
www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 2 February 2022 | ISSN: 2320-2882

IJCRT2202063 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a479

Dynamic Multi Keyword Ranked Search Based

On Bloom Filters

 MANSOOR MIYA
1, G.PRAVEEN BABU

2

1
MTech Scholar, Computer Network And Information Security, JNTUH School of Information Technology, Hyderabad,

2
Research Guide & Associate Professor, Computer Network And Information Security, JNTUH School of Information Technology,

Hyderabad,

Abstract— Mobile cloud computing has entered a new era of

technology which would help in keeping large quantity of data in

a lesser cost. Platforms for accessing and computing of large
amount of data are much more viable than previous days.

Researchers have been using large volumes of data for producing

out puts and they consider data as an asset. Now a days data is
being outsourced for conducting research in different sectors like

market study, military purposes, tackling terrorist attacks
,whether forecasting etc this increased the value of data and it has

to be kept safe. To preserve the nature of data high level

encryption should be done while transferring the data but this may
cause problems when multiple users try to access data from a

cloud source. Researchers are trying to develop new encryption

technique to reduce the risk of security while transferring the data.
Solutions that are being discussed are a multi keyword search

scheme supporting result ranking by adopting k nearest neighbors
knn technique and another is a dynamic searchable encryption

scheme through blind storage to conceal access pattern of the

search user.

Searching the encrypted data should be easy and should provide

an easy feeling like using a search engine in the internet. It should
also support multi key word search easy identification of relevant

search result. The data base would be large the searchable
encryption scheme should be in such a way that it would result in

minimum delay. The ideal scheme for providing better

performance is a multi keyword ranked search.

Keywords—Cloud Computing, Encryption, Ranked search

scheme, cipher, Data Vector, Stemming algorithm, Efficiency.

I. INTRODUCTION

Multi Keyword Ranked Search over Encryption

Cloud computing is an important concept now a days

multiple users can access and share their data in a single

platform this provides an on demand high quality request

and service from a single pool of data. Data may be of

different type, it may be financial, digital, email or any other

thing which may be private or public and this data may be

out sourced for many purposes. For providing safety and

security of this data it should be encrypted before out

sourcing. Downloading and decryption of the entire data is

not possible. Ranked search allows data users to discover

the most appropriate information quickly and avoid

redundant network traffic. It is important for such ranking

systems to support multiple keyword searches. While index

construction each document is associated with a binary

vector as a sub index where each bit signifies whether

matching key is contained in the document. The search key

is also illustrated as a binary vector where each bit means

whether corresponding key word appears in this search

request so the resemblance could be exactly calculated by

the inner product of the query vector with the data vector on

the other hand directly outsourcing the data vector will go

against the privacy

Contribution
We propose a coordinate matching when defining thread
models in different cases
Ranking searching will improve the result and would
provide a better solution in an expected time span.
When tested I n real time data it proves its ability and the
proposed model also maintains more search Semitics

Proposed System
1) Cloud setup

2) Cryptography cloud storage

3) Vector model

Cloud Setup
We should posses large quantity of data in a cloud setup.

The data owners would push the data to the server. The

inflow and outflow of data from the server should be secure.

The service providers should check the data and the

communication between the user and cloud will be on the

basis of multi keyword ranked search

Crypto Cloud Storage
Since we have to keep the privacy of data it has to be
encrypted before outsourcing the data

Vector Model
We use a series of searchable symmetric encryption system

which allows searching on cipher text time cost to generate

a query mainly depends on the number of keywords in the

dictionary, since the common main operation or time

consuming operation in all the schemes is query encryption.

So the time cost will become large as increasing the number

of key words in the dictionary, the difference between PRSE

1 and PRSE 2 is that query semantic extension needs to be

carried out during the step of search in the user interest

model.

