
www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b416

A Survey Of Typical Machine Learning Based

Motion Planning Algorithms For Robotics

 Datta lohith, student, Department electronics and communication

 Hyderabad.

Abstract: The planning of collision-free motions among a set of obstacles is a fundamental task in robotics.

Learning-based motion planning techniques have recently demonstrated notable benefits in resolving various

planning issues in high-dimensional spaces and challenging environments. This article provides a summary of

numerous learning-based approaches that Robot motion planning issues have been addressed using

supervised, unsupervised, and reinforcement learning techniques. These learning-based approaches either

make use of For some activities, humans have designed rewards, or they can learn from successful planning

experiences. The traditional notion of motion planning and definitions linked to learning are presented in this

article. The introduction of various learning-based motion planning algorithms and the fusion of traditional

motion planning with learning techniques are well described.

1. Introduction

1.1 Robotics Background

In order for a robot to operate autonomously, it must be capable of interacting with its environment in an

intelligent way, This implies that an autonomous robot must be able to capture information about the

environment and then perform actions based on that information. A hypothetical robotic system can be

dissected into four subsystems:

sensing → representation → planning → actuation

Although, the lines between these subsystems are often blurred in practice.

A sensor is the term given to any part of the robotic system that provides data about the state of the

environment. Although the definition of a sensor is necessarily broad, the type of information provided by

sensors can be broken into three main categories:

1. The world (terrain shape, temperature, color, composition)

2. The system and its relationship to the world (battery charge, location, acceleration)

 3. Other concepts of interest (collaborator, adversary, goal, reward).

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b417

Any information available to the robot must be provided a priori or obtained on-line through sensor

observations.

The representation is the method by which a robot stores and organizes information about the world. Simple

representations may consist of a single value—perhaps indicating the output of a particular sensor. Complex

representations may include high-level graphical models and/or geometric maps of the environment.

The planning subsystem (or planner) is responsible for deciding how the robot should behave, with respect to

a predefined task, given the information in the representation. A planner might calculate anything from a

desired speed/direction of travel to an entire sequence of actions.

Actuation is the method by which the robot acts on the environment. This may involve sending power signals

to motors, servos, or other devices that can modify the physical relationship between the robot and the

environment.

All four system components are interrelated. However, in the context of this paper, the relationship between

the representation and planning subsystems is especially important. The structure and content of the

representation define what kinds of decisions the planner is capable of making, and ultimately the set of action

plans available to the robot. Conversely, a particular planning system may require a specific type of

representation in order to function. Most of this chapter is devoted to these two subsystems.

1.1.1 Sensors

In the context of robotics, the term sensor is broad and ambiguous. It can be used to describe any device or

module that is capable of capturing information about the world. Instead of trying to define exactly what a

sensor is, it is perhaps more helpful to give examples of different kinds of sensors.

Active sensors glean information about the world by sending a signal into the world and then observing how

information from that signal propagates back to the sensor. For instance, devices like radar, sonar, lasers, and

lidar send a light or sound wave into the world, and then observe how it is reflected by the environment.

Tactile sensors probe the environment physically, much like a human feeling their way around a room in the

dark.

Passive sensors function by capturing information that already exists in the environment. This includes

devices such as thermometers, accelerometers, altimeters, tachometers, microphones, bumper sensors, etc.

Devices like cameras, infrared sensors, and GPS receivers are also considered passive sensors—although their

assumptions about certain types of information can be violated (e.g. natural light and GPS signals seldom

propagate into cavernous environments).

Sensors can sometimes be described as being either ranged or contact sensors. Ranged sensors capture

information about the environment from a distance, and include devices like sonar, radar, cameras, and lidar.

In contrast, contact sensors require physical contact with the part of the environment they are sensing, and

include devices like thermometers, tactile sensor, strain gages, and bumper sensors.

It is also useful to make the distinction between grid-based (or image) sensors, and other types of sensors.

Image sensors capture multiple (and often simultaneous) readings about a swath of the environment, while

other sensors only capture information about a point or along a directional vector. Cameras are arguably the

most common type of grid-based sensor. Each pixel represents a light value associated with a particular ray

traveling through the environment. Similarly, a laser imaging sensor known as lidar assembles many

individual laser readings into a spatially related collection of depth values. Theoretically, any collection of

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b418

individual sensors can form an image sensor, as long as the spatial relationships between the individual

sensors are known. Images are appealing because they provide an additional level of knowledge beyond an

unorganized collection of individual sensor readings.

