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Abstract— Mobile cloud computing has entered a new era of 

technology which would help in keeping large quantity of data in 

a lesser cost. Platforms for accessing and computing of large 
amount of data are much more viable than previous days. 

Researchers have been using large volumes of data for producing 

out puts and they consider data as an asset. Now a days data is 
being outsourced for conducting research in different sectors like 

market study, military purposes, tackling terrorist attacks 
,whether forecasting etc this increased the value of data and it has 

to be kept safe. To preserve the nature of data high level 

encryption should be done while transferring the data but this may 
cause problems when multiple users try to access data from a 

cloud source. Researchers are trying to develop new encryption 

technique to reduce the risk of security while transferring the data. 
Solutions that are being discussed are a multi keyword search 

scheme supporting result ranking by adopting k nearest neighbors 
knn technique and another is a dynamic searchable encryption 

scheme through blind storage to conceal access pattern of the 

search user. 
 

Searching the encrypted data should be easy and should provide 

an easy feeling like using a search engine in the internet. It should 
also support multi key word search easy identification of relevant 

search result. The data base would be large the searchable 
encryption scheme should be in such a way that it would result in 

minimum delay. The ideal scheme for providing better 

performance is a multi keyword ranked search. 
 

Keywords—Cloud Computing, Encryption, Ranked search 

scheme, cipher, Data Vector, Stemming algorithm, Efficiency. 
 

I. INTRODUCTION 
 
Multi Keyword Ranked Search over Encryption  

Cloud computing is an important concept now a days 

multiple users can access and share their data in a single 

platform this provides an on demand high quality request 

and service from a single pool of data. Data may be of 

different type, it may be financial, digital, email or any other 

thing which may be private or public and this data may be 

out sourced for many purposes. For providing safety and 

security of this data it should be encrypted before out 

sourcing. Downloading and decryption of the entire data is 

not possible. Ranked search allows data users to discover 

the most appropriate information quickly and avoid 

redundant network traffic. It is important for such ranking 

systems to support multiple keyword searches. While index 

construction each document is associated with a binary 

vector as a sub index where each bit signifies whether 

matching key is contained in the document. The search key 

is also illustrated as a binary vector where each bit means 

whether corresponding key word appears in this search 

request so the resemblance could be exactly calculated by 

the inner product of the query vector with the data vector on 

the other hand directly outsourcing the data vector will go 

against the privacy 
 
Contribution  
We propose a coordinate matching when defining thread 
models in different cases  
Ranking searching will improve the result and would 
provide a better solution in an expected time span.  
When tested I n real time data it proves its ability and the 
proposed model also maintains more search Semitics 
 
Proposed System  
1) Cloud setup 

2) Cryptography cloud storage 

3) Vector model 
 
Cloud Setup  
We should posses large quantity of data in a cloud setup. 

The data owners would push the data to the server. The 

inflow and outflow of data from the server should be secure. 

The service providers should check the data and the 

communication between the user and cloud will be on the 

basis of multi keyword ranked search 
 
Crypto Cloud Storage  
Since we have to keep the privacy of data it has to be 
encrypted before outsourcing the data 
 
Vector Model  
We use a series of searchable symmetric encryption system 

which allows searching on cipher text time cost to generate 

a query mainly depends on the number of keywords in the 

dictionary, since the common main operation or time 

consuming operation in all the schemes is query encryption. 

So the time cost will become large as increasing the number 

of key words in the dictionary, the difference between PRSE 

1 and PRSE 2 is that query semantic extension needs to be 

carried out during the step of search in the user interest 

model. 
 

II. PROBLEM FORMULATION 
 

We formulate the privacy problem of the multi-keyword 
fuzzy ranked search over encrypted data in this section. 
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A. System Model In this paper, we consider a cloud system 

consisting of data owner, data user and cloud server. In our 

system model, data owner has a collection of n data files F = 

(F1, F2, F3,···, Fn) and outsources them to the cloud server in 

the encrypted form C. To enable efficient search operation on 

these encrypted files, data owner will build a secure searchable 

index I on the keyword set W extracted from F. Both the index 

I and the encrypted data files C are outsourced to the cloud 

server. To search the encrypted data files for t given keywords, 

an authorized user computes a corresponding trapdoor T and 

sends it to cloud server. Upon receiving the trapdoor, the cloud 

server is responsible to search the index I and return the 

corresponding set of the encrypted documents. To improve the 

file retrieval accuracy and save the communication cost, the 

search result should be ranked by the cloud server and return 

the top-K relevant files to the user as the search results. 