II. PROBLEM FORMULATION

We formulate the privacy problem of the multi-keyword
fuzzy ranked search over encrypted data in this section.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 2 February 2022 | ISSN: 2320-2882

IJCRT2202063 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a480

A. System Model In this paper, we consider a cloud system

consisting of data owner, data user and cloud server. In our

system model, data owner has a collection of n data files F =

(F1, F2, F3,···, Fn) and outsources them to the cloud server in

the encrypted form C. To enable efficient search operation on

these encrypted files, data owner will build a secure searchable

index I on the keyword set W extracted from F. Both the index

I and the encrypted data files C are outsourced to the cloud

server. To search the encrypted data files for t given keywords,

an authorized user computes a corresponding trapdoor T and

sends it to cloud server. Upon receiving the trapdoor, the cloud

server is responsible to search the index I and return the

corresponding set of the encrypted documents. To improve the

file retrieval accuracy and save the communication cost, the

search result should be ranked by the cloud server and return

the top-K relevant files to the user as the search results.

B. Threat Model In our threat model, both data owners and

data users are trusted. However, the cloud server is honest-but-

curious as in [2]–[4]. Even though data files are encrypted, the

cloud server may try to obtain other sensitive information

from user search requests while performing keyword-based

search over C. So the search should be performed in a secure

manner that allows data files to be securely retrieved while

revealing as little information as possible to the cloud.

C. Design Goals • Support more spelling mistakes: Our multi-

keyword fuzzy search scheme should support more spelling

mistakes. For example, “network security” related files should

be found for a misspelled query “netward security”,“netwrok

security”,“netrwork security” and “netwrk security”. • Privacy

guarantee: The cloud server should be prevented from

obtaining additional information from the encrypted data files

and the index. • No Predefined Dictionary: No predefined

dictionary is a great contribution of original scheme, so our

scheme should not have predefined dictionary. • Support

updating: The same as original scheme, our scheme should

support dataset updating, such as file adding, file deleting and

file modifying. • Ranked results according to the relevance

score: To make users more satisfied with search results, the

return results should be ranked according to relevance score. •

Efficiency and Accuracy: The efficiency of our scheme should

be same as the original scheme. And our scheme should be as

accurate as possible and keep high accuracy.

D. Preliminaries three important techniques are used in our

design: Stemming algorithm, Bloom Filter, Locality-Sensitive

Hashing (LSH) and p-stable LSH. 1) Stemming Algorithm: A

stemming algorithm is a process of linguistic normalisation, in

which the variant forms of a word are reduced to a common

form. A stemmer for English, for example, should identify the

string “cats” (and possibly “catlike”, “catty” etc.) as based on

the root “cat”, and “stems”, “stemmer”, “stemming”,

“stemmer” as based on “stem”. A stemming algorithm reduces

the words “fishing”, “fished”, and “fisher” to the root word,

“fish”. On the other hand, “argue”, “argued”, “argues”,

“arguing”, and “argus” reduce to the stem “argu” (illustrating

the case where the stem is not itself a word or root). It is widely
adopted in Information Retrieval systems to improve performance.
2) Bloom Filter: Bloom filter is a kind of data structure with very
high space efficiency. It makes use of the m-bit array to represent a
collection, and can determine whether an element belongs to the
collection. It is initially set to 0 in all positions and for a given set S
={ a1,a2,···,an}, usel independent hash functions from H ={ hi | hi :
S → m,1 ≤ i ≤ l} to insert an element a ∈ S into the Bloom filter by
setting the positions to be 1. To check whether an element q is in S,
feed it to each of the l hash functions to get l array positions. If the
bit at any position is 0, q / ∈ S; otherwise, either q ∈ S or q yields a
false positive. The false positive rate of a m-bit Bloom filter is
approximately (1−e−ln m)l. The optimal false positive rate is (1/2)l
when l = m n ·ln2. 3) Locality-Sensitive Hashing (LSH): LSH is an
algorithm for solving the approximate or exact Near Neighbor
Search in high dimensional spaces. LSH hashes input items so that
similar items are mapped to the same buckets with high probability.
A hash function family H is (r1,r2, p1, p2)sensitive if any two
points x, y and satisfy: if d(x, y)≤r1;Pr [h(x)=h(y)]≥ p1 (1) if d(x,
y)≥r2;Pr [h(x)=h(y)]≤ p2 (2) where d(x, y) is the distance between
the point x and the point y. 4) P-Stable LSH: The original scheme
uses the p-stable LSH [18]. we will introduce it here. • When p=1, it
is Cauchy distribution, defined by the density function fp(x)= 1 x 1
1+x2 , is 1-stable; • When p=2, it is Gaussian distribution, defined
by the density function fp(x)= 1 √2π e−x2 2 , is 2-stable. The p-
stable LSH function is: ha,b(v) =a·v +b w Where a is a d-
dimensional vector, b∈[0, w] is a real number and w is a fixed
constant for one family.

