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Abstract 

The interest in artificial intelligence in the medical sciences has increased over the last two decades, but most 

studies of its applications in clinical studies have drawn criticism for having unreliable designs and poor 

replicability, necessitating a greater need for medical professionals to be knowledgeable about this quickly 

expanding field of research. The area of Bayesian artificial intelligence is briefly introduced in this article. We 

talk about causal inference, Bayesian networks, and their (potential) applications in clinical practice. 
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1 Introduction 

The work of Alan Turing in 1950 can be credited with giving rise to artificial intelligence (AI). He 

developed a test, now known as the Turing Test, in which a machine must possess a specific level of 

intelligence to trick a human into believing he is speaking with another human (the Imitation Game). A 

straightforward interaction with a virtual assistant like Siri provides as a vivid illustration of how quickly 

AI research has advanced over the past few decades, despite the fact that such a degree of intelligence has 

not yet been achieved. 

In the recent two decades, AI has gained attention in the medical sciences, with an increasing number of its 

applications receiving worldwide approval from health authorities. But the majority of doctors and medical 

researchers lack formal training in the fields where the field of smart medical monitoring, diagnosis, and 

follow-up has its roots. This is one of the key barriers to broad physician and engineer collaboration in the 

creation of AI software, along with historical philosophical disparities in the practise of medical and 

engineering professions. It might also be argued that this is a contributing factor to the ongoing replicability 

issue in medical AI research2, which is characterised by faulty study designs and subpar replication3.  

Few works attempt to pique doctors' interest in the foundational ideas and jargon of artificial intelligence, 

despite the fact that there is an expanding body of research on how AI can be applied in clinical practise. They 

are familiar with notions from probability and statistics like correlation, regression, and confidence intervals 

because to the progressive shift towards quantitative methods over the past century; it is worthwhile to 

elaborate on these ideas and connect them to contemporary AI.  

In the early 2000s, neural networks and clustering were the two AI techniques that were most frequently 

used in the medical literature (in the last decade). Bayesian reasoning and AI techniques are less well known, 

despite their potential applications in human physiology research, symptom interaction analysis, and symptom 

recovery research. Given that we cannot create a complete mechanistic model of diseases and the physiological 

pathways they affect, Bayesian models can help with reasoning in probabilistic terms when dealing with 

uncertainty.  
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This work aims is mainly just to introduce physicians to Bayesian AI through a perspective (basically 

clinically) on probabilistic reasoning and Bayesian networks.  

 

2 Probabilistic reasoning 

 

Using information about circumstances that might be related to an event that has already occurred, Bayes' 

theorem estimates the probability of that occurring: It is represented using the widely used mathematical 

notation 
 

 
 

the probability Pr(A | B) of an event A given prior knowledge of a condition B (that is, B has occurred). 
Pr(A | B) is a conditional probability, while Pr(A) and Pr(B) are known as marginal probabilities, that is, 

the probabilities of observing the events A and B individually. In the context of medical diagnosis, the goal is 
to determine the probability Pr(Di | Cp) of presence of a particular disease or disorder Di given the clinical 

presentation of the patient Cp 11, the prior probabilities Pi
J of the disease in the patient’s reference group, and 

the prior 

probabilities Pj
J of other diseases Dj; that is 

 

 
where Pr(Cp | Dj) is the probability of having the same clinical presentation given other diseases. 

Bayes’ theorem makes it possible to work with the distributions of dependent (or condi- tionally 

dependent) variables. However, in order to reduce the number of variables we need 

to observe simultaneously in probabilistic systems, it is also important to determine whether two variables A 
and B are independent (A ⊥ B), 

Pr(A | B) = Pr(A), 

 

or conditionally independent (A ⊥ B | C) given the value of a third variable C, 

Pr(A ∩ B | C) = Pr(A | C) Pr(B | C). 

 

Extracting conditional dependence tables is one of the building blocks upon which we can build Bayesian 
probabilistic reasoning. It allows to take a set of variables (say, A, B and C again) and to compute the 
conditional probabilities of some of them (say, A | C), 

Pr(A = y  C = x) = 
B∈{x,y} Pr(C = x, B, A = y) 

.
 

B,A∈{x,y} Pr(C = x, B, A) 

Conversely, we can also take variables or set of variables that are (conditionally) independent from each other 

and combine them to obtain their joint probability. This joint probability will be structured as a larger 

conditional dependence table that is the product of smaller tables associated with the original variables. For 

instance, 

Pr(A = y, B = z | C = x) = Pr(A = y | B = z) Pr(B = z | C = x) 

assuming A ⊥ C. The ability of explicitly merging and splitting set of variables to separate variables of interest 
we need for diagnostic purposes from redundant variables is one of the 

reasons that makes Bayesian reasoning easy while at the same time mathematically rigorous. 
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3 Machine learning and Bayesian thinking 

      The branch of AI known as machine learning (ML) explores the algorithms and statistical techniques that 

enable computers to carry out well-defined tasks without explicit instructions. Four elements are necessary for 

machine learning implementation. 