1.1.2 Representation

The representation subsystem decides what information is relevant to the robot’s task, how to organize this

data, and how long it is retained. Simple representations may consist if an instantaneous sensor reading, while

complex representations may create an entire model of the environment and/or robot. It should be noted that

using a complex representation is not a precondition for achieving complexity in the resulting robot behavior.

It has been shown that robust and sophisticated behavior can be produced using simple representations of the

environment and vise versa [Braitenberg, 1984]. However complex representations may allow a planning

system to develop plans that ‘think’ further into the future. This can be advantageous because knowledge

about intended future actions can decrease a system’s susceptibility to myopic behavior.

In contrast, model-based (or proactive planners) create relatively detailed action plans. For instance, an entire

sequence of movements or a high-level path from the robot’s current position to a goal position. In other

words, proactive planners assume the robot has enough information to know exactly what it would do in the

future, assuming it can forecast all changes in environmental state. Current actions may also be influenced by

what the system expects to happen in the future. For instance, a rover might temporarily move away from its

goal location, in order to avoid hitting an obstacle in the future. Proactive planners generally require more

complex representations such as graphical models of environmental connectivity, maps, etc.

1.1.3 Planning Methods that are not Path-Planning

The main point of this paper is to examine how machine learning is used in conjunction with a particular

planning discipline called path-planning. Path-planning algorithms approach the planning problem by

attempting to find a sequence of actions that, based on the representation, are likely to move the robot from its

current configuration to a goal configuration. Path-planning is not the only planning framework available to a

designer, and it is often used alongside other methods. Because a single planning technique is seldom used

alone, path- planning is sometimes confused with other planning methods. Therefore, before discussing what

path-planning is, it is helpful to outline what path planning is not

Figure 1: A mechanical arm with gripper at location X is told to move the gripper along the path (dashed line)

to location Y . Inverse kinematics is used to calculate the arm angle functions θ1, θ2, and θ3 that accomplish

this. Note that the system is under-determined, so there are multiple solutions.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b419

 Path-Planning: Algorithm

This section is devoted to path planning-algorithms that do not use machine learning. In order to find a path

without resulting to trial-and-error, the representation must contain connectivity information about the

different place it represents. This means that a ‘recognizable locations’ type of map cannot be used. On the

other hand, topological maps, metric topological maps, and full metric maps are all valid.

Generic Graph-Search Algorithm

The first family of path-planning algorithms I will discuss are called graph-search algorithms. As the name

implies, these algorithms perform path search through a graph. Graph search algorithms can be used directly

on topological and metric topological maps, because these representations are essentially graphs. Assuming

the world is deterministic (i.e. the same action always produces the same result, given a particular world

state), many graph search algorithms will find an optimal path with respect to the representation. An entire

subset of graph-search algorithms have been developed for the case when sampling-based methods or

combinatorial methods are used in the representation.

Let vi represent an arbitrary vertex in a graph and let V represent a set of arbitrary vertices. Each node has a

unique identifier i. Two vertices vi and vj are the same if i = j and different if i ≠ j. vgoal is a set of goal

vertices that represent acceptable termination states for the path, and vstart is a set of possible starting locations.

G is the set of all vertices in the graph. Let ei,j represent an edge that goes from node vi to node vj . Edges

between nodes can either be directed ei,j ≠ ej,i or undirected ei,j = ej,i. Most graph-serach algorithms do not

specifically require an edge to be directed or undirected, but will only traverse directed edges in one direction

(from node vi to node vj). Without loss of generality, undirected edges can be though of as two directed

edges, one going in either direction (the undirected edge ei,j accomplishes the same connectivity as the two

directed edges ei,j and ej,i). Therefore,

Let ei be the set of all edges that leave vertex vi . That is ei,j ∈ ei if and only if ei,j exists. Node vj is considered

a neighbor of node vi if ei,j ∈ ei . Finally, let E represent the set of all edges in the graph. Graph-search

algorithms assume the existence of V, E, vgoal, and vstart.

During graph-search, an algorithm starts at vstart and attempts to find a path to vgoal, or vise versa, by exploring

from node-to-node via edges. It is known as forward search when the search is conducted from vstart to vgoal,

and backward search when the search is conducted from vgoal to vstart. Bidirectional search starts at both vgoal

and vstart and attempts to connect the two searches somewhere in the middle. Multi-directional search starts at

vgoal and vstart as well as other random or intuitive locations and attempts to link the searches together in such a

way that a path is found between vstart and vgoal. When an optimal6 forward/backward search algorithm is used

to create a bidirectional search algorithm, the resulting algorithm is also optimal. However, this does not

extend to multi-directional search.