III. BASIC IDEA OF OUR SCHEME

In this section, we first describe the main steps of our scheme

and subsequently discuss the differences between our scheme and

the original scheme. Finally, we will present additional details of
our scheme.

A. Main Steps of Our Scheme The main steps of our proposed

scheme are described in this section and illustrated in Data

Preprocessing: For a data set F ={f1, f2,..., fn}, we first extract

keywords from F to build a keyword set W ={w1,w2,...,wn}. We

apply the Porter Stemming Algorithm to ascertain the root of the

word.
For example, for the following set of words: “walk”, “walks”,

“walking” and “walked” all have a similar meanings, and their

stem is “walk”. For the constructed stem set, we compute the

relevance between the files and stems. Keyword Transformation:

Keyword transformation is an important step in our scheme.

Because the LSH functions take a vector as the input, we use the

uni-gram vector to represent the keyword. A keyword is first

transformed into the unigram-based set. For example, the uni-

gram set of the keyword “secure” is {s1, e1, c1, u1, r1, e2}, in

which s1 indicates the first s in the word. Similarly, e2 denotes

the second e in the word. We use a 160-bit long vector to represent

the uni-gram set. The element set contains 26*5 letters, 30

numbers and commonly used symbols, and thus the length of the

vector is 160. The element is set to 1 if the corresponding uni-

gram exists in the uni-gram

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 2 February 2022 | ISSN: 2320-2882

IJCRT2202063 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a481

set of a given keyword. In practice, the length of the vector is stems have different forms of expression. For example, the

changeable, and users can set up the uni-gram set according to following set of words: “walk”, “walks”, “walking” and

their own needs. Using this representation, a keyword that “walked”, they all have a similar meaning of “walk”, but they

might be misspelled in many different ways can still be also display certain distinctions. In this case, if we query the

represented in a vector that is highly similar to the correct one, keyword “walking”, but the keyword in index is “walk”, the

and this closeness (distance) is measured by the Euclidean probability of finding the keyword “walking” is low because

distance, the well-known metric for distance between vector- the distance between “walk” and “walking” is too large. In

type data items. This uni-gram vector representation is a key fact, what we need is to denote the keywords with the same

step in enabling the use of LSH functions. root into the same form. The stemming algorithm is one of the

 most commonly used algorithms for this purpose.

Algorithm 1 Generate Uni-Gram Based Keyword Vector After applying the Porter stemming algorithm, we can

Input: a plain-text keyword set, a null vector {0,1}160 Output: ascertain the root of the word “walk” and find the

uni-gram based vector 1: for Wi from W1 to Wv in the set do corresponding files. Keyword Transformation: Keyword

2: Stem Wi to STi whose length is sti, Spilt STi to STi[j] and transformation is a key step of our scheme. In the original

generate a vector{y | y[j]=1,0 < j < sti}3: for STi[j] in STi do4: scheme, a keyword is first transformed to a bi-gram set and

for k=1 to k=j-1do 5: if STi[j]=STi[k] then 6: y[j]++ 7: end if then the bi-gram set is mapped into a 262-bit long vector.

