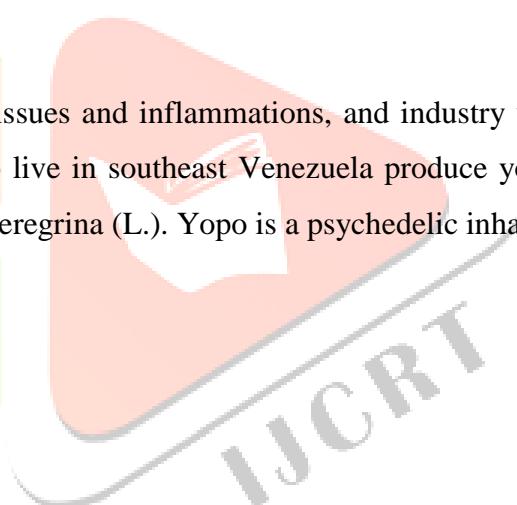
Kingdom: Plantae

Species: *A. colubrina*

Genus: *Piptadenia*

Part of Use: Steam Bark

Chemical Constituents:


- The major chemical compounds are 2,9-dimethyltryptoline, 2-methyltryptoline, 5-meo-dmt, 5-methoxy-n-methyltryptamine, bufotenine, bufotenineoxide, catechol, leucoanthocyanin methyltryptamine

Extraction Process:

- The plant material was collected from the rural area of the city of Altinho, Northeast Brazil ($08^{\circ}35'13.5''$ S and $36^{\circ}05'34.6''$ W). This location is characterized by Caatinga scrub land, highly irregular rainfall, a hot, semi-arid climate (Bsh) and an average temperature exceeding 26°C (R. M. S. De Araújo et al., 2012). A voucher specimen (48633) was deposited in Herbário Geraldo Mariz, Universidade Federal de Pernambuco (UFPE) and the plant was identified by Dra. Viviany Teixeira do Nascimento, Universidade do Estado da Bahia (UNEB).
- Intact and regenerated bark was collected from the same tree specimens, giving a total of 12 samples in order to rule out genetic interference. The bark was also taken from a similar region of the trunk so as to reduce environmental effects such as sunlight exposure and mechanical impact. The material was dried at an ambient temperature of $25 \pm 2^{\circ}\text{C}$ and ground in a Wiley cutting mill to obtain a granulometry of 20 Mesh. The powder was submitted to extraction using 80% methanol at the proportion of 1:20 (w/v) for 72 hours and then filtered. The liquid extracts were evaporated in a rotary evaporator at $40 \pm 2^{\circ}\text{C}$ under reduced pressure to obtain a dry solid extract

Uses:

- Traditional medicine uses it to heal respiratory issues and inflammations, and industry uses it to tan leather. The curandeiros of the Piaroa tribe who live in southeast Venezuela produce yopo from the seeds of a related species called *Anadenanthera peregrina* (L.). Yopo is a psychedelic inhalant.[16]

4. *Persea Americana*:

[17]

Scientific Name: *Persea Americana*

Common Name: Avocoda

Morphology of Plant:

Colour: Dark Green

Odour: Pleasant, slightly sweet

Taste: Sour

Family: Lauraceae

Kingdom: Plantae

Genus: *Persea*

Species: *Persea Americana*

Part of Use: Leaves

Chemical Constituents:

- The dried leaves of *P.americana* (1 kg) were extracted with MeOH (3×10 l, 50 °C) under sonication for 4 h to yield 210 g extract after evaporation of the solvent.
- This extract was suspended in H₂O and successively partitioned with hexane, CHCl₃ and EtOAc to obtain hexane (PA1, 60 g), CHCl₃ (PA2, 4 g), EtOAc (PA3, 30 g), and H₂O (PA4, 120 g) partitions after removal of the solvents *in vacuo*.

Extraction Process:

- The extraction of edible oil from the pulp of avocado fruit using the cold process was investigated. Avocado pear fruit was washed, peeled, de-stoned, blended, and heated at 60 °C for 90 mins and malaxed. The Avocado oil was extract using a laboratory centrifuge where no chemical solvent was used, except water used to aid blending of the pulp. The process involve centrifuging the Avocado pulp at 7000 rpm for 15 mins. While the solid pulp remained in the bottom, the liquid (oil-water mixture) floated on top. The mixture was dried for an hour using a heating mantle and then filtered using a filter paper to remove suspended pulp particles. Dark greenish brown oil was thus obtained with a yield of 6.3 %. Characterizing the oil, its physicochemical properties in term of acid value, saponification value, ester value, % FFA, % glycerine, specific density and moisture content were found to be 23 mg KOH/g oil, 199.7 mg KOH/g oil, 176.7 mg KOH/g oil, 11.5%, 9.66%, 1.19 g/L and 75% respectively.

