www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

éb INTERNATIONAL JOURNAL OF CREATIVE
9 RESEARCH THOUGHTS (IJCRT)
QE <" An International Open Access, Peer-reviewed, Refereed Journal

Minimax Multi objective Fractional Programming
with B-(p, r)-Invexity with Non differentiable
functions

DR.G.VARALAKSHMI
In charge Dept.of Statistics, PRR & VS Government Coleege, Vidavaluru

Abstract: In this paper, we derive some theorems and duality theorems on non differentiable

Multiobjective Fractional Minimax Programming Under B-(p, r)-Invexity functions.

Keywords: B-(p, r)-invex function and Duality.
Introduction

The necessary and sufficient conditions for generalized minimax programming were first
developed by Schmitendorf [1]. Tanimoto [9] applied these optimality conditions to define a dual
problem and derived duality theorems. Bector and Bhatia relaxed the convexity assumptions in
the sufficient optimality condition in [1] and also employed the optimality conditions to construct
several dual models which involve pseudo-convex and quasi-convex functions, and derived weak
and strong duality theorems. Yadav and Mukherjee [16] established the optimality conditions to
construct the two dual problems and derived duality theorems for differentiable fractional

minimimax programming.
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Convexity plays an important role in deriving sufficient conditions and duality for non linear
programming problems Karush-Kuhn-Tucker type sufficient optimality conditions for nonlinear
programming problems. Generalized invexity and duality for multiobjective programming
problems are discussed in [5], and inseparable Hilbert spaces are studied by Soleimani-Damaneh
[3]. Soleimani-Damaneh [4] provides a family of linear infinite problems or linear semi-infinite
problems to characterize the optimality of nonlinear optimization problems. Recently, optimality
conditions for a class of generalized fractional minimax programming problems involving B(p, r)-

invexity functions and established duality theorems for various duality models.

This paper is organized as follows. In section 2, we give some preliminaries. An example
which is B-(1, 1)-invex but convex. In section 3, we establish the sufficient optimality conditions.
Duality results are presented in section4 by developing some theorems and duality theorems in

non differentiable minimax multi objective fractional programming with B-(p, r)-invexity.

Notations and Preliminaries

Definition: 1. Let f: X > R ( where X = R") be differentiable function, and let p, r be arbitrary
real numbers. Then f is said to be (p, r)-invex (strictly (p, r)-invex) with respect to 1 at U€ X on X

if there exists a function 1n: Xx X — R" such that, for all X € X, the inequalities.

1 r(f(x 1 r(f(u r X, u -
Fe(f( ) ZFe(f( )){Hgvf(U)(epn( ' )—1)}(>|f x#u) for p=0, r=0

f(x)—f(u)Z%Vf(u)(ep”(x'”)—1) (>if x=u) for p=0, r=0 f(x)—F(u)>VF(u) n(x,u)

(>if x=u) for p=0, r=0 hold.
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Definition 2 : The differentiable function f: X - R (where X © R") is said to be (strictly) B-(p,
r)-invex with respect to 1 and b at U€ X on X if there exists a function n: XxX —R" and a

function b: Xx X — R, such that, forall X e X, the following inequalities.

%b (X, u) (er(f(x)_f(”)) —1) > %Vf(u) (ep”(x’”) —1) (>if x=u) for p=0, r=0
%b (x,u) (€11 1) > VE (u) n(x, u) (>if x=u) for p=0, r=0

b(x, u) (f(X) —f(u))z%Vf(u)(ep”(x’“) —1) (>if x=u) for p=0, r=0

b(x, u) (f(x)—f(u))=VFf(u) n(x,u) (>if x=u) for p=0, r=0hold. f is said to be (strictly)
B-(p, r)-invex with respect to 1 and b on X if it is B-(p, r)-invex with respect to same 1 and b at

each Ue X onX.

In this paper, we consider the following non differentiable minimax fractional programming

problem:
(FP)
1
T 2
minsup 06 Y)+ (< DX)
xeR" yeY

m (% Y)— (" EX)’

Subjectto g(X) <0, xeX
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where Y is a compact subset of R™, I(-,"):R"xR™ >R, m(-,-):R"xR™ - R and C*
functions on R"xR™ and g(-):R"xRP" is C! function on R", D and E are Nnxn positive

semidefinite matrices.
Let S ={Xxe X :g(x) <0} denote the set of all feasible solutions of (FP)
Any point X € S is called the feasible point of (FP)

For each (X, y) e R"xR_, we define

m?