The relative order in which nodes are expanded can be used to create a tree-representation of the graph-

search. This is called a search-tree. In forward or backward search the root(s) of the tree are at vstart or vgoal,

respectively. In practice, it is common to use back-pointers to preserve the structure of the search-tree by

creating a back-pointer from each node vj to the earlier node vi from which vj was discovered . In bidirectional

search, there is a separate search-tree for both the forward and backward directions of the search, and in multi-

directional search each search has its own tree. In bidirectional and multi-directional search, two trees are

joined when a particular node is included in both search-trees.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b420

Algorithm 1 displays pseudo-code for a generic graph-search algorithm. The algorithm starts by adding the

goal nodes to the open-list (line 1). Next, while there are still nodes in the open-list, a node vj is chosen to be

expanded (line 3). If vj is a start node, then the algorithm terminates successfully (lines 4-5). Otherwise, vj is

closed by adding all of the nodes vi for which vj is a neighbor to the open-list (line 8). A back-pointer is

created from vi to vj (line 9) so that the path can be extracted from the search-tree upon successful

termination. If the list becomes empty then there are no possible paths from vstart to vgoal, and the algorithm

returns failure at line 10.

1.1.4 Actuation

Once a plan has been created by the planning subsystem, the actuation subsystem is responsible for actually

executing the plan. In general, this involves translating the plan into an instruction sequence that is compatible

with the various devices (motors, serves, switches, etc.) that the robot uses to act on the environment. As with

the sensing subsystem, the actuation subsystem is highly dependent on the specific hardware available to the

robot. To ensure safety and overall relevance/usefulness, any plan sent to the actuation subsystem must

respect the latter’s constraints. Therefore, the constraints of the actuation subsystem must be considered when

the planning subsystem is developed.

2.1 Machine Learning in Meta-Sensors

Simple machine learning ideas might be applied to raw sensor data to help improve its accuracy or to help

optimize sensing equipment. However, the most common application of machine learning in the sensing

subsystem is as part of a meta-sensor. meta-sensor uses software to provide higher-level data than might be

expected from a simple sensor . Because a meta-sensor draws on data stored in the representation to help

make its decisions, it could alternatively be considered part of the representation subsystem:

sensor → (meta−sensor ↔ representation) → planning → actuation

Machine learning has been used in robotics to create meta-sensors from image space data in [Jansen et al.,

2005, Happold et al., 2006, Konolige et al., 2006, Thrun et al., 2006, Erkan et al., 2007,Grudic et al.,

2007,Ollis et al., 2007,Halatci et al., 2007].

In [Jansen et al., 2005] Gaussian mixture models are used to classify terrain as ‘sand,’ ‘gravel,’ ‘grass,’

‘foliage,’ or ‘sky’ in image-space. Image features are pixel-color planes that have been adjusted to account for

gamma correction in the camera. Training example labels are provided off-line by a human, and cross

validation is used to determine the optimal number of Gaussians per model. A separate GMM is built for each

type of terrain the robot is expected to encounter (e.g. desert, forest, marshland), and an additional meta-

gausian-model is used to determine which environment the robot is currently in.

 In [Happold et al., 2006] histogram methods are used on-line in image-space to learn a mapping from color

to geometric classes. Class labels are provided from stereo disparity. More recent work by the same authors

[Ollis et al., 2007] focuses on learning the probability that pixels are associated with the ‘obstacle’ class.

[Konolige et al., 2006] explore two different self-supervised frameworks in image-space. The first is a path

detection technique that uses a Gaussian mixture model in conjunction with AdaBoost over decision stumps.

At start up, the system makes the optimistic assumption that it is on a path. The terrain in front of the robot is

sampled and used to create a GMM in image space to distinguish between ‘path’ from ‘not path.’ Next, all

pixels in the image are labeled according to this classification. If the resulting label pattern has a path-like

shape, then the robot concludes that it is, in fact, on a path. Finally, this labeling is used with AdaBoost to

create a decision stump that determines ‘path’ vs. ‘not path’ for subsequent images. The system repeats this

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b421

process after every meter of movement. The second method presented in [Konolige et al., 2006] is similar to

the first, except that near-field stereo is used to provide AdaBoost with ‘traversable’ vs. ‘obstacle’ examples.