 

B. Threat Model In our threat model, both data owners and 

data users are trusted. However, the cloud server is honest-but-

curious as in [2]–[4]. Even though data files are encrypted, the 

cloud server may try to obtain other sensitive information 

from user search requests while performing keyword-based 

search over C. So the search should be performed in a secure 

manner that allows data files to be securely retrieved while 

revealing as little information as possible to the cloud. 

 

C. Design Goals • Support more spelling mistakes: Our multi-

keyword fuzzy search scheme should support more spelling 

mistakes. For example, “network security” related files should 

be found for a misspelled query “netward security”,“netwrok 

security”,“netrwork security” and “netwrk security”. • Privacy 

guarantee: The cloud server should be prevented from 

obtaining additional information from the encrypted data files 

and the index. • No Predefined Dictionary: No predefined 

dictionary is a great contribution of original scheme, so our 

scheme should not have predefined dictionary. • Support 

updating: The same as original scheme, our scheme should 

support dataset updating, such as file adding, file deleting and 

file modifying. • Ranked results according to the relevance 

score: To make users more satisfied with search results, the 

return results should be ranked according to relevance score. • 

Efficiency and Accuracy: The efficiency of our scheme should 

be same as the original scheme. And our scheme should be as 

accurate as possible and keep high accuracy. 

 

D. Preliminaries three important techniques are used in our 

design: Stemming algorithm, Bloom Filter, Locality-Sensitive 

Hashing (LSH) and p-stable LSH. 1) Stemming Algorithm: A 

stemming algorithm is a process of linguistic normalisation, in 

which the variant forms of a word are reduced to a common 

form. A stemmer for English, for example, should identify the 

string “cats” (and possibly “catlike”, “catty” etc.) as based on 

the root “cat”, and “stems”, “stemmer”, “stemming”, 

“stemmer” as based on “stem”. A stemming algorithm reduces 

the words “fishing”, “fished”, and “fisher” to the root word, 

“fish”. On the other hand, “argue”, “argued”, “argues”, 

“arguing”, and “argus” reduce to the stem “argu” (illustrating 

 

 

 

 
the case where the stem is not itself a word or root). It is widely 
adopted in Information Retrieval systems to improve performance. 
2) Bloom Filter: Bloom filter is a kind of data structure with very 
high space efficiency. It makes use of the m-bit array to represent a 
collection, and can determine whether an element belongs to the 
collection. It is initially set to 0 in all positions and for a given set S 
={ a1,a2,···,an}, usel independent hash functions from H ={ hi | hi : 
S → m,1 ≤ i ≤ l} to insert an element a ∈ S into the Bloom filter by 
setting the positions to be 1. To check whether an element q is in S, 
feed it to each of the l hash functions to get l array positions. If the 
bit at any position is 0, q / ∈ S; otherwise, either q ∈ S or q yields a 
false positive. The false positive rate of a m-bit Bloom filter is 
approximately (1−e−ln m )l. The optimal false positive rate is (1/2)l 
when l = m n ·ln2. 3) Locality-Sensitive Hashing (LSH): LSH is an 
algorithm for solving the approximate or exact Near Neighbor 
Search in high dimensional spaces. LSH hashes input items so that 
similar items are mapped to the same buckets with high probability. 
A hash function family H is (r1,r2, p1, p2)sensitive if any two 
points x, y and satisfy: if d(x, y)≤r1;Pr [h(x)=h(y)]≥ p1 (1) if d(x, 
y)≥r2;Pr [h(x)=h(y)]≤ p2 (2) where d(x, y) is the distance between 
the point x and the point y. 4) P-Stable LSH: The original scheme 
uses the p-stable LSH [18]. we will introduce it here. • When p=1, it 
is Cauchy distribution, defined by the density function fp(x)= 1 x 1 
1+x2 , is 1-stable; • When p=2, it is Gaussian distribution, defined 
by the density function fp(x)= 1 √2π e−x2 2 , is 2-stable. The p-
stable LSH function is: ha,b(v) =a·v +b w Where a is a d-
dimensional vector, b∈[0, w] is a real number and w is a fixed 
constant for one family. 
 