D (xy)= Lo+ DY

m, (x, y) — (<" Ex)?

such that for each (X, y) € SxY,

1 1
L (x,y)+(x" Dx)2>0 and m, (x,y)—(x" Ex)? >0

For each X €S, we define

H(x)={heH :g,(x)=0},

where Y(X) = <yeY:

Sup
m (% y)—(x"Ex)2 7 m (x,2)— (X" Ex)?

L (X, y)+(x' Dx)i _ . (X, )+ (X" Dx);
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Since |, and m, are continuously differentiable and Y is compact in R™, it follows that for

each X €5,Y (X)) #¢,and forany ¥, €Y (X'), we have a positive constant.

K, :¢(x*, 5 ): L (X, V;)+(x Dx )21
m; (x', %)~ (X" Ex)?

Generalized Schwartz Inequality
Let A be a positive-semi definite matrix of order n. Then, for all x, we R",
1 1
X" Aw < (X" AX)? (W' Aw)? 1)
Equality holds if for some A >0

Ax=AAw

N |-

Evidently, if (W' Aw)2 <1, we have

1
X" Aw < (X" AX)?

If the functions |, , g; and m, in problem (FP) are continuously differentiable with respect

to X e R", then Lai et al [52] derived the following necessary conditions for optimality of (FP).
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Theorem 1 (Necessary Conditions):

If X" is a solution of (FP) satisfying X' DX >0, X" EX' >0 and Vg, (X)), he H(X) are linearly

independent, then there exist(s,t", ¥) ek(X'), k, €R,, w,veR" and x R such that

S (V1 (X, 5} + Dw—k, {Vm, (<, 1)~ EV ]+ V 3E 19, (<) =0

i1 h-1
(2)

L (X, ¥, )+(X*T Dx*)g—k{m(x*, Y )—(x*T Ex*)ijzo, i=12,..,s

(3)
p * *
Z,Uh gh(x )=0 (4)
h=1
t>0(i=12,...,s), iti*:l, (5)

w' Dw<1 V'EV <1, )

*

1
(x*T Dx*)2 —x" Dw, ' (6)

1

(x*T Ex” )2 =x" EV
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Sufficient Conditions:

Under smooth conditions say, convexity and generalized convexity as well as
differentiability, optimality conditions for these problems have been studied in the past few years.
The intrinsic presence of nonsmoothness (the necessity to deal with nondifferentiable functions,
sets with nonsmooth boundaries, and set-valued mappings) is one of the most characteristic
features of modern variational analysis. The optimality conditions for nondifferentiable
multiobjective case by Kim et al [49]. Now, we prove the sufficient condition for optimality of (Fp)

under the assumptions B-(p, r)-invexity.

Theorem 2 (Sufficient condition):

Let X* be a feasible of (FP) and there exist a positive integer s,1<s<n+1t e R?,

V. eY(X)(=L2,...5), k,eR,w,veR" and x €R’, Assume that

(i) Zi:t; (li (,V,)+() Dw—k, (mi ¢,V )) —() EV)is B—(p, r)-invex at x’ on s with respect

to 17 and b satisfying b (x, X') >0 forall X es.

p
(ii) z,uhgh(-) is B, —(p, r)-invex at x" on s with respect to the same function 77, and with
h=1

respect to the function bg, not necessarily, equal to b.

Then x” is an optimal solution of (FP).

Proof: Suppose to the contrary that x” is not an optimal solution of (FP). Then there exists an X €S

such that
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1
— =T — E
SUp Ii (X’ y)+(X DX) - <

yeY

1
* *T *E
sup 1<)+ (<7 DX)

1
m (X, y) - (X EX)2 7 m (X, y)-(X" EX)?

We note that

1 1
* *T *5 * *T *E
sup = HOCYFOCTDX)? 1 (¢,5,) (<7 Dx)2

yeY

k

0!

