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Abstract: The planning of collision-free motions among a set of obstacles is a fundamental task in robotics. 

Learning-based motion planning techniques have recently demonstrated notable benefits in resolving various 

planning issues in high-dimensional spaces and challenging environments. This article provides a summary of 

numerous learning-based approaches that Robot motion planning issues have been addressed using 

supervised, unsupervised, and reinforcement learning techniques. These learning-based approaches either 

make use of For some activities, humans have designed rewards, or they can learn from successful planning 

experiences. The traditional notion of motion planning and definitions linked to learning are presented in this 

article. The introduction of various learning-based motion planning algorithms and the fusion of traditional 

motion planning with learning techniques are well described. 

1. Introduction  

1.1 Robotics Background 

In order for a robot to operate autonomously, it must be capable of interacting with its environment in an 

intelligent way, This implies that an autonomous robot must be able to capture information about the 

environment and then perform actions based on that information. A hypothetical robotic system can be 

dissected into four subsystems:  

sensing → representation → planning → actuation  

Although, the lines between these subsystems are often blurred in practice.  

A sensor is the term given to any part of the robotic system that provides data about the state of the 

environment. Although the definition of a sensor is necessarily broad, the type of information provided by 

sensors can be broken into three main categories:  

1. The world (terrain shape, temperature, color, composition)  

2. The system and its relationship to the world (battery charge, location, acceleration) 

 3. Other concepts of interest (collaborator, adversary, goal, reward).  

 

http://www.ijcrt.org/


www.ijcrt.org                                                           © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882 

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b417 
 

Any information available to the robot must be provided a priori or obtained on-line through sensor 

observations. 

The representation is the method by which a robot stores and organizes information about the world. Simple 

representations may consist of a single value—perhaps indicating the output of a particular sensor. Complex 

representations may include high-level graphical models and/or geometric maps of the environment.  

The planning subsystem (or planner ) is responsible for deciding how the robot should behave, with respect to 

a predefined task, given the information in the representation. A planner might calculate anything from a 

desired speed/direction of travel to an entire sequence of actions.  

Actuation is the method by which the robot acts on the environment. This may involve sending power signals 

to motors, servos, or other devices that can modify the physical relationship between the robot and the 

environment.  

All four system components are interrelated. However, in the context of this paper, the relationship between 

the representation and planning subsystems is especially important. The structure and content of the 

representation define what kinds of decisions the planner is capable of making, and ultimately the set of action 

plans available to the robot. Conversely, a particular planning system may require a specific type of 

representation in order to function. Most of this chapter is devoted to these two subsystems. 

1.1.1 Sensors 

In the context of robotics, the term sensor is broad and ambiguous. It can be used to describe any device or 

module that is capable of capturing information about the world. Instead of trying to define exactly what a 

sensor is, it is perhaps more helpful to give examples of different kinds of sensors.  

Active sensors glean information about the world by sending a signal into the world and then observing how 

information from that signal propagates back to the sensor. For instance, devices like radar, sonar, lasers, and 

lidar send a light or sound wave into the world, and then observe how it is reflected by the environment. 

Tactile sensors probe the environment physically, much like a human feeling their way around a room in the 

dark.  

Passive sensors function by capturing information that already exists in the environment. This includes 

devices such as thermometers, accelerometers, altimeters, tachometers, microphones, bumper sensors, etc. 

Devices like cameras, infrared sensors, and GPS receivers are also considered passive sensors—although their 

assumptions about certain types of information can be violated (e.g. natural light and GPS signals seldom 

propagate into cavernous environments).  

Sensors can sometimes be described as being either ranged or contact sensors. Ranged sensors capture 

information about the environment from a distance, and include devices like sonar, radar, cameras, and lidar. 

In contrast, contact sensors require physical contact with the part of the environment they are sensing, and 

include devices like thermometers, tactile sensor, strain gages, and bumper sensors. 

It is also useful to make the distinction between grid-based (or image) sensors, and other types of sensors. 