 First, we need a working world model that can be understood by computers and explains the tasks and their 

environment. In practice, this entails selecting a class of Bayesian models defined over the relevant exogenous 

variables and the variables of interest and putting those models into software. The joint probability is 

represented by generative models, such as Bayesian networks, which explain how variables interact with one 

another. 

Pr (X1, . . . , XN ) ; 

while discriminative models such as random forests and neural networks only focus on how a group of 

variables predicts a target variable by estimating 

Pr (X1 | X2, . . . , XN ) . 

Clearly, a generative model may be a better option than a discriminative model depending on the application, 

or vice versa. Generative models should be chosen when describing the phenomenon we are modelling from a 

systems perspective. Discrimination models offer superior prediction accuracy at the expense of being less 

expressive if we are merely interested in forecasting some clinical occurrence, like in the case of diagnostic 

devices. 

 

The ability to forecast brand-new events is typically how we gauge the model's success. 

The third stage, known as learning, is encoding the knowledge about the world into the model via training data, 

experts, or both. 

therefore, the computer system 

 

 
 

Figure 1: An undirected network of seven nodes connected through edges. 

 

discover the model that maximizes the selected performance metric inside the required class, using either 

observational or experimental data or professional knowledge that is available from practitioners. Fourth, the 

computer decides whether and how to carry out the prescribed task while using the model as a stand-in for 

reality and making inferences as fresh inputs are received.  

By putting machine learning applications into practice successfully is far from simple: it needs a lot of data, 

and choosing how to organize the model from a probabilistic and mathematical standpoint is challenging. The 

importance of ethical software engineering cannot be understated. Because of these factors, machine learning 

models should have a small number of variables to make them simple to build and understand. 

In addition, unlike cutting-edge neural networks, compact models are unlikely to need a lot of computer 

capacity to learn. 

Probability should be utilized to determine if two variables are connected given other factors because clinical 

settings limit our knowledge of the patients to what we can learn from them. Formally, we say two variables 

are connected with or probabilistically reliant on one another if the likelihood of an event occurring in one 

variable impacts the likelihood of an event occurring in the other. Probability-symmetric association does not 

distinguish between causes and effects on its own. But Bayesian network models go beyond probability theory 

to depict causal relationships as arcs in a graph, enabling rigorous causal inference. 
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4 Bayesian Networks 

We have introduced in this section about the fundamental notions of Bayesian networks. Specialized textbooks 

have given more elaborated review on this subject9, and the software to implement them is completely 

available from the bnlearn package 14 for statistical environment the R. 

 

4.1 The use of graphs to represent interactions among entities 

The study of graphs is a topic in mathematics known as graph theory. These structures are used in the medical 

sciences to express interactions between elements such as symptoms, signs, or biological markers. 

 

Figure 2: A Bayesian network, or any Directed Acyclic Graph consisting of five nodes. T h e s e  Edges are 

directed from one node to another node. 

 
A graph G is understood as a set V of nodes (also known as vertices) representing variables (or other feature 

of the data) that are connected through a set A of edges (also known as arcs).  Let us consider a network of five 
nodes, such as that shown in Figure 1.  In this case, the set of nodes comprises and the set of edges 

 

V = {v1, v2, v3, v4, v5}, 

A = {a12, a14, a23, a24, a25, a34}, 

 where a12 represents the edges between node v1 and node v2. The network represented in Figure 1 is termed as 

an undirected network, as the edges are not directed in any of the particular direction, so therefore for the above 

said graph (vi, vj) = (vj, vi). Undirected networks are commonly used for representing the pairwise interactions 

among some psychopathological symptoms6. The edges are unweighted, so that any of the edge can either be 

present by aij = 1 or if absent aij = 0 between any of the two nodes; or they can be weighted, so that some 

edges can be stronger than the others in any considered network, and can have either a positive or negative 

sign. For such instance, a weighted edge can represent a partial correlation estimate 15 so t h a t  conveying the 

existence of a conditional association relationship between any two variables can be defined. 

 

4.2 Directed Acyclic Graphs 

Contrarily, directed acyclic graphs serve as the foundation for Bayesian networks (DAGs). Due to the 

fact that a DAG only has directed edges, (vi, vj) /= (vj, vi), as the former is vi vj and the latter is vj vi. 