Uses:

- People from tropical regions use it to treat conditions including diarrhoea, dysentery brought on by helminths and amoebas, toothaches, intestinal worms, diabetes, skin rashes, and infectious diseases brought on by fungi and bacteria, as well as asthma.
- It using avocado for a variety of added uses, there isn't enough trustworthy data to determine whether it will be beneficial.[18]

5. **Ajania Fruticulosa:**

[19]

Scientific Name: Ajania Fruticulosa

Common Name: Shrubby Ajania

Morphology of Plant:

Colour: Yellow

Odour: Aromatic

Taste: Tasteless

Family: Asteraceae

Kingdom: Plantae

Genus: Ajania

Species: *Ajania pallasiana*

Part of Use: Fruits

Chemical Constituents:

- Sixteen compounds were isolated from the aerial parts of *A. fruticulosa* in present study, including eight flavonoids (1, 2, 3, 4, 5, 6, 7 and 8), three terpenoids (9, 10 and 11), two sterols (12 and 13), one lignan (14), one fatty acid (15) and one fatty acid ethyl ester (16).

Extraction Process:

- The air-dried whole plant of *Ajania fruticulosa* (4.5 kg) was extracted with methanol (20 L). The removal of the solvent yielded 206 g of the crude methanolic extract. The methanolic extract was fractionated into different fractions on the basis of solvent-solvent extractions. The chloroform and ethyl acetate fractions were subjected to column chromatography and preparative TLC to afford the pure compounds 1-5 and 6, respectively.

Uses:

- *Ajania fruticulosa* is an antifungal plant. It is used in the treatment of appendicitis, tuberculosis and emphysema in Chinese people. [20]

6. *Mimosa Tenuiflora*:

[21]

Scientific Name: *Mimosa tenuiflora*

Common Name: Black jurema

Morphology of Plant:**Colour:** Brown**Odour:** Floral wood**Taste:** Mimosa**Family:** Fabaceae**Kingdom:** Plantae**Genus:** Mimosa L.**Species:** Mimosa Pudica L.**Part of Use:** Stem bark**Chemical Constituents:**

- The bark contains tannins, saponins, an alkaloid fraction, lipids, phytosterols, glucosides, xylose, rhamnose, arabinose, lupeol, methoxychalcones, and kukulkanins.

Extraction Process:

- Mimosa tenuiflora stem barks were washed with distilled water, dried at 40°C, ground into powder (5 g), suspended in methanol (1:50, w/v, 60°C) and filtered to remove methanol-soluble material (replicate two times). The insoluble part was extracted in 0.1 M NaOH at 90°C and centrifuged (2496 × g; r.t.) (replicate three times).
- The alkaline extract were pooled, neutralized with 1 M HCl, precipitated with four volumes of ethanol and centrifuged. The pellet was split (membrane cut-off 14 kDa; 72 h) against running water, centrifuged (2496 × g; r.t.), the final supernatant lyophilized and named extract polysaccharide of *M. tenuiflora*(EP-Mt).

Uses:

- Tooth discomfort has been treated with a tea brewed from the stem and leaves. A *Mimosa tenuiflora* water extract (decoction) is consumed in cases of cough and bronchitis.
- It is used either on its own or as a syrup. Until the symptoms go away, the remedy is consumed.[22]

7.Rubia Tinctorum:

[23]

Scientific Name: Rubia Tinctorum

Common Name: Common Madder

Morphology of Plant:

Colour: Red

Odour: Gentian ales

Taste: Sweet slightly sour

Family: Rubiaceae

Kingdom: Plantae

Genus: Rubia

Species: R. tinctorum

Part of Use: Root

Chemical Constituents:

- Twenty compounds were isolated from the roots of *Rubia tinctorum* which are used as a commercial source of madder color. Among these compounds, mollugin (1), 1-hydroxy-2-methylanthraquinone (2), 2-ethoxymethyl-anthraquinone (11), rubiadin (13), 1, 3-dihydroxyanthraquinone (14), 7-hydroxy-2-methylanthraquinone (16), lucidin (17), 1-methoxymethylanthraquinone (18) and lucidin-3-O-primeveroside (19) showed mutagenicity with *Salmonella typhimurium* TA 100 and/or TA 98.