Image sensors capture multiple (and often simultaneous) readings about a swath of the environment, while 

other sensors only capture information about a point or along a directional vector. Cameras are arguably the 

most common type of grid-based sensor. Each pixel represents a light value associated with a particular ray 

traveling through the environment. Similarly, a laser imaging sensor known as lidar assembles many 

individual laser readings into a spatially related collection of depth values. Theoretically, any collection of 
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individual sensors can form an image sensor, as long as the spatial relationships between the individual 

sensors are known. Images are appealing because they provide an additional level of knowledge beyond an 

unorganized collection of individual sensor readings. 

1.1.2 Representation 

The representation subsystem decides what information is relevant to the robot’s task, how to organize this 

data, and how long it is retained. Simple representations may consist if an instantaneous sensor reading, while 

complex representations may create an entire model of the environment and/or robot. It should be noted that 

using a complex representation is not a precondition for achieving complexity in the resulting robot behavior. 

It has been shown that robust and sophisticated behavior can be produced using simple representations of the 

environment and vise versa [Braitenberg, 1984]. However complex representations may allow a planning 

system to develop plans that ‘think’ further into the future. This can be advantageous because knowledge 

about intended future actions can decrease a system’s susceptibility to myopic behavior.  

In contrast, model-based (or proactive planners) create relatively detailed action plans. For instance, an entire 

sequence of movements or a high-level path from the robot’s current position to a goal position. In other 

words, proactive planners assume the robot has enough information to know exactly what it would do in the 

future, assuming it can forecast all changes in environmental state. Current actions may also be influenced by 

what the system expects to happen in the future. For instance, a rover might temporarily move away from its 

goal location, in order to avoid hitting an obstacle in the future. Proactive planners generally require more 

complex representations such as graphical models of environmental connectivity, maps, etc. 

1.1.3 Planning Methods that are not Path-Planning 

The main point of this paper is to examine how machine learning is used in conjunction with a particular 

planning discipline called path-planning. Path-planning algorithms approach the planning problem by 

attempting to find a sequence of actions that, based on the representation, are likely to move the robot from its 

current configuration to a goal configuration. Path-planning is not the only planning framework available to a 

designer, and it is often used alongside other methods. Because a single planning technique is seldom used 

alone, path- planning is sometimes confused with other planning methods. Therefore, before discussing what 

path-planning is, it is helpful to outline what path planning is not 

 

Figure 1: A mechanical arm with gripper at location X is told to move the gripper along the path (dashed line) 

to location Y . Inverse kinematics is used to calculate the arm angle functions θ1, θ2, and θ3 that accomplish 

this. Note that the system is under-determined, so there are multiple solutions. 
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 Path-Planning: Algorithm 

This section is devoted to path planning-algorithms that do not use machine learning. In order to find a path 

without resulting to trial-and-error, the representation must contain connectivity information about the 

different place it represents. This means that a ‘recognizable locations’ type of map cannot be used. On the 

other hand, topological maps, metric topological maps, and full metric maps are all valid. 

Generic Graph-Search Algorithm 

The first family of path-planning algorithms I will discuss are called graph-search algorithms. As the name 

implies, these algorithms perform path search through a graph. Graph search algorithms can be used directly 

on topological and metric topological maps, because these representations are essentially graphs. Assuming 

the world is deterministic (i.e. the same action always produces the same result, given a particular world 

state), many graph search algorithms will find an optimal path with respect to the representation. An entire 

subset of graph-search algorithms have been developed for the case when sampling-based methods or 

combinatorial methods are used in the representation.  

Let vi represent an arbitrary vertex in a graph and let V represent a set of arbitrary vertices. Each node has a 

unique identifier i. Two vertices vi and vj are the same if i = j and different if i ≠ j. vgoal is a set of goal 

vertices that represent acceptable termination states for the path, and vstart is a set of possible starting locations. 