8: end for 9: set STi[j] and y[j] to a new element STY[j] 10: Each element in the vector represents one of the 262 possible

end for 11: for STY[1] to STY[st] do 12: Set all corresponding bi-grams. The element is set to 1 if the corresponding bi-gram

position in {0,1}160 to 1 13: Set the rest position to 0 14: exists in the bi-gram set of a given keyword. In our scheme,

Output the vector VWi for the keyword Wi 15: end for 16: we still use the vector to represent the keyword. However, we

Output the V ={VWi | Wi ∈ W} for all keywords in the set 17:
use the uni-gram based method to transform the keyword. For

end for example, the uni-gram set of keyword “secure” is {s1, e1, c1,
 u1, r1, e2}, where s1 indicates the first s in the word. Similarly

3) Construction of the Bloom-Filter-Based Index/Query: We e2 denotes the second e in the word. In this work, we will

first generate an m-bit Bloom filer in which the initial compare our method with Wang’s method under conditions of
 different spelling mistakes and then discuss the disadvantage
Algorithm 2 Search Procedure Input: Encrypted query vector of our method and those of Wang’s method.

q, q, Encrypted index, Threshold T Output: Encrypted a) Comparison under different spelling mistakes: In actual
document ID 1: for each document Di in the set do 2: for j=1 retrieval, a keyword can be misspelled into many forms and all

to j=m do 3: S = S+q∗ij +q∗i j 4: end for 5: if S > T then 6:
spelling mistakes should be considered by the fuzzy keyword

Output S and IDDi 7: end if 8: end for 9: Ranked IDDi search system. Compared with MFSE, our keyword

according to S 10: Output top-K document ID={IDDi |i ∈[1,
transformation method exhibits a smaller Euclidean distance

K]}value of each bit is 0. for each type of spelling mistake. We present selected
As the keywords of the files and query have been concrete examples for better understanding. • Misspelling of a

transformed into vector, we can use l LSH functions to hash letter: For example, the keyword “secure” is misspelled into
the vector. For each keyword, we have l hash values and the “secare”. In this case, the keyword “secare” is transformed
set the corresponding bit in Bloom filter to 1. Due to the into {s1, e1, c1, a1, r1, e2} by our transformation, which
nature of the locality-sensitive hashing functions, two similar changes only 1 uni-gram, and the Euclidean distance between
inputs within a certain distance are mapped into the same the correct keyword and misspelled keyword is √2. The bi-
output with high probability. In this manner, a misspelled gram set of misspelled keyword “secare” is{se,ec,ca,ar,re}in
keyword can be hashed into the same bucket of the Bloom MFSE, which changes2 bi-grams and the Euclidean distance is
filter. Finally, the fuzzy keyword search can be achieved. 4) 2. Obviously, our method has a smaller Euclidean distance.
Inner Product Based Matching Algorithm: As shown in the • Missing a letter or adding a letter: For example, the keyword
final secure index for each file is a Bloom filter that contains “secure” might be misspell as “secre” and is transformed to
all of the keywords in the file in which the keywords are first {s1, e1, c1, r1, e2}. The Euclidean distance of this situation is
transformed into its bi-gram vector representation and 1, and the Euclidean distance is √3 if we use the bi-gram. If
subsequently inserted into the Bloom filter by LSH functions. the keyword “secure” is misspelled into “secuure”, the
Because the query and the index are constructed in the same Euclidean distance is 1 for use of the uni-gram and the
way, we can compute the relevance of the query to each file. If Euclidean distance is √2 for use of the bi-gram. • Reversing
a document contains the keyword(s) in the query, the the order of two letters: For example, the keyword “secure” is
corresponding bits in both vectors are 1, thus the inner product misspelled into “secrue”. The misspelled keyword “secrue” is
is a high value. This inner product result is a good measure for transformed into {s1, e1, c1, r1,u1, e2} and the generated
evaluating the number of matching keywords. Finally, the top- vector is the same as the correct one. If we use the bi-gram,
K files will be returned if their inner product is larger than the the bi-gram set is {se,ec,cr,ru,ue}, and the Euclidean distance
threshold T. is 3. b) Disadvantages of our method and Wang’s method:
 Although our method offers advantages, it still contains

B. Differences Between Our Scheme and the Original Scheme certain disadvantages. The proposed uni-gram removes the

1) Stemming Algorithm: For English keywords, the same order dimension. Because the order is removed, the anagram is

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 2 February 2022 | ISSN: 2320-2882

IJCRT2202063 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a482

mapped to the same vector, and our scheme cannot distinguish

the keyword like this. If using the bi-gram, the keyword set is

completely different because the order has not been changed.