- The mungenic compounds isolated are anthraquinone derivatives with the exception of compound 1, structure-mutagenicity relationships of the anthraquinones were also studied. The results suggest that the greatest activity is exhibited by 1, 3-dihydroxyanthraquinones possessing methyl or hydroxymethyl group on carbon 2.

Extraction Process:

- To select the best solvent for alizarin, distilled water (W) and a few other solvents, such as acetone (Ac), ethanol (EtOH), ether (Et₂O) and methanol (MeOH), all of analytical grade, were tested by using particles sieved through 0.5-mm openings (ds). By using screwcapped FEP (Fluorinated ethylene propylene) 50-cm³ tubes, 0.5 g of pre-ground, madder root powder was suspended in 20 cm³ of solvent.
- The tubes were put in a thermostatic bath at 25 °C. After 12 h of extraction, any tube was quickly cool by immersion in iced water and centrifuged at 10,000 rev min⁻¹ (13,776 × g) for 10 min at room temperature. The residue was washed twice with 20 cm³ of fresh solvent.

Uses:

- It has been used as a natural red dye for leather, wool, cotton, and silk. After two years, the roots are extracted to make dye. The inner yellow layer produces the refined type of the dye, while the outer red layer produces the common variety.[24]

8.Datura Metal:

[25]

Scientific Name: Datura Metal

Common Name: Moonflowers

Morphology of Plant:

Colour: Purple black

Odour: Solan ales

Taste: Bitter

Family: Solanaceae

Kingdom: Plantae

Genus: Datura

Species: D. metel

Part of Use: Whole plant

Chemical Constituents:

- Ten compounds were isolated and identified as Isofraxidin (1), Scopatone (2), Daturadiol (3), 1,4-Benzenediol (4), Arenarine D (5), Vanillin (6), N-trans-Feruloyl-tyramine (7), Scopoletin (8), G-Sitosterol (9) and Hyoscyamilactol (10).

Extraction Process:

- Powdered leaf part of DS was extracted using ethyl acetate (EA) to provide the extract (DSL-EA). Lymphocyte and macrophage viability and acute toxicity assays established the safety profile, while nitric oxide (NO) scavenging assay estimated the in vitro anti-inflammatory potential. Noninvasive anti-inflammatory, antidepressant, and antinociceptive activities were monitored using BALB/c mice using low and high doses (150 and 250 mg/kg).
- Major inflammatory studies were performed on Sprague-Dawley male rats using CCl4-induced liver injury model. Disease induction was initiated by intraperitoneal injections of CCl4 (1 mL/kg of 30% CCl4 in olive oil). The rats were divided into six groups. The anti-inflammatory potential of DSL-EA in low and high doses (150 and 300 mg/kg, respectively) was assessed through hematological, biochemical, liver antioxidant defense, oxidative stress markers, and histological studies as well as the expression of Nrf2 and iNOS.

Uses:

- Datura metel, also known as yang jn hu, is one of the 50 essential herbs used in traditional Chinese medicine. However, ingesting D. metel in any form is risky and needs to be handled carefully.
- It is used in Ayurvedic medicine, Datura metel is prohibited in India under the Drug & Cosmetic Act 1940 and Rule 1995.[26]

9.Cassia Tora:

[27]

Scientific Name: Cassia Tora

Common Name: Tora Coffee

Morphology of Plant:

Colour: Green, Deep brown

Odour: Fagales

Taste: Sweet, salty bitter

Family: Fabaceae

Kingdom: Plantae

Genus: Senna

Species: S.tora

Part of Use: Seeds

Chemical Constituents:

- The main components of the volatile oil were elucidated as (Z,Z)-9,12-octadecadienoic acid (26.74%), oleic acid (24.15%), n-hexadecanoic acid (13.99%), chrysophanol (7.26%), (E)-9-octadecenoic acid (4.52%) and octadecanoic acid (4.44%).