Figure 2 displays a case in point. 

The head of the arrow represents the consequence, and the tail node represents the cause, in causal links 

represented by these arcs. Loops and cycles—the result of a node acting on itself—cannot exist in 

Bayesian networks (for any of the instance, A goes to B, B goes to C, and C goes to A). 

A Bayesian network's main objective is where to express the conditional independence that is set of 

relationships between variables (that is, variables that do not predict each other). In addition to the DAG, 

Bayesian networks are well defined by the global probability for distribution of X (with Xi being the 

variable that corresponds to the node vi in the network) with parameters Θ, 
N 

Pr(X, Θ) = Pr (Xi | ΠXi ; ΘXi ) 

i=1 

where ΠXi represent the parent nodes of Xi. This factorization derives from the Markov property of 

Bayesian networks, that is, every variable Xi depends on its parents ΠX 10. 

The three most of the common probability distributions for Bayesian networks are Gaussian, discrete and 

conditional linear Gaussian 9. Discrete Bayesian networks have, for instance, that have been used in expert 

systems for differentiating between diseases likewise tuberculosis and lung cancer16. Gaussian Bayesian 
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networks are common is system biology and genetics and are responsible for reconstructing of direct and 

indirect gene effects 17, and at the last with both conditional Gaussian Bayesian networks they have been used 

to study various clinical treatments and conditions 7;18. 

 

5 Structure learning of Bayesian networks 

In this among section we will have introduced and will learn the concepts of graphical separation and 

probabilistic independence. 

 

5.1 The Markov property 

In Bayesian networks, if any of the two nodes are unconnected (i.e, no edge is shared), that means that they are 

also conditionally independent found: this is termed as the Markov property10. The graphical separation is  

used to imply the probabilistic independence among them, 

A ⊥G B | C =⇒ A ⊥P B | C. 

 

 
 

Figure 3: A Bayesian network consist of six nodes for illustration of graphical separation (that means that two 

nodes are not connected in any of the particular network).  For any instance, 1 is separated from 4 and 5 is 

through 3; 2 is separated from 4 and 5 through 3, and 3 is separated from 6 through 5. 

 

Making of such network b y  itself i t  is v e r y  clear representing the conditional independence relation- ships 

between the nodes. For this such reason, the DAG is termed as an independence map of the various variables.  

 

 

N 

Pr(X, Θ) = Pr (Xi | ΠXi ; ΘXi ) , 

i=1 

 
The Markov property makes it possible to write decomposing the larger model Pr(X, Θ) into a set of 
smaller models Pr (Xi | ΠXi ; ΘXi ) that are easier to understand. The possibility of such decompositions is 

only when the absence of loops and cycles is there in that graphs. Figure 3 represents a Bayesian network with 
six nodes. Two nodes, say v1 and v4, are graphically separated by node v3, and are therefore conditionally 
independent given node v3: 

v1 ⊥G v4 | v3 =⇒ Pr(v1, v4 | v3) = Pr(v1 | v3) Pr(v4 | v3). 

Figure 3 also shows a specific kind of relationship in a Bayesian network, that is the one among nodes v1, 

v2 and v3. Both v1 and v2 have an edge pointing to v3 and the two share no connection. This type of motif, 

sometimes referred to as a v-structure or a collider, is frequently regarded as one of the fundamental 

components of Bayesian networks. Contrary to popular belief, the two causes in a collider are known to be 

negatively linked. As a result, conditioning on the common effect in the collider (that is, examining 

relationships while modifying the effect) yields different estimates than examining the two causes separately. 

This phenomenon, often referred to as Berkson's bias or collider bias, is a significant source of prejudice in the 

medical sciences22. 
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5.2 Blankets by Markov 

The probability distribution of the variables Xi is thought of as being represented by a DAG, which may be 

retrieved by determining which nodes are conditionally (in)dependent. To assess whether two nodes in a 

network are (in)dependent or conditionally (in)dependent using an algorithm, d- separation is a valuable tool. 

If conditioning on all members of S prevents all pathways (sequences of nodes and edges with A as the starting 

node and B as the ending node) between A and B, then two nodes A and B are d-separated by S. A collider is 

known to block all overlapping paths. The Markov blanket of node A in the graph G is known as the set S. The 

Markov blanket is by definition made up of a node's parents (nodes with edges directed towards A), children 

(nodes that get edges directed from A), and spouses, or the other parents of the children. All nodes outside of 

the Markov blanket are independent of the node of interest, making it possible to investigate a target node of 

interest while ignoring the rest of the Bayesian network. 