G is the set of all vertices in the graph. Let ei,j represent an edge that goes from node vi to node vj . Edges 

between nodes can either be directed ei,j ≠ ej,i or undirected ei,j = ej,i. Most graph-serach algorithms do not 

specifically require an edge to be directed or undirected, but will only traverse directed edges in one direction 

(from node vi to node vj ). Without loss of generality, undirected edges can be though of as two directed 

edges, one going in either direction (the undirected edge ei,j accomplishes the same connectivity as the two 

directed edges ei,j and ej,i). Therefore, 

Let ei be the set of all edges that leave vertex vi . That is ei,j ∈ ei if and only if ei,j exists. Node vj is considered 

a neighbor of node vi if ei,j ∈ ei . Finally, let E represent the set of all edges in the graph. Graph-search 

algorithms assume the existence of V, E, vgoal, and vstart. 

During graph-search, an algorithm starts at vstart and attempts to find a path to vgoal, or vise versa, by exploring 

from node-to-node via edges. It is known as forward search when the search is conducted from vstart to vgoal, 

and backward search when the search is conducted from vgoal to vstart. Bidirectional search starts at both vgoal 

and vstart and attempts to connect the two searches somewhere in the middle. Multi-directional search starts at 

vgoal and vstart as well as other random or intuitive locations and attempts to link the searches together in such a 

way that a path is found between vstart and vgoal. When an optimal6 forward/backward search algorithm is used 

to create a bidirectional search algorithm, the resulting algorithm is also optimal. However, this does not 

extend to multi-directional search. 

The relative order in which nodes are expanded can be used to create a tree-representation of the graph-

search. This is called a search-tree. In forward or backward search the root(s) of the tree are at vstart or vgoal, 

respectively. In practice, it is common to use back-pointers to preserve the structure of the search-tree by 

creating a back-pointer from each node vj to the earlier node vi from which vj was discovered . In bidirectional 

search, there is a separate search-tree for both the forward and backward directions of the search, and in multi-

directional search each search has its own tree. In bidirectional and multi-directional search, two trees are 

joined when a particular node is included in both search-trees.  
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Algorithm 1 displays pseudo-code for a generic graph-search algorithm. The algorithm starts by adding the 

goal nodes to the open-list (line 1). Next, while there are still nodes in the open-list, a node vj is chosen to be 

expanded (line 3). If vj is a start node, then the algorithm terminates successfully (lines 4-5). Otherwise, vj is 

closed by adding all of the nodes vi for which vj is a neighbor to the open-list (line 8). A back-pointer is 

created from vi to vj (line 9) so that the path can be extracted from the search-tree upon successful 

termination. If the list becomes empty then there are no possible paths from vstart to vgoal, and the algorithm 

returns failure at line 10. 

1.1.4 Actuation 

Once a plan has been created by the planning subsystem, the actuation subsystem is responsible for actually 

executing the plan. In general, this involves translating the plan into an instruction sequence that is compatible 

with the various devices (motors, serves, switches, etc.) that the robot uses to act on the environment. As with 

the sensing subsystem, the actuation subsystem is highly dependent on the specific hardware available to the 

robot. To ensure safety and overall relevance/usefulness, any plan sent to the actuation subsystem must 

respect the latter’s constraints. Therefore, the constraints of the actuation subsystem must be considered when 

the planning subsystem is developed. 

2.1 Machine Learning in Meta-Sensors  

Simple machine learning ideas might be applied to raw sensor data to help improve its accuracy or to help 

optimize sensing equipment. However, the most common application of machine learning in the sensing 

subsystem is as part of a meta-sensor. meta-sensor uses software to provide higher-level data than might be 

expected from a simple sensor . Because a meta-sensor draws on data stored in the representation to help 

make its decisions, it could alternatively be considered part of the representation subsystem: 

sensor → (meta−sensor ↔ representation) → planning → actuation 

Machine learning has been used in robotics to create meta-sensors from image space data in [Jansen et al., 

2005, Happold et al., 2006, Konolige et al., 2006, Thrun et al., 2006, Erkan et al., 2007,Grudic et al., 

2007,Ollis et al., 2007,Halatci et al., 2007].  

