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Abstract:  This residual network has been a broad domain of research in deep learning. Many complex architectures are based upon 

residual networks. Residual networks are efficient due to skip connections. This paper highlights the addition of a sequential layer 

to the traditional RESNET 18 model for computing the accuracy of an Image classification dataset. The classification datasets such 

as Intel Scene dataset, CIFAR10 dataset, etc. These datasets consist of images belonging to various classes. In classification, we 

assign the pictures to their respective categories. The addition of a sequential layer gives the accuracy in the range of 0 to 1, which 

helps find the accuracy of prediction for the test set.   

 

Index Terms – RESNET18, Sequential Layer, Dropout Layer, Adam Optimizer, NLL Loss Function, ReLU, Classification. 

 

I. INTRODUCTION 

 

The neural networks have become deeper and deeper in recent times, ranging in over a hundred layers. RESNET18 [11] [13] 

[14] is an artificial neural network that is also called Residual Network. The residual network framework helps ease the 

network’s training which is more profound and deeper than the usual artificial neural network. Artificial Intelligence is putting 

human intelligence in machines to mimic human actions. Machine learning is a subset of Artificial intelligence that helps the 

machine learns with data and help in making decisions. It is achieved with minimal human intervention. Deep learning is the 

subpart of machine learning inspired by the human brain’s structure. There are many frameworks that RESNET can use such 

as Tensor flow [6], Keras [8], Torch etc. The brief about artificial intelligence is given in Fig. 1 

 

 
 

Figure 1: Deep Learning 
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II. BAFCKGROUND WORK 

 

A deep neural network can represent a very complex function. An enormous obstacle for very deep networks is vanishing 

gradients in which the gradient of the network goes quickly to zero, subsequently making gradient descent slower and slower. 

  

In gradient descent, we backpropagate from the last layer to the first layer of the network, and the weight matrix is multiplied 

at every step. If the gradient is slight, the gradient reduces exponentially to zero due to an immense number of multiplications. 

The deeper networks have a degradation problem in which the model's performance degrades with an increase in several 

layers.  

  

In the research paper, Microsoft introduced the deep residual network that attempts to solve the degradation problem using 

this framework. A residual network is an approach in which a shortcut is added. The shortcut is called a skip connection.  

  

The skip connection helps inflow the information easily from one layer to the next to the next layer, which means the data is 

bypassed with the standard Convolutional Neural Network flow from one layer to the next to the next layer.  

  

The idea is to use the network to fit the residual mapping instead of learning from the underlying mapping.  

  

H(x) = F(x) + x as the mapping that occurs initially for H(x), there is a usage of, F(x) = H(x) - x  

 

 

The RESNET has many variants – 

 

 

 
 

 

Figure 2: RESNET18 variants 

 

 

The each variant consists of different number of layers with 18, 34, 50,101,152 layers named – 

 

 RESNET18  

 

 RESNET34  

 

 RESNET50 

 

 RESNET101 

 

 RESNET152 
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Figure 3: RESNET18 

 

 

The ReLU [9] is added and applied after adding the skip connection. The residual block consists of a skip connection added 

after every two-weight layer.   

 

III. RESEARCH METHODOLOGY 

 

RESNET18 has 18 layers with a 7x7 kernel as 1st layer. It has four layers of ConvNets that are identical. Each layer consists 

of two residual blocks. Each block consists of two weight layers with a skip connection connected to the output of the second 

weight layer with a ReLU. If the result is equal to the input of the ConvNet layer, then the identity connection is used. But, if 

the input is not similar to the output, then a convolutional pooling is done on the skip connection.  

  

The input size taken by the RESNET18 is (224, 224, 3), which is done by applying augmentation using AugStatic library 

[1] [2] in pre-processing step [7]. In (224, 224, 3) where 224 is the width and height. 3 is the RBG channel. The output is an 

FC layer that gives input to the sequential layer [3] [10]. 

  

In the methodology proposed, there is an additional sequential layer at the end of the last layer of the RESNET18, as mentioned 

in fig 6. The input will be passed to linear (512,512), whose output is fed to the first ReLU activation function. Then a dropout 

(0.2) layer is being used, followed by linear (512, 2). Finally, it is passed through a LogSoftmax to get the logarithm of the 

probabilities.  The model uses Pytorch framework [4]. It is shown in Fig. 4 and Fig. 5. 
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Figure 4: ResNet-18 Base Architecture 

 

 
 

Figure 5: ResNet-18 Additional Sequential Architecture 

 

 

Adam optimizer is being used. The advantage of adam optimizer with some extensions to stochastic gradient descent is the 

Adaptive Gradient Algorithm (AdaGrad) which improves the performance on problems with small gradients and maintains a 

parameter learning rate. Another advantage of adam optimizer is Root Mean Square Propagation (RMSProp), which is based 

upon the averaging of the gradients for the 4elearning rates of the weight parameter. The algorithm of Adam optimizer is 

shown in Fig. 6. 
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Figure 6: Adam Optimizer 

 

NLL Loss Function, i.e., the negative log-likelihood loss, is used. The 1D Tensor [5] assigning weight to each class should be 

the optional argument weight. This function is particularly useful in the case of an unbalanced training set. An example of the 

negative log likelihood loss function is shown in Fig 7. 

 
Figure 7: Negative Log Likelihood Loss function 

IV. RESULTS AND DISCUSSIONS 

 

The accuracies of the RESNET18 architecture with an additional sequential layer consisting of a linear (512,512) layer, whose 

output is fed to the first ReLU activation function followed by a dropout (0.2) and a linear (512, 2). Finally, it is passed through 

a LogSoftmax to get the logarithm of the probabilities, which were found using the negative log-likelihood loss function. The 

network can be used to find the accuracy of the image dataset, which can be used for classification [12] or detection. 

 

V. CONCLUSION AND FUTURE SCOPE 

 

There are millions of neural networks, out of which the residual network is the efficient and complex neural network that is 

effective in finding the accuracies on various image datasets. The sequential layer helps acquire the accuracies in the range of 

0 to 1 using linear, dropout layers, and ReLU functions followed by LogSoftmax. The complexity can be increased by 

increasing the number of residual block layers, which helps the model learn better.   
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