Wang’s scheme also contains its disadvantages in that the

original method cannot represent the same bi-gram. For

example, the word “representation” has 2 “re” elements in the

bi-gram set but only 1 is used when it is transformed into a

vector. However, our method is able to handle this problem.

Threshold T: The threshold is a measure used to determine

whether the documents are relevant to the user’s query. Each

document is considered relevant only if its inner product is

greater than the threshold T. Usually, the threshold is 0, if the

result is the inner product of the query vector and index vector,

such as in [2] and [3]. However, the threshold of our scheme

is not 0 because of the false positive and false negative. A false

positive is h(w) =h(w) when d(w,w)>r2 for two different

keywords w, w. A false negative is d(w,w)<r1 but h(w) =h(w).

Thus our threshold T is as follows. For t query keywords, the

threshold T is a random number such that max(T1)<T <

min(T2), whereT1 is the inner product of the t irrelevant

keywords and the T2 is the inner product of the t−1 irrelevant

keywords and one relevant keyword. For security

consideration, we set the threshold T to a random number. For

two queries with same number of query keywords, the

threshold T is different which can protect the number of the

query keywords. To improve the accuracy of the scheme, we

set the threshold to T > min(T2) 4) Random Number ε and t:

Because the cloud server computes the result scores of each

document and the query, such information should not be

revealed to the cloud. If the cloud knows such valuable

information, it can use this information together with selected

background knowledge to deduce additional information.

Therefore, in building the query vector, we introduce the

random number ε and t to protect the final similarly result

scores and threshold T. We replace all of the elements 1 in the

query vector with εi. In this work, εi is a random number that

follows a normal distribution N(μ,ζ2).
The element inserted into the query vector is not 1 but εi.

In addition, each individual vector is extended to the (m+1)-

dimension, where we assigned the random t to the extended

dimension in each query vector. Therefore, for two queries

with the same keywords, the final similarly result scores are

different, and makes the cloud server cannot distinguish

between the two generated vectors. Additional details can be

found in section IV. 5) Relevance Ranking: To ensure that the

result better satisfies the user’s demand, we use the keyword

frequency as a weight to reflect the relevance between the files

and keywords. To produce the relevance ranking, we first

compute the relevance between the files and keywords.

Second, we replace the elements in the index Bloom filter with

the relevance score.
Formerly, we set the corresponding position of hash value

to 1, but at this point, we set it to the relevance score. Because

there are l points for each keyword, so we assign the score to

each point on average. If different keywords are hashed into

the same point, and we use their average value as the insert.

For each document, if it contains a greater amount of

keywords that the user queried, it should have a higher priority

in the returned top-K file list. For two documents, if they contain

same number of keywords, the document with the higher
relevance score of the keywords is the better matching result

IV. SECURITY ANALYSIS

In this section, we will analyze the security of our scheme.

Inspired by Wang’s work, we will show the process of proof in

detail for known ciphertext and a known background. Before the

proof, we introduce some notations. • History: H = (, I,Wk) where

is a file set, I is a searchable index and a series of queries W =

(w1,···,wk) is submitted by users. • View: V
(H) = (Encsk(), Encsk(I), Encsk(W)) which is obtained by
encrypting H with some secret key sk. Note that the cloud server

can only see the views. • Trace of a history: Contains the sensitive
information learned by the cloud server. A trace of the history H

is the set of the trace of queries
Tr(H)={Tr(w1),···,Tr(wk)} Specifically, Tr(wi)= {(δj,sj)wi⊂δj ,1 ≤ j ≤ ||}, wheresj is the similarity
score between the query wi and the file δj.

A. In Known Ciphertext Model In the known ciphertext model,

given two histories with the same trace, if the cloud server cannot

distinguish which of them is generated by the simulator, it cannot

learn additional information for the index and the dataset beyond

the search result and the access pattern. Wang et al. proved the

security of their scheme in their original paper. As the secure

index Encsk(I()) and the trapdoor Encsk(Wk) generates the same

trace as the one that the cloud server, we claim that no

probabilistic polynomialtime (P.P.T.) adversary with more than

1/2 probability can distinguish between the view V and V(H).