In [Jansen et al., 2005] Gaussian mixture models  are used to classify terrain as ‘sand,’ ‘gravel,’ ‘grass,’ 

‘foliage,’ or ‘sky’ in image-space. Image features are pixel-color planes that have been adjusted to account for 

gamma correction in the camera. Training example labels are provided off-line by a human, and cross 

validation is used to determine the optimal number of Gaussians per model. A separate GMM is built for each 

type of terrain the robot is expected to encounter (e.g. desert, forest, marshland), and an additional meta-

gausian-model is used to determine which environment the robot is currently in. 

 In [Happold et al., 2006] histogram methods  are used on-line in image-space to learn a mapping from color 

to geometric classes. Class labels are provided from stereo disparity. More recent work by the same authors 

[Ollis et al., 2007] focuses on learning the probability that pixels are associated with the ‘obstacle’ class. 

[Konolige et al., 2006] explore two different self-supervised frameworks in image-space. The first is a path 

detection technique that uses a Gaussian mixture model  in conjunction with AdaBoost  over decision stumps. 

At start up, the system makes the optimistic assumption that it is on a path. The terrain in front of the robot is 

sampled and used to create a GMM in image space to distinguish between ‘path’ from ‘not path.’ Next, all 

pixels in the image are labeled according to this classification. If the resulting label pattern has a path-like 

shape, then the robot concludes that it is, in fact, on a path. Finally, this labeling is used with AdaBoost to 

create a decision stump that determines ‘path’ vs. ‘not path’ for subsequent images. The system repeats this 
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process after every meter of movement. The second method presented in [Konolige et al., 2006] is similar to 

the first, except that near-field stereo is used to provide AdaBoost with ‘traversable’ vs. ‘obstacle’ examples. 

AdaBoost creates a decision stump that is used to classify the remaining image and/or subsequent images. 

[Thrun et al., 2006] outlines the system that won the DARPA Grand Challenge in 2005. The system uses a 

Gaussian mixture model to learn a mapping from color (red, green, blue) to traversability. Class labels are 

provided by on-board laser sensors. As new training examples are provided, new ‘local’ Gaussians are created 

and then added to the ‘global’ model. This is done by either modifying the model’s previous set of Gaussians, 

or discarding them in favor of the new ’local’ Gaussians. The former option is chosen over the latter if the 

mahalanobis distance between a new and old Gaussian is less than a predefined threshold. 

In [Erkan et al., 2007] a neural net is trained off-line from log-files34 and used to extract low dimensional 

texture features from normalized YUV space image patches. A scaled image pyramid is also used to 

normalize the image-space appearance of near- and far-field information. 

A hierarchical Gaussian mixture model  is used in [Angelova et al., 2007] to classify terrain as belonging to 

one of many different classes (e.g. ‘sand,’ ‘soil,’ ‘mud,’ etc.). Features used include: average RGB colors, 

color histograms, and texture filters. Classification is performed in image space, and separate meta-classifiers 

are used for the near- and far-field. Training occurs off-line. 

2.2 Machine Learning in the Representation  

When a cell-based metric map is cast as a connected graph for the purposes of graph-search path-planning, it 

is expected that each edge has a cost associated with it.  

sensor → map−features → cost → path−search 

In the previous section, I examined several techniques in which meta-sensors output class labels such as 

‘obstacle’ vs. ‘traversable terrain.’ For graph search, these correspond to cost values of 1 and ∞, respectively. 

Meta-sensors may also output classes labels like ‘lake,’ ‘field,’ and ‘road,’ for which a notion of cost is less 

obvious. In this section, I examine how machine learning has been used to obtain cost from the latter type of 

class labels (as well as other map features).  

sensor → features → labels → cost → path−search 

The mapping between sensor/map data and cost often involves two or three steps—for instance, depth and 

color data from image space are mapped to height and vegetation data in Cartesian space, which are then 

mapped to cost either directly or indirectly via class labels. 

sensor → image−features → image−classes → cartesian−features → cartesian−classes → cost → path−search 

The particular information stored in a map is method dependent. It may include anything from raw data (e.g. 

color, height, slope) to derived features (e.g. texture, obstacle probability). All of the methods described in 

this section assume that map features are stored in a feature vector at each map grid. Depending on the 

method, training and test sets (used for supervised learning) can either be constructed directly from image-

space features, or by projecting and accumulating this data in Cartesian space. 
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2.3 Learning the Representation  

Learning the representation (i.e. the representation itself ) is a different problem than using machine learning 

in the representation (previous subsection). In this subsection I will briefly outline the former. In my opinion, 

most of this topic consists of the research body known as simultaneous localization and mapping or SLAM. 