III. BASIC IDEA OF OUR SCHEME 
 

In this section, we first describe the main steps of our scheme 

and subsequently discuss the differences between our scheme and 

the original scheme. Finally, we will present additional details of 
our scheme. 

 

A. Main Steps of Our Scheme The main steps of our proposed 

scheme are described in this section and illustrated in Data 

Preprocessing: For a data set F ={f1, f2,..., fn}, we first extract 

keywords from F to build a keyword set W ={w1,w2,...,wn}. We 

apply the Porter Stemming Algorithm to ascertain the root of the 

word.  
For example, for the following set of words: “walk”, “walks”, 

“walking” and “walked” all have a similar meanings, and their 

stem is “walk”. For the constructed stem set, we compute the 

relevance between the files and stems. Keyword Transformation: 

Keyword transformation is an important step in our scheme. 

Because the LSH functions take a vector as the input, we use the 

uni-gram vector to represent the keyword. A keyword is first 

transformed into the unigram-based set. For example, the uni-

gram set of the keyword “secure” is {s1, e1, c1, u1, r1, e2}, in 

which s1 indicates the first s in the word. Similarly, e2 denotes 

the second e in the word. We use a 160-bit long vector to represent 

the uni-gram set. The element set contains 26*5 letters, 30 

numbers and commonly used symbols, and thus the length of the 

vector is 160. The element is set to 1 if the corresponding uni-

gram exists in the uni-gram 
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set of a given keyword. In practice, the length of the vector is stems have different forms of expression. For example, the 

changeable, and users can set up the uni-gram set according to following  set  of  words:  “walk”,  “walks”,  “walking”  and 

their own needs. Using this representation, a keyword that “walked”, they all have a similar meaning of “walk”, but they 

might  be  misspelled  in  many  different  ways  can  still  be also display certain distinctions. In this case, if we query the 

represented in a vector that is highly similar to the correct one, keyword “walking”, but the keyword in index is “walk”, the 

and this closeness (distance) is measured by the Euclidean probability of finding the keyword “walking” is low because 

distance, the well-known metric for distance between vector- the distance between “walk” and “walking” is too large. In 

type data items. This uni-gram vector representation is a key fact, what we need is to denote the keywords with the same 

step in enabling the use of LSH functions. root into the same form. The stemming algorithm is one of the 

 most commonly used algorithms for this purpose. 

Algorithm  1  Generate  Uni-Gram  Based  Keyword  Vector After  applying  the  Porter  stemming  algorithm,  we  can 

Input: a plain-text keyword set, a null vector {0,1}160 Output: ascertain  the  root  of  the  word  “walk”  and  find  the 

uni-gram based vector 1: for Wi from W1 to Wv in the set do corresponding  files.  Keyword  Transformation:  Keyword 

2: Stem Wi to STi whose length is sti, Spilt STi to STi[j] and transformation is a key step of our scheme. In the original 

generate a vector{y | y[j]=1,0 < j < sti}3: for STi[j] in STi do4: scheme, a keyword is first transformed to a bi-gram set and 

for k=1 to k=j-1do 5: if STi[j]=STi[k] then 6: y[j]++ 7: end if then the bi-gram set is mapped into a 262-bit long vector. 