5.3 Bayesian networks and Causality 

The links between variables in Bayesian networks can be simply understood as causal interactions because 

they are built on DAGs. However, before considering an edge as a causal impact, three presumptions should be 

made. First, given its direct causes, each variable (node) must be conditionally independent of both its indirect 

and direct non-effects (this is the causal translation of the Markov property). 

Second, a DAG must accurately represent the probability distribution of X such that the only dependencies 

in the probability distribution are those resulting from d-separations in the DAG. There must be no latent 

variables that serve as confounding factors, which is the third premise that follows from the first two (therefore 

developing causal effects on one or several nodes in the network without the DAG reporting such 

relationships). 

The third presumption is crucial in clinical settings because it states that any confounding variables should 

be eliminated from the experimental design in order to safely interpret a directed connection as a causal effect. 

Randomization is a frequent method to accomplish this since it breaks any existing causal link between the 

randomised variables and any external effects. The probabilistic and causal interpretations of Bayesian 

networks must be distinguished from one another. From a causal standpoint, the asymmetry between cause and 

effect—if we act on the cause, we may influence the consequence, but if we act on the effect, the cause is left 

unaffected—is what distinguishes arcs from other shapes. Given the reversibility of Bayes' theorem, this is 

false from a probabilistic standpoint.  For instance, if we consider again the DAG in Figure 2 we can write 

Pr(v1, v2, v3, v4, v5) = Pr(v1) Pr(v2 | v1) Pr(v3 | v2) Pr(v4 | v2, v3) Pr(v5 | v2, v4) 

where each node has a distribution conditional on its parents. However, for the nodes v1 and v2 we have that  

Pr(v1) Pr(v2 | v1)  = Pr(v2) Pr(v1 | v2). This  implies  that  the  DAG  in  which the arc v1 → v2 is reversed into v2 

→ v1 encodes the same probability distribution as that in Figure 2, despite having different arcs. Only arcs that 

are a part of a collider, or those that would form a new collider or initiate a cycle if their orientation were 

reversed, can be modified in this fashion, making them uniquely identifiable even without applying causal 

assumptions.  

Another result of the duality between the probabilistic and causal interpretation of Bayesian networks is that we may 

compute the conditional probability of any pair of variables regardless of how we construct the DAG. A diagnostic 

DAG with arcs going from symptoms to diseases or a prognostic DAG with arcs pointing from diseases to 

symptoms may make more sense depending on the application. For each diagnostic DAG that displays the same 

probability distribution, a prognosis DAG exists, and vice versa. From a purely statistical perspective, this is 

significant to note. Given that the DAG is easier to read, it follows that one will be easier to grasp than the other. 

However, any conditional probability that we may want to determine will be the same. 

 

6 Discussion: applications and limitations of Bayesian Artificial Intelligence in 

Medicine 

Doctors who practice in a number of medical disciplines can benefit from using Bayesian AI and networks. 

Applications of Bayesian AI in medicine can be categorized into four main categories: diagnostic reasoning, 

which entails giving a target patient a diagnosis based on clinical evidence; prognostic reasoning; making 

predictions about the future; treatment selection; and studying functional interactions between clinical 

evidence, such as Several examples from the four main domains described above illustrate the Bayesian AI's 

enormous potential. 

The first step in drawing conclusions is to gather clinical information from the electronic medical record. 

Systems to build clinical Bayesian networks using electronic medical records have been developed [26]. 

Additionally, prognostic Bayesian networks are utilized to forecast patient mortality [27]. 
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Third, in challenging circumstances [28], Bayesian networks are also utilized for clinical decision 

assistance and treatment selection. 

Fourth, studying functional interactions between symptoms in the field of psychiatry holds great promise. 

The classification of mental disorders is undergoing a paradigm shift, and the new perspective of mental 

disorders as networks of mutually influencing components [29] offers a promising environment for the use of 

Bayesian reasoning. There have already been attempts to depict the interplay of symptoms for illnesses such 

Identifying depression as DAGs in cross-sectional data and recovering potential causal connections between 

them [6]. Future research in this field might, for instance, incorporate various variables in networks (other than 

symptoms). The presumptions necessary to accurately learn and perform inference on the structure of Bayesian 

networks restrict their applicability. Researcher-designed studies must take this into consideration: removing 

confounding variables is by far the most challenging undertaking in this regard6. 

 Finally, Bayesian artificial intelligence captures uncertainty in medical reasoning through the promising 

Bayesian network model. They can be automatically learned from data and rigorously combine graphs and 

probabilities, with algorithms that automate reasoning and use the graphical part of the model to guide a 

computer system in computing probabilities and predicting events of interest. 
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