The basic idea can be summarized as follows: in the absence of robust localization sensor (e.g. GPS), a robot 

in unknown terrain must relay on other observations to both: (1) construct a model of the environment and (2) 

localize itself within this model. Most SLAM algorithms are applied in either an outdoor field-robotic setting 

or on indoor mobile robots. In either case, the relative positions of landmarks, with respect to each other 

and/or the robot, are used to recover the organization of the world. 

2.4 Machine Learning in the Planning Subsystem  

Given that the name of this paper is ‘machine learning applied to robotic path-planning,’ one might expect 

this to be the largest section of the paper. This is not the case (although it not the smallest either). Part of the 

reason for this, the most direct way to modify the behavior of a planning system is to alter the data in the 

representation. For example, it is relatively easy to apply black-box machine learning algorithms to the 

representation subsystem in order to generate more intelligent map features—and thus facilitate better overall 

performance. In contrast, it is difficult to improve the behavior of tried-and-true graph-search algorithms—

especially when the latter have theoretical guarantees on optimality, completeness, and convergence. 

3.1  Unsupervised Learning Based Motion Planning 

In contrast to enormous supervised learning‐based motion‐ planning algorithms, there exist few unsupervised 

learning frameworks for motion‐planning problems. Sarker et al. [61] proposed a novel motion prediction 

network called PROM‐Net, which learns to make visual predictions for robot motions from raw video frames 

in a completely unsupervised manner. Compared with supervised learning‐based motion planners, the 

PROM‐Net is lightweight and can be easily implemented, especially for platforms with limited computing 

memory. Inspired by RL, an unsupervised learning path planning algorithm is introduced, called Plan2vec . 

Plan2vec uses near‐ neighbour distances to construct a weighted graph and distills path‐integral to extrapolate 

local metric for global embedding. Experimental results reveal that it can significantly amortize the planning 

cost and enhance reactive planning. 

3.2 Reinforcement Learning Based Motion Planning 

RL originated from optimal control and animal psychology inspired trial‐and‐error search [63]. There are 

mainly three types of RL approaches, value‐based, policy‐based, and actor‐critic (AC). AC derives from 

policy‐based approaches, which uses a critic to estimate the action‐value function. For convenience and 

clarity, this section is divided into two subsections, motion‐ planning with value‐based RL method and 

motion‐planning with policy‐based RL method. Many strategies improving the performance of the motion 

planning framework by RL have been realized in recent years. According to the role of RL playing in 

motion‐planning, these methods can be roughly divided into two categories, End‐to‐end Solution and Module 

Solution. the motion‐planning algorithm can be formulated as an MDP problem; thus, some methods map the 

motion‐planning problems to MDPs and solve the MDPs directly. RL policy and the motion‐planning 

algorithm interact with each other and work as a whole as a motion planner. When the RL policy works as a 

motion planner, it is classified as an End‐to‐end Solution. The other RL methods replace one or two of the 

components of the motion planner with RL policy, which is classified as a Module Solution. 
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3.3 Motion planning with policy‐based RL method 

Policy‐based RL approaches are proposed to address the optimization problem under the context of POMDP. 