8: end for 9: set STi[j] and y[j] to a new element STY[j] 10: Each element in the vector represents one of the 262 possible 

end for 11: for STY[1] to STY[st] do 12: Set all corresponding bi-grams. The element is set to 1 if the corresponding bi-gram 

position in {0,1}160 to 1 13: Set the rest position to 0 14: exists in the bi-gram set of a given keyword. In our scheme, 

Output the vector VWi for the keyword Wi 15: end for 16: we still use the vector to represent the keyword. However, we 

Output the V ={VWi | Wi ∈ W} for all keywords in the set 17: 
use the uni-gram based method to transform the keyword. For 

end for example, the uni-gram set of keyword “secure” is {s1, e1, c1, 
 u1, r1, e2}, where s1 indicates the first s in the word. Similarly 

3) Construction of the Bloom-Filter-Based Index/Query: We e2 denotes the second e in the word. In this work, we will 

first generate an m-bit Bloom filer in which the initial compare our method with Wang’s method under conditions of 
 different spelling mistakes and then discuss the disadvantage 
Algorithm 2 Search Procedure Input: Encrypted query vector of our method and those of Wang’s method. 

q,  q,  Encrypted  index,  Threshold  T  Output:  Encrypted a)  Comparison  under  different  spelling  mistakes:  In  actual 
document ID 1: for each document Di in the set do 2: for j=1 retrieval, a keyword can be misspelled into many forms and all 

to j=m do 3: S = S+q∗ij +q∗i j 4: end for 5: if S > T then 6: 
spelling mistakes should be considered by the fuzzy keyword 

Output  S  and  IDDi  7:  end  if  8:  end  for  9:  Ranked  IDDi search   system.   Compared   with   MFSE,   our   keyword 

according to S 10: Output top-K document ID={IDDi |i ∈[ 1, 
transformation method exhibits a smaller Euclidean distance 

K]}value of each bit is 0. for  each  type  of  spelling  mistake.  We  present  selected 
As  the  keywords  of  the  files  and  query  have  been concrete examples for better understanding. • Misspelling of a 

transformed into vector, we can use l LSH functions to hash letter: For example, the keyword “secure” is misspelled into 
the vector. For each keyword, we have l hash values and the “secare”. In this case, the keyword “secare” is transformed 
set the corresponding bit  in Bloom filter to 1. Due to  the into  {s1,  e1,  c1,  a1, r1, e2} by our  transformation,  which 
nature of the locality-sensitive hashing functions, two similar changes only 1 uni-gram, and the Euclidean distance between 
inputs  within a  certain distance  are  mapped  into  the  same the correct keyword and misspelled keyword is √2. The bi- 
output  with  high  probability.  In  this  manner,  a  misspelled gram set of misspelled keyword “secare” is{se,ec,ca,ar,re}in 
keyword can be hashed into the same bucket of the Bloom MFSE, which changes2 bi-grams and the Euclidean distance is 
filter. Finally, the fuzzy keyword search can be achieved. 4) 2. Obviously, our method has a smaller Euclidean distance. 
Inner Product Based Matching Algorithm: As shown in the • Missing a letter or adding a letter: For example, the keyword 
final secure index for each file is a Bloom filter that contains “secure” might be misspell as “secre” and is transformed to 
all of the keywords in the file in which the keywords are first {s1, e1, c1, r1, e2}. The Euclidean distance of this situation is 
transformed  into  its  bi-gram  vector  representation  and 1, and the Euclidean distance is √3 if we use the bi-gram. If 
subsequently inserted into the Bloom filter by LSH functions. the  keyword  “secure”  is  misspelled  into  “secuure”,  the 
Because the query and the index are constructed in the same Euclidean  distance  is  1  for  use  of  the  uni-gram  and  the 
way, we can compute the relevance of the query to each file. If Euclidean distance is √2 for use of the bi-gram. • Reversing 
a  document  contains  the  keyword(s)  in  the  query,  the the order of two letters: For example, the keyword “secure” is 
corresponding bits in both vectors are 1, thus the inner product misspelled into “secrue”. The misspelled keyword “secrue” is 
is a high value. This inner product result is a good measure for transformed  into  {s1,  e1,  c1,  r1,u1,  e2}  and  the  generated 
evaluating the number of matching keywords. Finally, the top- vector is the same as the correct one. If we use the bi-gram, 
K files will be returned if their inner product is larger than the the bi-gram set is {se,ec,cr,ru,ue}, and the Euclidean distance 
threshold T. is 3. b) Disadvantages of our method and Wang’s method: 
 Although  our  method  offers  advantages,  it  still  contains 

B. Differences Between Our Scheme and the Original Scheme certain  disadvantages.  The  proposed  uni-gram  removes  the 

1)  Stemming  Algorithm:  For  English  keywords,  the  same order dimension. Because the order is removed, the anagram is 
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mapped to the same vector, and our scheme cannot distinguish 

the keyword like this. If using the bi-gram, the keyword set is 

completely different because the order has not been changed. 