Particularly, due to the semantic security of the symmetric

encryption, no P.P.T adversary can distinguish between Encsk()

and. And the indistinguishability of indexes and trapdoors is

based on the indistinguishability of the secure kNN encryption

[17] and the random number introduced in the split processes. As

we use the same encryption method as in the original scheme, so

our scheme is also secure also under known ciphertext model.

However, because we introduce the random number ε and t into

the query vector, our scheme should be more secure under the

known ciphertext model. The improved details are presented as

follows: • BuildIndex (D, SK, l): Choose l independent LSH

functions from the p-stable LSH family H ={ h :{ 0,1}160 →

{0,1}m}. Construct a (m+1)-bit Bloom filter ID as the index for

each file D.
1) Extract the keyword set WD ={ w1,w2,···} , wi ∈{ 0,1}160 from D.
2) For each keyword wi, insert the relevance score into the index ID using hj ∈ H,1≤ j ≤l.

3) Set the (m+1)-dimension in index Bloom filter to 1;
4) Encrypt the index ID using Index_Enc(SK,ID) and output the
Encsk(ID) •
Trapdoor(Q, SK): Generate a (m+1)-bit long Bloom filter for the
query Q.
1) For each search keyword qi, insert qi using the same l LSH functions hj ∈ H,1 ≤ j ≤ l into the bloom filter.

2) Set the (m+1)-dimension in the query Bloom filter to t;
3) Encrypt Q using Query_Enc(SK,Q), and output the
Encsk(Q) and the threshold T.
Theorem 3: Our scheme is more secure under the known
ciphertext model. Proof: We compare the security of our

scheme with that of the original scheme in the query vector,

the final similarity scores and the threshold T. For the query

vector, the indistinguishability is based on the secure kNN

encryption and the random number introduced in the split

processes. Because we insert the random number ε and t into

the query vector, our trapdoor is obviously more

indistinguishable. Not that we introduce the random number ε

and t into the query vector, the final similarity scores would

be IT By doing so, even for two queries with the same query

keywords, the final similarity scores are different which

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 2 February 2022 | ISSN: 2320-2882

IJCRT2202063 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a483

protects the scale relationship for two queries with the same

query keyword.
In our scheme, the threshold T is a random number in a

certain range. As we introduce the random number ε and t into

the query vector, the final similarity scores would change the

threshold will changes as well. The new threshold is μ·T+t.

Because T, t and μ are all random numbers, for two queries

with the same number of query keywords, the threshold is

completely different. Due to μ and t, the cloud server will be

more difficult to obtain the relationship between the number

of query keywords and the threshold. Based on these three

aspects, we observe that our scheme is more secure than the

original scheme. For the other aspects, our method is the same

as the original scheme. Therefore, the theorem.1 is has been

proven.
B. In Known Background Model In the known background
model, we follow the original scheme that uses a pseudo-random
function f as an extra security layer to secure the linkage between
the keywords and the bloom filter. In building the index, we
choosel independent LSH functions from the hash family H and
one pseudo-random function: f :{ 0,1}∗ ×{ 0,1}s →{ 0,1}∗. The
new hash functions are {gi = fki · hi,hi ∈ H,1 ≤ i ≤ l} and we use
the new hash functions to generate the query and index vector.
The extra security layer does not affect the search result because
the pseudo-random functions are collision free. Under the known
background model, the cloud server obtains selected background
information such as a certain amount of the keyword and trapdoor
pairs, denoted as (wi,Ti). Intuitively, the cloud server should not
be able to distinguish the view generated by the simulator from
its own view through the keyword and trapdoor pairs.