They optimise the stochastic policies in the form of probability function mapping state to action directly, 

which is different from selecting deterministic actions according to the value‐ action function learnt by a 

value‐based RL method. This means that they are naturally applicable to exploration in high‐ dimensional or 

continuous action spaces because only a set of parameters of the policy needs to be learnt instead of the value 

function to express the entire action space. Thus, they have better convergence properties than those of the 

value‐based method. As a research focus of policy‐based approaches, the AC method normally comprises 

actor and critic networks. The actor learns the policy parameters to generate actions, in the direction given by 

the critic, that update the value function parameters to evaluate the reward of the actions. In policy 

optimization, the objective function is to maximise 

 

where πθ is the policy parameterised by θ and τ is the trajectory sampled according to πθ. R(τ) is the total 

reward of τ. The policy gradient is 

 

where is the return for a Monte‐Carlo trajectory. Gt is the unbiased but noisy estimate of 

is replaced by critic , which is parameterised by w. Then the gradient function 

becomes. 

 

where  is the actor policy and  is the critic value. 

Training time for the imitation task for motion planning can be reduced by applying the Generative 

Adversarial Imitation Learning (GAIL) method  incorporated DDPG into the GAIL approach, thus generating 

expert demonstration trajectories. The RL method is utilised to learn search heuristics as a part of the planning 

algorithms on the basis of expert demonstrations or solved instances. The learning setting is provably capable 

of improving the efficiency of motion planner in highly dynamic environments.  However, because of 

inadequate training data distribution near obstacles, training neural motion planning with imitation learning in 

high‐dimensional domains may suffer from low precision and success rate. Therefore, RL becomes a 

promising tool to carry WANG ET AL. - 309 out active and sufficient exploration for finding a collision free 

trajectory. A DDPG method is proposed for motion planning, which is modified with reduced variance in the 

actor update. By utilising a known system transition function to estimate expected discounted future rewards, 

the actor network experiences low estimation errors in the policy gradient process. Meanwhile, learning from 

previous experiences, the agent will gradually become ‘smart’ to try recorded successful actions rather than 

randomly starting from scratch. Thus, the training time is shortened, and a success rate of near 1.0 is reached 

with the neural motion planner trained by DDPG motion‐planning algorithm, inspiring researchers to combine 

deep RL‐based methods with prevailing approaches for motion planning. 
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4. CONCLUSIONS  

In this article, the learning‐based robot motion‐planning algorithms are discussed from four aspects: classical 

definition and learning‐related definition, motion planning with supervised learning method, motion‐planning 

with unsupervised learning method, and motion planning with the reinforcement learning method.  

It serves as a survey for readers to understand the learning‐based robot motion‐planning algorithms 

conveniently. In the future, the development of learning‐based motion‐ planning algorithms with high 

generalisation ability is an important research direction. Specifically, most of the current learning‐based 

motion‐planning algorithms are restricted to environments similar to those of the training data, thereby 

performing poorly when transferred to more complex conditions, or ones with larger differences.  

Additionally, many methods cannot deal with large‐scale environment maps. Therefore, it is necessary to 

develop algorithms that can work in different scale environments. In addition, as far as we know, the main 

difficulty that supervised learning‐based methods face is the collection of fullscale data, while RL‐based 

methods can be inefficient because of the necessity for robots to interact with environments. It is an 

interesting topic to combine the advantages of these two methods to reduce the negative aspects of each 

method. 

Machine learning can be applied at many different places in the robot system, and there is no standard way it 

is used for path-planning. Although machine learning has been used inside path-planning algorithms 

themselves, this idea has not yet been widely embraced. Much of the reason for this is that many graph-search 

algorithms provide optimal or nearoptimal solutions with respect to the representation.  

Thus, as the representation becomes more accurate with respect to the environment, graph search can produce 

solutions that are optimal or near-optimal with respect to the real-world. In practice, most designers have 

opted to embrace graph-search, and then use machine learning to make the representation and sensing 

subsystems more intelligent—indirectly improving path-planning with respect to the real-world. Machine 

learning has been used in the representation and sensing subsystems to create metasensors that provide the 

system with more useful information about the environment than raw sensor data and/or map features.  

Other ideas have focused on training a graph-search cost-function from expert provided examples. Finally, the 

accuracy of the representation itself can be improved by calculating the most likely organization, given sensor 

observations. 
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