Wang’s scheme also contains its disadvantages in that the 

original method cannot represent the same bi-gram. For 

example, the word “representation” has 2 “re” elements in the 

bi-gram set but only 1 is used when it is transformed into a 

vector. However, our method is able to handle this problem. 

Threshold T: The threshold is a measure used to determine 

whether the documents are relevant to the user’s query. Each 

document is considered relevant only if its inner product is 

greater than the threshold T. Usually, the threshold is 0, if the 

result is the inner product of the query vector and index vector, 

such as in [2] and [3]. However, the threshold of our scheme 

is not 0 because of the false positive and false negative. A false 

positive is h(w) =h(w) when d(w,w)>r2 for two different 

keywords w, w. A false negative is d(w,w)<r1 but h(w) =h(w). 

Thus our threshold T is as follows. For t query keywords, the 

threshold T is a random number such that max(T1)<T < 

min(T2), whereT1 is the inner product of the t irrelevant 

keywords and the T2 is the inner product of the t−1 irrelevant 

keywords and one relevant keyword. For security 

consideration, we set the threshold T to a random number. For 

two queries with same number of query keywords, the 

threshold T is different which can protect the number of the 

query keywords. To improve the accuracy of the scheme, we 

set the threshold to T > min(T2) 4) Random Number ε and t: 

Because the cloud server computes the result scores of each 

document and the query, such information should not be 

revealed to the cloud. If the cloud knows such valuable 

information, it can use this information together with selected 

background knowledge to deduce additional information. 

Therefore, in building the query vector, we introduce the 

random number ε and t to protect the final similarly result 

scores and threshold T. We replace all of the elements 1 in the 

query vector with εi. In this work, εi is a random number that 

follows a normal distribution N(μ,ζ2).  
The element inserted into the query vector is not 1 but εi. 

In addition, each individual vector is extended to the (m+1)-

dimension, where we assigned the random t to the extended 

dimension in each query vector. Therefore, for two queries 

with the same keywords, the final similarly result scores are 

different, and makes the cloud server cannot distinguish 

between the two generated vectors. Additional details can be 

found in section IV. 5) Relevance Ranking: To ensure that the 

result better satisfies the user’s demand, we use the keyword 

frequency as a weight to reflect the relevance between the files 

and keywords. To produce the relevance ranking, we first 

compute the relevance between the files and keywords. 

Second, we replace the elements in the index Bloom filter with 

the relevance score.  
Formerly, we set the corresponding position of hash value 

to 1, but at this point, we set it to the relevance score. Because 

there are l points for each keyword, so we assign the score to 

each point on average. If different keywords are hashed into 

the same point, and we use their average value as the insert. 

For each document, if it contains a greater amount of 

keywords that the user queried, it should have a higher priority 

 

 

in the returned top-K file list. For two documents, if they contain 

same number of keywords, the document with the higher 
relevance score of the keywords is the better matching result 
 

IV. SECURITY ANALYSIS 
 

In this section, we will analyze the security of our scheme. 

Inspired by Wang’s work, we will show the process of proof in 

detail for known ciphertext and a known background. Before the 

proof, we introduce some notations. • History: H = (, I,Wk) where 

is a file set, I is a searchable index and a series of queries W = 

(w1,···,wk) is submitted by users. • View: V  
(H) = (Encsk(), Encsk(I), Encsk(W)) which is obtained by 
encrypting H with some secret key sk. Note that the cloud server 

can only see the views. • Trace of a history: Contains the sensitive 
information learned by the cloud server. A trace of the history H 

is the set of the trace of queries  
Tr(H)={Tr(w1),···,Tr(wk)} Specifically, Tr(wi)= {(δj,sj)wi⊂δj ,1 ≤ j ≤ ||}, wheresj is the similarity 
score between the query wi and the file δj. 