Extraction Process:

- A process for the preparation of herbal extract of Cassia tora leaves, useful for the treatment of anxiety disorders, comprising the steps of: i. collecting Cassia tora plant material; ii. drying the plant material at ambient temperature in the range of 25 to 37°C while maintaining the moisture in the range of 0.5- 1.5 percent; iii. pulverizing the plant material dried in step (ii) and selecting the material in the size range of 16 - 20 mesh sieve.
- iv. soaking the pulverized plant material obtained in step (iii) above in 95:05 (v/v) alcohol-water mixture in static condition at ambient temperature followed by draining & collecting the extract solution; v. repeating the soaking step described in step (iv) above five times with fresh solvent mixture at an interval of 24 hours; vi. concentrating the extract solution obtained in step (v) by known methods; vii. freeze drying the concentrated extract obtained in step (vi) at a temperature in the range of -50 to -600C for a period in the range of 8 to 16 hours; viii. testing the extract in-vitro and in-vivo for anti-anxiety activities.

Uses:

- It is used in cooking as a vegetable, and roasted seeds can be used in place of coffee. Sri Lankan cuisine includes the flowers.
- It is often used as a powder in the pet food business and is utilised as a natural pesticide in organic agriculture. For usage in mining and other industrial applications, it is blended with guar gum.
- The seeds can be used as a laxative, while the leaves and seeds are used to cure skin conditions.[28]

10. Zingiber Officinale:

[29]

Scientific Name: Zingiber Officinale

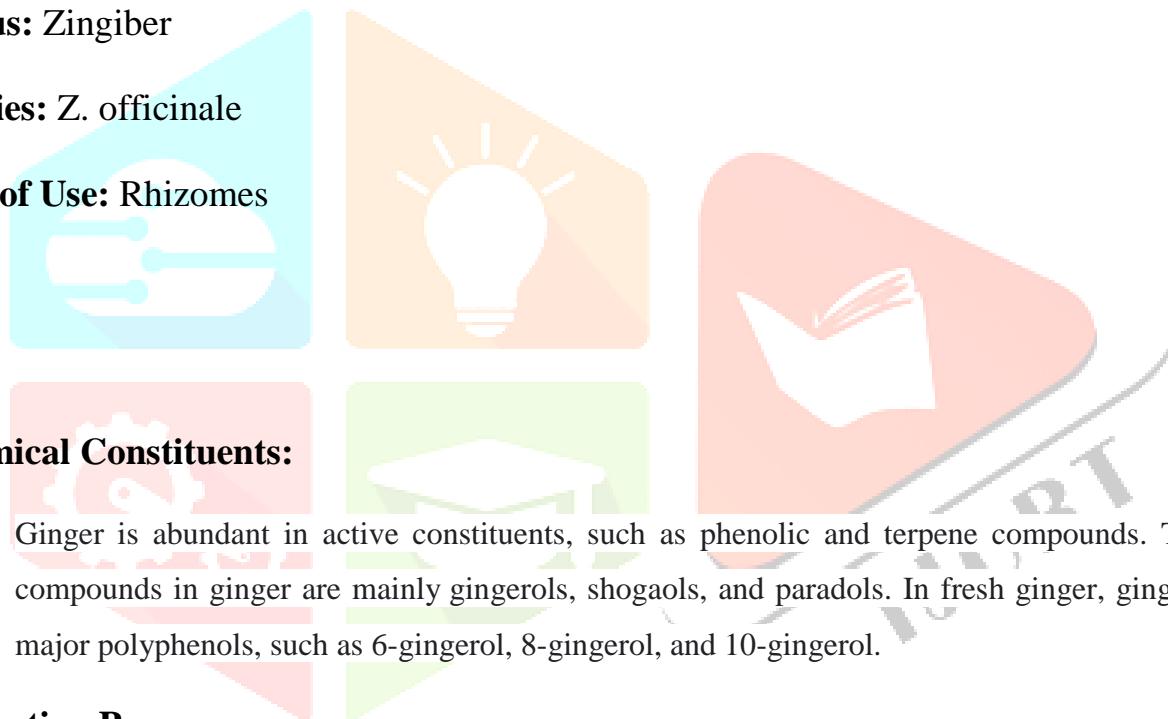
Common Name: Ginger

Morphology of Plant:

Colour: Pale yellow

Odour: Zingiber ales

Taste: Slightly biting taste


Family: Zingiberaceae

Kingdom: Plantae

Genus: Zingiber

Species: Z. officinale

Part of Use: Rhizomes

Chemical Constituents:

- Ginger is abundant in active constituents, such as phenolic and terpene compounds. The phenolic compounds in ginger are mainly gingerols, shogaols, and paradols. In fresh ginger, gingerols are the major polyphenols, such as 6-gingerol, 8-gingerol, and 10-gingerol.