AdaBoost creates a decision stump that is used to classify the remaining image and/or subsequent images.

[Thrun et al., 2006] outlines the system that won the DARPA Grand Challenge in 2005. The system uses a

Gaussian mixture model to learn a mapping from color (red, green, blue) to traversability. Class labels are

provided by on-board laser sensors. As new training examples are provided, new ‘local’ Gaussians are created

and then added to the ‘global’ model. This is done by either modifying the model’s previous set of Gaussians,

or discarding them in favor of the new ’local’ Gaussians. The former option is chosen over the latter if the

mahalanobis distance between a new and old Gaussian is less than a predefined threshold.

In [Erkan et al., 2007] a neural net is trained off-line from log-files34 and used to extract low dimensional

texture features from normalized YUV space image patches. A scaled image pyramid is also used to

normalize the image-space appearance of near- and far-field information.

A hierarchical Gaussian mixture model is used in [Angelova et al., 2007] to classify terrain as belonging to

one of many different classes (e.g. ‘sand,’ ‘soil,’ ‘mud,’ etc.). Features used include: average RGB colors,

color histograms, and texture filters. Classification is performed in image space, and separate meta-classifiers

are used for the near- and far-field. Training occurs off-line.

2.2 Machine Learning in the Representation

When a cell-based metric map is cast as a connected graph for the purposes of graph-search path-planning, it

is expected that each edge has a cost associated with it.

sensor → map−features → cost → path−search

In the previous section, I examined several techniques in which meta-sensors output class labels such as

‘obstacle’ vs. ‘traversable terrain.’ For graph search, these correspond to cost values of 1 and ∞, respectively.

Meta-sensors may also output classes labels like ‘lake,’ ‘field,’ and ‘road,’ for which a notion of cost is less

obvious. In this section, I examine how machine learning has been used to obtain cost from the latter type of

class labels (as well as other map features).

sensor → features → labels → cost → path−search

The mapping between sensor/map data and cost often involves two or three steps—for instance, depth and

color data from image space are mapped to height and vegetation data in Cartesian space, which are then

mapped to cost either directly or indirectly via class labels.

sensor → image−features → image−classes → cartesian−features → cartesian−classes → cost → path−search

The particular information stored in a map is method dependent. It may include anything from raw data (e.g.

color, height, slope) to derived features (e.g. texture, obstacle probability). All of the methods described in

this section assume that map features are stored in a feature vector at each map grid. Depending on the

method, training and test sets (used for supervised learning) can either be constructed directly from image-

space features, or by projecting and accumulating this data in Cartesian space.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b422

2.3 Learning the Representation

Learning the representation (i.e. the representation itself) is a different problem than using machine learning

in the representation (previous subsection). In this subsection I will briefly outline the former. In my opinion,

most of this topic consists of the research body known as simultaneous localization and mapping or SLAM.

The basic idea can be summarized as follows: in the absence of robust localization sensor (e.g. GPS), a robot

in unknown terrain must relay on other observations to both: (1) construct a model of the environment and (2)

localize itself within this model. Most SLAM algorithms are applied in either an outdoor field-robotic setting

or on indoor mobile robots. In either case, the relative positions of landmarks, with respect to each other

and/or the robot, are used to recover the organization of the world.

2.4 Machine Learning in the Planning Subsystem

Given that the name of this paper is ‘machine learning applied to robotic path-planning,’ one might expect

this to be the largest section of the paper. This is not the case (although it not the smallest either). Part of the

reason for this, the most direct way to modify the behavior of a planning system is to alter the data in the

representation. For example, it is relatively easy to apply black-box machine learning algorithms to the

representation subsystem in order to generate more intelligent map features—and thus facilitate better overall

performance. In contrast, it is difficult to improve the behavior of tried-and-true graph-search algorithms—

especially when the latter have theoretical guarantees on optimality, completeness, and convergence.

3.1 Unsupervised Learning Based Motion Planning

In contrast to enormous supervised learning‐based motion‐ planning algorithms, there exist few unsupervised

learning frameworks for motion‐planning problems. Sarker et al. [61] proposed a novel motion prediction

network called PROM‐Net, which learns to make visual predictions for robot motions from raw video frames

in a completely unsupervised manner. Compared with supervised learning‐based motion planners, the

PROM‐Net is lightweight and can be easily implemented, especially for platforms with limited computing

memory. Inspired by RL, an unsupervised learning path planning algorithm is introduced, called Plan2vec .