 

A. In Known Ciphertext Model In the known ciphertext model, 

given two histories with the same trace, if the cloud server cannot 

distinguish which of them is generated by the simulator, it cannot 

learn additional information for the index and the dataset beyond 

the search result and the access pattern. Wang et al. proved the 

security of their scheme in their original paper. As the secure 

index Encsk(I()) and the trapdoor Encsk(Wk) generates the same 

trace as the one that the cloud server, we claim that no 

probabilistic polynomialtime (P.P.T.) adversary with more than 

1/2 probability can distinguish between the view V and V(H). 

Particularly, due to the semantic security of the symmetric 

encryption, no P.P.T adversary can distinguish between Encsk() 

and. And the indistinguishability of indexes and trapdoors is 

based on the indistinguishability of the secure kNN encryption 

[17] and the random number introduced in the split processes. As 

we use the same encryption method as in the original scheme, so 

our scheme is also secure also under known ciphertext model. 

However, because we introduce the random number ε and t into 

the query vector, our scheme should be more secure under the 

known ciphertext model. The improved details are presented as 

follows: • BuildIndex (D, SK, l): Choose l independent LSH 

functions from the p-stable LSH family H ={ h :{ 0,1}160 → 

{0,1}m}. Construct a (m+1)-bit Bloom filter ID as the index for 

each file D.  
1) Extract the keyword set WD ={ w1,w2,···} , wi ∈{ 0,1}160 from D.  
2) For each keyword wi, insert the relevance score into the index ID using hj ∈ H,1≤ j ≤l. 

3) Set the (m+1)-dimension in index Bloom filter to 1;  
4) Encrypt the index ID using Index_Enc(SK,ID) and output the 
Encsk(ID) •  
Trapdoor(Q, SK): Generate a (m+1)-bit long Bloom filter for the 
query Q.  
1) For each search keyword qi, insert qi using the same l LSH functions hj ∈ H,1 ≤ j ≤ l into the bloom filter. 

 

2) Set the (m+1)-dimension in the query Bloom filter to t;  
3) Encrypt Q using Query_Enc(SK,Q), and output the 
Encsk(Q) and the threshold T.  
Theorem  3:  Our  scheme  is  more  secure  under  the  known  
ciphertext model. Proof: We compare the security of our 

scheme with that of the original scheme in the query vector, 

the final similarity scores and the threshold T. For the query 

vector, the indistinguishability is based on the secure kNN 

encryption and the random number introduced in the split 

processes. Because we insert the random number ε and t into 

the query vector, our trapdoor is obviously more 

indistinguishable. Not that we introduce the random number ε 

and t into the query vector, the final similarity scores would 

be IT By doing so, even for two queries with the same query 

keywords, the final similarity scores are different which 
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protects the scale relationship for two queries with the same 

query keyword.  
In our scheme, the threshold T is a random number in a 

certain range. As we introduce the random number ε and t into 

the query vector, the final similarity scores would change the 

threshold will changes as well. The new threshold is μ·T+t. 

Because T, t and μ are all random numbers, for two queries 

with the same number of query keywords, the threshold is 

completely different. Due to μ and t, the cloud server will be 

more difficult to obtain the relationship between the number 

of query keywords and the threshold. Based on these three 

aspects, we observe that our scheme is more secure than the 

original scheme. For the other aspects, our method is the same 

as the original scheme. Therefore, the theorem.1 is has been 

proven.  
B. In Known Background Model In the known background 
model, we follow the original scheme that uses a pseudo-random 
function f as an extra security layer to secure the linkage between 
the keywords and the bloom filter. In building the index, we 
choosel independent LSH functions from the hash family H and 
one pseudo-random function: f :{ 0,1}∗ ×{ 0,1}s →{ 0,1}∗. The 
new hash functions are {gi = fki · hi,hi ∈ H,1 ≤ i ≤ l} and we use 
the new hash functions to generate the query and index vector. 
The extra security layer does not affect the search result because 
the pseudo-random functions are collision free. Under the known 
background model, the cloud server obtains selected background 
information such as a certain amount of the keyword and trapdoor 
pairs, denoted as (wi,Ti). Intuitively, the cloud server should not 
be able to distinguish the view generated by the simulator from 
its own view through the keyword and trapdoor pairs. 
 