Extraction Process:

- The ginger is extracted by a water steam distillation method. Cold pressing ginger oil of a pungent taste component of the ginger is extracted by a centrifugal separation method. An excipient is used for granulation, and the yellowish solid ginger extract is made. The method of the present invention has the advantages of simple manufacture technology and high utilization rate of the ginger.
- The spicy component in the ginger is effectively extracted, and the quantity of the spicy component in the product is equivalent to more than 12 times of that of the ginger. The ginger extract is in a solid form and is easily water-soluble. The ginger extract has the advantages of convenience for eating, storage and transportation.

Uses:

- Ginger is a widely used spice that can be added to food or utilised as a traditional remedy.

- Ginger can be used in a wide range of foods, including pickles, soda, confectionery, vegetables, and alcoholic beverages.
- Ginger is used as a raw material, and volatile oil of an aroma component of the ginger is extracted by a water steam distillation method.[30]

Conclusion:

There have been several reports of metabolites from plants, marine invertebrates, and other natural sources inhibiting pathogenic fungus. These substances fall under the category of terpenoids and represent a wide range of structural classes, including cinnamodial sterols, furanones, quinines, and resorcinol. Discovering novel classes of antifungals and substances that inhibit these resistant pathways is required due to the rise of multidrug-resistant fungus strains and the dearth of current medications. In particular, medicinal plants and chemicals derived from them that are employed for their empirical antifungal qualities have been sought after as therapeutic alternatives as a result. A number of compounds having antifungal activity against various fungus strains have been discovered in these natural sources, and they are quite significant. They include terpenoids, cinnamodial sterols, furanones, quinines, and resorcinol, as well as a variety of other structural groupings. Due to the rise of multidrug-resistant fungus strains and the dearth of available medications, it is imperative to discover new families of antifungals and compounds that inhibit these resistant processes. This has led to a quest for therapeutic alternatives, particularly among medicinal plants and the compounds derived from them that are used for their established antifungal effects. These natural sources have several chemicals that have been found to have antifungal activity against different fungus strains and are greatly beneficial to both plants and people. It is hoped that other chemists will begin their own search for antifungal compounds.

References:

- [1] Sanglard D. Clinical relevance of mechanisms of antifungal drug resistance in yeasts Importancia clínica de los mecanismos de resistencia a los antifúngicos en levaduras. Enfermedades Infecciosas y Microbiología Clínica. 2002;20(9):462-470
- [2] Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. The Journal of Investigative Dermatology. 2013;134(6):1527-1534. DOI: 10.1038/jid.2013.446
- [3] Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, Lavekar GS, et al. Natural products–antifungal agents derived from plants. Journal of Asian Natural Products Research. 2009;11(7):621
- [4] Fischer MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCrwa SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012; 484:186
- [5] Sanglard D. Resistance and tolerance mechanisms to antifungal drugs in fungal pathogens. Mycologist. 2003; 17:74

[6] Rodriguez-Tudela JL, Alcazar-Fuoli L, Cuesta I, Alastruey-Izquierdo A, Monzon A, Mellado E, et al. Clinical relevance of resistance to antifungals. *International Journal of Antimicrobial Agents*. 2008;32: S111

[7] Manavathu EK, Vazquez JA, Chandrasekhar PH. Reduced susceptibility in laboratoryselected mutants of *Aspergillus fumigatus* to itraconazole due to decreased intracellular accumulation of the antifungal agent. *International Journal of Antimicrobial Agents*. 1999; 12:213

[8] Sanglard D. Resistance of human fungal pathogens to antifungal drugs. *Current Opinion in Microbiology*. 2002; 5:379

[9] Pfaller MA, Casatanheira M, Messer SA, Moet GJ, Jones RN. *Diagnostic Microbiology and Infectious Disease*. 2010; 68:278

[10] Odds FC. Resistance of clinically important yeasts to antifungal agents. *International Journal of Antimicrobial Agents*. 1996; 6:145