V. EXPERIMENTAL RESULTS

In this section, we estimate the overall performance of our

proposed scheme by implementing our proposed system using

C# language on a Windows7 server with a Core2 CPU running

at 2.93GHz. We used Request for comments database (RFC)

[6] as our data set. We chose approximately 3000 files from

the data set, and we extracted 3422 keywords in total. The

maximum number of the files is 179 and the minimum is
92. We set k=8, l=30 and set m=8000 and build a (√3, 2, 0.56,
0. 28)-LSH hash function. Similar to the original scheme, we

randomly picked one letter from the keyword and replaced it with

another letter. We allowed at most two fuzzy keywords in a query.
The tests for other spelling mistakes are independent and not

included in the precision of the result

A. Efficiency 1) Trapdoor generation: The trapdoor generation

process contains three major steps: stemming, the Bloom filter

generation and the encryption shows the total time of trapdoor

stemming and Bloom filter generation. The generation time

increased linearly with respect to the number of the inserted

keywords. As the number of keywords grew, the trapdoor

generation time also increased. 2) Index construction: The index

construction time was the same as that of trapdoor generation.

Because the stemming and Bloom filter generation were linear in

the number of the keywords, the index vector generation time

could be large, but it was just a one-time effort shows that the

encryption time is linear in the size of files because the index

structure we constructed was a per file based index. 3) Search

time: One important parameter that affected the search time was

the number of the files n. Because our index was a per file based

index, the search time increased linearly in the number of files, as

illustrated
(a) The Bloom filter generation time of trapdoor & a single index

file; The stemming time of keywords. (b) The encryption time for
all the indexes.. (a) The search time of different size of the file set.

We set the query keyword number
= 5; (b) The search time of different number of query keyword.
We set the size of document = 3000
we note that the number of the query keywords had a small

impact on the search time. This is because regardless of the

number of keywords, all of them were mapped into a query bloom

vector. Hence, the search time was independent of the number of

query keywords to a large extent. Another important parameter is

the length of the bloom filter. The search efficiency of our scheme

was the same as that of the original scheme because both the index

and the trapdoor were built in the same manner.

B. Result Accuracy We used precision to measure the result

accuracy. We denoted the true positive by tp and the false positive

by fp, and the precision was equal to tp tp+fp. To generate the

fuzzy search, we randomly chose keywords and modified it into a

fuzzy keyword. 1) Precision of Our Scheme: An important

parameter in our proposed scheme is the number of the keywords

in the query. For the exact search, the precision decreased slightly

from 100% to 95% as the number of the keywords increased from

1 to 10. Although the accuracy of the fuzzy search was not greater

than that of the exact match, it was still produce a high level of

accuracy, greater than 85%. From we note that the precision of

the exact match slightly decreased from 100% to 95% as the

number of the query keywords increased from 1 to 10.

VI. CONCLUSION

In this paper, we investigate the problem of multi-keyword
fuzzy ranked search over encrypted cloud data. We propose a
multi-keyword fuzzy ranked search scheme based on Wang et

al.’s scheme. Concretely, we develop a novel method of

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 2 February 2022 | ISSN: 2320-2882

IJCRT2202063 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a484

keyword transformation and introduce the stemming algorithm.

With these two techniques, the proposed scheme is able to

efficiently handle more misspelling mistake. Moreover, our

proposed scheme takes the keyword weight into consideration

during ranking. Like Wang et al.’s scheme, our proposed scheme

does not require a predefined keyword set and hence enables

efficient file update too. We also give thorough security analyses

and conduct experiments on real world data set, which indicates

the proposed scheme’s potential of practical usage.

REFERENCES

[1] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on

encrypted data,” in Proc. of IEEE Symposium on Security and
Privacy’00, 2000.

[2] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, Report 2003/216,
2003, http://eprint.iacr.org/.

[3] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in Proc. of ACNS’05, 2005.

[4] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,” in
Proc. of ACM CCS’06, 2006.

[5] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in Proc. of EUROCRYP’04, volume 3027
of LNCS. Springer, 2004.

[6] P. Golle, J. Staddon, and B. R. Waters, “Secure conjunctive keyword
search over encrypted data,” in Proc. of ACNS04, pp. 31-45, 2004.

http://www.ijcrt.org/
http://eprint.iacr.org/