V. EXPERIMENTAL RESULTS 
 

In this section, we estimate the overall performance of our 

proposed scheme by implementing our proposed system using 

C# language on a Windows7 server with a Core2 CPU running 

at 2.93GHz. We used Request for comments database (RFC) 

[6] as our data set. We chose approximately 3000 files from 

the data set, and we extracted 3422 keywords in total. The 

maximum number of the files is 179 and the minimum is  
92. We set k=8, l=30 and set m=8000 and build a (√3, 2, 0.56,  
0. 28)-LSH hash function. Similar to the original scheme, we 

 

 

 

 

randomly picked one letter from the keyword and replaced it with 

another letter. We allowed at most two fuzzy keywords in a query. 
The tests for other spelling mistakes are independent and not 

included in the precision of the result 

 

A. Efficiency 1) Trapdoor generation: The trapdoor generation 

process contains three major steps: stemming, the Bloom filter 

generation and the encryption shows the total time of trapdoor 

stemming and Bloom filter generation. The generation time 

increased linearly with respect to the number of the inserted 

keywords. As the number of keywords grew, the trapdoor 

generation time also increased. 2) Index construction: The index 

construction time was the same as that of trapdoor generation. 

Because the stemming and Bloom filter generation were linear in 

the number of the keywords, the index vector generation time 

could be large, but it was just a one-time effort shows that the 

encryption time is linear in the size of files because the index 

structure we constructed was a per file based index. 3) Search 

time: One important parameter that affected the search time was 

the number of the files n. Because our index was a per file based 

index, the search time increased linearly in the number of files, as 

illustrated  
(a) The Bloom filter generation time of trapdoor & a single index 

file; The stemming time of keywords. (b) The encryption time for 
all the indexes.. (a) The search time of different size of the file set. 

We set the query keyword number  
= 5; (b) The search time of different number of query keyword. 
We set the size of document = 3000  
we note that the number of the query keywords had a small 

impact on the search time. This is because regardless of the 

number of keywords, all of them were mapped into a query bloom 

vector. Hence, the search time was independent of the number of 

query keywords to a large extent. Another important parameter is 

the length of the bloom filter. The search efficiency of our scheme 

was the same as that of the original scheme because both the index 

and the trapdoor were built in the same manner. 

 

B. Result Accuracy We used precision to measure the result 

accuracy. We denoted the true positive by tp and the false positive 

by fp, and the precision was equal to tp tp+fp. To generate the 

fuzzy search, we randomly chose keywords and modified it into a 

fuzzy keyword. 1) Precision of Our Scheme: An important 

parameter in our proposed scheme is the number of the keywords 

in the query. For the exact search, the precision decreased slightly 

from 100% to 95% as the number of the keywords increased from 

1 to 10. Although the accuracy of the fuzzy search was not greater 

than that of the exact match, it was still produce a high level of 

accuracy, greater than 85%. From we note that the precision of 

the exact match slightly decreased from 100% to 95% as the 

number of the query keywords increased from 1 to 10. 
 

VI. CONCLUSION 
 

In this paper, we investigate the problem of multi-keyword 
fuzzy ranked search over encrypted cloud data. We propose a 
multi-keyword fuzzy ranked search scheme based on Wang et 

al.’s scheme. Concretely, we develop a novel method of 
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keyword transformation and introduce the stemming algorithm. 

With these two techniques, the proposed scheme is able to 

efficiently handle more misspelling mistake. Moreover, our 

proposed scheme takes the keyword weight into consideration 

during ranking. Like Wang et al.’s scheme, our proposed scheme 

does not require a predefined keyword set and hence enables 

efficient file update too. We also give thorough security analyses 

and conduct experiments on real world data set, which indicates 

the proposed scheme’s potential of practical usage. 
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