[11] Sanglard D. Clinical relevance of mechanisms of antifungal drug resistance in yeasts. *Odda FC*. 2002; 2:73

[12] Beck-Sague C, Banerjee S, Jarvis WR. Analyzing socioeconomic and racial/ ethnic patterns in health and health care. *American Journal of Public Health*. 1993; 83:1739

[13] Tripathi KD. *Essentials of Medical Pharmacology*. New Delhi, India: Jaypee Brothers Medical Publishers (P) Ltd.; 2009. p. 757

[14] Rex JH, Rinaldi MG, Pfaller MA. Resistance of *Candida* species to fluconazole. *Antimicrobial Agents and Chemotherapy*. 1995; 39:1

[15]. Amalraj A., Pius A., Gopi S., Gopi S., 2017, Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review, *Journal of Traditional and Complementary Medicine*, Vol. 7, Issue 2, 205-233.

[16]. Castro O. C. J., Endo H. E., Souza M. R., Zanqueta, E. B., Polonio C. J., Pamphile A. J., Nakamura U. T., Nakamura V. C., Filho, D. P.B., Filho, A. A. B, 2017, Bioactivity of essential oils in the control of *Alternaria alternata* in dragon fruit (*Hylocereus undatus* Haw.), *Industrial Crops and Products*, Vol. 97, 101-109.

[17]. Capoci G. R. I, Bonfim-Mendonça S. P., Arita S. G., Araújo P. R. R., Consolaro L. E. M., Bruschi L. M., Negrim., Svidzinski E. I. T., 2015, Propolis Is an Efficient Fungicide and Inhibitor of Biofilm Production by Vaginal *Candida albicans*, *Evidence-Based Complementary and Alternative Medicine*, 1-9.

[18]. Macdonald, F.; Canteiro, C. (2021). "Eugenia uniflora". The IUCN Red List of Threatened Species. 2021: e.T60330325A60330335.

[19]. Nascimento e Santos, Débora; Lima de Souza, Larissa; Nilson José Ferreira; Lopes de Oliveira, Alessandra (2015). "Study of supercritical extraction from Brazilian cherry seeds (*Eugenia uniflora* L.) with bioactive compounds". *Food and Bioproducts Processing*. Elsevier. 94: 365–374.

[20]. Consolini AE, Baldini OA, Amat AG (1999). "Pharmacological basis for the empirical use of *Eugenia uniflora* L. (Myrtaceae) as antihypertensive".

[21]. Monteiro JM, de Almeida Cde F, de Albuquerque UP, de Lucena RF, Florentino AT, de Oliveira RL (2006).

[22]. Angelo Z, Dante and Capriles, José M. La Importancia de las Plantas Psicotrópicas para la Economía de Intercambio y Relaciones de Interacción en el Altiplano sur Andino. Chungará (Arica). Volumen Especial, 2004. Pages 1023-1035. Chungara, Revista de Antropología Chilena. ISSN 0717-7356.

[23]. Constantino Manuel Torres; David B. Repke (2006). *Anadenanthera: Visionary Plant of Ancient South America*. p. 98. ISBN 9780789026422.

[24]. Germplasm Resources Information Network. United States Department of Agriculture. 2007-10-05. Retrieved 2011-02-05.

[25]. André Joseph Guillaume Henri Kostermans. 1993.

[26]. Frederick B. Essig (3 March 2015). *Plant Life: A Brief History*. Oxford University Press. pp. 162–. ISBN 978-0-19-026658-5.

[27]. Flann, C (ed) 2009+ *Global Compositae Checklist*". Archived from the original on 2014-11-04. Retrieved 2014-11-04.

[28]. Flora of China Vol. 20-21 Page 656 ya ju shu Ajania Poljakov, Bot. Mater. Gerb. Bot. Inst. Komarova Akad. Nauk S.S.S.R. 17: 419. 1955.

[29]. Genaust, Helmut (1976). *Etymologisches Wörterbuch der botanischen Pflanzennamen* ISBN 3-7643-0755-2.

[30]. H. C. Bhardwaj & K. K. Jain (1982). "Indian dyes and dyeing industry during 18th–19th century" (PDF). *Indian Journal of History of Science*. New Delhi: Indian National Science Academy. 17 (11): 70–81. Archived from the original (PDF) on 2012-01-14.