Plan2vec uses near‐ neighbour distances to construct a weighted graph and distills path‐integral to extrapolate

local metric for global embedding. Experimental results reveal that it can significantly amortize the planning

cost and enhance reactive planning.

3.2 Reinforcement Learning Based Motion Planning

RL originated from optimal control and animal psychology inspired trial‐and‐error search [63]. There are

mainly three types of RL approaches, value‐based, policy‐based, and actor‐critic (AC). AC derives from

policy‐based approaches, which uses a critic to estimate the action‐value function. For convenience and

clarity, this section is divided into two subsections, motion‐ planning with value‐based RL method and

motion‐planning with policy‐based RL method. Many strategies improving the performance of the motion

planning framework by RL have been realized in recent years. According to the role of RL playing in

motion‐planning, these methods can be roughly divided into two categories, End‐to‐end Solution and Module

Solution. the motion‐planning algorithm can be formulated as an MDP problem; thus, some methods map the

motion‐planning problems to MDPs and solve the MDPs directly. RL policy and the motion‐planning

algorithm interact with each other and work as a whole as a motion planner. When the RL policy works as a

motion planner, it is classified as an End‐to‐end Solution. The other RL methods replace one or two of the

components of the motion planner with RL policy, which is classified as a Module Solution.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b423

3.3 Motion planning with policy‐based RL method

Policy‐based RL approaches are proposed to address the optimization problem under the context of POMDP.

They optimise the stochastic policies in the form of probability function mapping state to action directly,

which is different from selecting deterministic actions according to the value‐ action function learnt by a

value‐based RL method. This means that they are naturally applicable to exploration in high‐ dimensional or

continuous action spaces because only a set of parameters of the policy needs to be learnt instead of the value

function to express the entire action space. Thus, they have better convergence properties than those of the

value‐based method. As a research focus of policy‐based approaches, the AC method normally comprises

actor and critic networks. The actor learns the policy parameters to generate actions, in the direction given by

the critic, that update the value function parameters to evaluate the reward of the actions. In policy

optimization, the objective function is to maximise

where πθ is the policy parameterised by θ and τ is the trajectory sampled according to πθ. R(τ) is the total

reward of τ. The policy gradient is

where is the return for a Monte‐Carlo trajectory. Gt is the unbiased but noisy estimate of

is replaced by critic , which is parameterised by w. Then the gradient function

becomes.

where is the actor policy and is the critic value.

Training time for the imitation task for motion planning can be reduced by applying the Generative

Adversarial Imitation Learning (GAIL) method incorporated DDPG into the GAIL approach, thus generating

expert demonstration trajectories. The RL method is utilised to learn search heuristics as a part of the planning

algorithms on the basis of expert demonstrations or solved instances. The learning setting is provably capable

of improving the efficiency of motion planner in highly dynamic environments. However, because of

inadequate training data distribution near obstacles, training neural motion planning with imitation learning in

high‐dimensional domains may suffer from low precision and success rate. Therefore, RL becomes a

promising tool to carry WANG ET AL. - 309 out active and sufficient exploration for finding a collision free

trajectory. A DDPG method is proposed for motion planning, which is modified with reduced variance in the

actor update. By utilising a known system transition function to estimate expected discounted future rewards,

the actor network experiences low estimation errors in the policy gradient process. Meanwhile, learning from

previous experiences, the agent will gradually become ‘smart’ to try recorded successful actions rather than

randomly starting from scratch. Thus, the training time is shortened, and a success rate of near 1.0 is reached

with the neural motion planner trained by DDPG motion‐planning algorithm, inspiring researchers to combine

deep RL‐based methods with prevailing approaches for motion planning.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b424

4. CONCLUSIONS

In this article, the learning‐based robot motion‐planning algorithms are discussed from four aspects: classical

definition and learning‐related definition, motion planning with supervised learning method, motion‐planning

with unsupervised learning method, and motion planning with the reinforcement learning method.

It serves as a survey for readers to understand the learning‐based robot motion‐planning algorithms

conveniently. In the future, the development of learning‐based motion‐ planning algorithms with high

generalisation ability is an important research direction. Specifically, most of the current learning‐based

motion‐planning algorithms are restricted to environments similar to those of the training data, thereby

performing poorly when transferred to more complex conditions, or ones with larger differences.

Additionally, many methods cannot deal with large‐scale environment maps. Therefore, it is necessary to

develop algorithms that can work in different scale environments. In addition, as far as we know, the main

difficulty that supervised learning‐based methods face is the collection of fullscale data, while RL‐based

methods can be inefficient because of the necessity for robots to interact with environments. It is an

interesting topic to combine the advantages of these two methods to reduce the negative aspects of each

method.

Machine learning can be applied at many different places in the robot system, and there is no standard way it

is used for path-planning. Although machine learning has been used inside path-planning algorithms

themselves, this idea has not yet been widely embraced. Much of the reason for this is that many graph-search

algorithms provide optimal or nearoptimal solutions with respect to the representation.

Thus, as the representation becomes more accurate with respect to the environment, graph search can produce

solutions that are optimal or near-optimal with respect to the real-world. In practice, most designers have

opted to embrace graph-search, and then use machine learning to make the representation and sensing

subsystems more intelligent—indirectly improving path-planning with respect to the real-world. Machine

learning has been used in the representation and sensing subsystems to create metasensors that provide the

system with more useful information about the environment than raw sensor data and/or map features.

Other ideas have focused on training a graph-search cost-function from expert provided examples. Finally, the

accuracy of the representation itself can be improved by calculating the most likely organization, given sensor

observations.

References

1. Cheng, R., Shankar, K., Burdick, J.W.: 2020 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). In: Learning an Optimal Sampling Distribution for Efficient Motion Planning.

IEEE, Las Vegas (2020)

2. Pérez‐Higueras, N., Caballero, F., Merino, L.: Learning human‐aware path planning with fully

convolutional networks. In: Proceedings of the 2018 IEEE International Conference on Robotics and

Automation (ICRA), pp. 1–5. IEEE, Brisbane (2018)

3. Ariki, Y., Narihira, T.: Fully Convolutional Search Heuristic Learning for Rapid Path Planners. arXiv

preprint arXiv:1908.03343 (2019)

4. Ichter, B., Harrison, J., Pavone, M.: Learning sampling distributions for robot motion planning. In:

Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), pp.

7087–7094. IEEE, Brisbane (2018)

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 7 July 2022 | ISSN: 2320-2882

IJCRT2207183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b425

5. Kumar, R., et al.: Lego: Leveraging Experience in Roadmap Generation for Sampling‐based Planning.

arXiv preprint arXiv:1907.09574 (2019)

6. Takahashi, T., et al.: Learning heuristic functions for mobile robot path planning using deep neural

networks. In: Proceedings of the International Conference on Automated Planning and Scheduling,

vol. 29, pp. 764–772. Berkeley (2019)

7. Aizerman, M., Braverman, E., and Rozonoer, L. (1964). Theoretical foundations of the potential

function method in pattern recognition learning. Automation and Remote Control, 25:821–837.

8. Albus, J. S. (1975). A new approach to manipulator control: The cerebellar model articulation

controller (cmac). Dynamic Systems, Measurement and Control, pages 220–227.

9. Angelova, A., Matthies, L., Helmick, D., and Perona, P. (2007). Fast terrain classification using

variable-length representation for autonomous navigation. In Computer Vision and Pattern

Recognition.

10. Bagnell, J. A., Ratliff, N. D., and Zinkevich, M. A. (2006). Maximum margin planning. In

International Conference on Machine Learning.

11. Bagnell, J. A. and Schneider, J. G. (2001). Autonomous helicopter control using reinforcement

learning policy search methods. In Proceedings of International Conference on Intelligent Robotics

and Automation.

12. Bajracharya, M., Tang, B., Howard, A., Turmon, M., and Mathies, L. (2008). Learning long-range

terrain classification for autonomous navigation. In International Conference on Intelligent Robots and

Automation, pages 4018–4024.

13. Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state

markov chains. Annals of Mathematics and Statistics, 37:1554–1563.

14. Bellman, R. (1957). A markovian decision process. Journal of Mathematics and Mechanics,

15. Bellotto, N. and Hu, H. (2009). Multisensor-based human detection and tracking for mobile service

robots. IEEE Transactions on Systems, Man, and Cybernetics, 39:167–181.

16. Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2007). Handbook of Robotics: Chapter 59,

Robot Programming By Demonstration. MIT Press, Cambridge, MA.

17. Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, MA.

18. Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining

and Knowledge Discovery, 2:121–167.

19. Calinon, S. and Billard, A. (2007). Learning of gestures by imitation in a humanoid robot. In Imitation

and Social Learning in Robots, Humans, and Animals:Behavioural, Social and Communicative

Dimensions, pages 153–177.

http://www.ijcrt.org/