1 1
m (¢, y) —(XTEX)? m (¢, 5,) - (T EX)?
for y, eY(X), i=12,.....s and

1

L (X, 5,)+ (X" DY)

| = N |-

< SUp Ii (Y, y)+(KT DK)Zl
m (X, y)-(X"Ex)2 7 m(X,y)-(X" EX)?

Thus, we have

1

— - T Nv)2
L (X,V,)+(X Dx)l < k,, for i=12,.....5

m, (X, ¥;) (X" EX)?

it follows that

(7)

From (1), (3), (5), (6) and (7), we obtain

Zslti* {li (X, V. )+XT Dw -k, (mi X, V. )_YT EV )}
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)

o-gefente oefon e |

1

sizsl:ti*{li (%, % )+(x DY)Z—kO(mi (X, ¥)—(x" Ex)

N

=% {li (X, )+x" DW_kO(mi 0.y )_(X*T EV))}

i=1

It follows that

iti* {Ii (X, V) + X Dw—k, (m, (%, ¥, )-X" EV )}

i=1

< Zl:t, {Ii (x*, y )+x*T DW—kO(mi ', y)-x" EV)} (8)

As Zt,* (li ¢(,¥)+O"'Dw—km (-, V. )-()" EV) is B-(p, r)-invex at x"on s with respect to 77

i=1

and b, we have
%b(x, x*){e{lzsl:t,* (Ii (x, V. )+xT DW—ko(mi (X, y,)—x" EV))}

i=1

z%{it: (VI (X, ;) + Dw—k, (Vm, (X', 3, ) - EV )} {epfﬂm —1}

i=1

holds for all XeS, and so for X=X . Using (10.8) and b (X, X' ) >0 together with the inequality

above, we get
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% {itf (VI (X, %))+ Dw—k, (Vm, (X, ;) - EV )} {epﬂ(m —1} <0

i1
(9)

From the feasibility of X together with ,u: >0, heH, we have

D 149,(X)<0 (10)
h=1

S
By Bg —(p, r) -invexity of z,u:gh(-) at x” on s with respect to the same function 77, and
h=1

with respect to the function bg, we have
Lo oot N () N (o SIS v 0 () e
“b, (R X) 1| D0, () - Y 0, () | -1p ==Y Vg, () e -1}
r h=1 h=1 P h=

Since (X, X')>0 for all XS then by (4) and (10), we obtain
1 D * * v v
= Vig,(<) {7 -1} <0 (11)
P

By adding the inequalities (9) and (11) we have

%{iti*(wi (X', %))+ Dw—k, (Vm, (X', 7, ) —EV )+ Zplvﬂﬁgh(x*) }

i=1
{epn(x, X) _1} <0,

Which contradicts (2). Hence the result.
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4. Duality Result:

In this section, we consider the following dual to (Fp).

(FD) max sup k

(5.1, V)ek (@) (8, 1ok, v, WheH, (5.1, 9)
where H, (s, t, ¥) denotes the set of all
(a, i, k,v,w)eR"xRFR, xR"R"
Satisfying
iti {Vli (@ ¥ )+Dw-k(Vm (a ¥, )- EV)+VZp:,uhgh(a)} =0
i=1 h=1
(12)

St {1, @ 5,)+a Dw—k(m, (a,7,)-a'EV)|20 (3]

i=1

P
> 1,9,(2) =0 (14)
h=1
(s,t,¥) ek(a) (15)
w' Dw<1 VTEV <1 (16)

If, for a triplet (S, t, ¥) ek(a), the set H, (s,t, ¥) =¢, then we define the supremum over

it to be —00. For convenience,

we let,
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¥, 0=t (¢ %)+ Dw—k (m (-, ¥%)-(" EV))
i=1
Let Sep denote a set of all feasible solutions of problem (FD). Moreover, let S1 denote
S, :{ae R" :(a, K, v, w, st Y) eSFD)}

Now we derive the following weak, strong and strict converse duality theorems.

Theorem 3 (Weak Duality):

Let x be a feasible solution of (p) and (a, 1K, v, w, s, t, 7) be a feasible of (FD). Let
(I)Zt; (Ii -,V )+ () Dw—k, (mi ¢(,¥)-()"EV )) is B-(p, r)-invex at a on SUS; with respect
i=1

p
to 17 and b satisfying b(X, a) >0, Z,uhgh(-) is B, — (P, )-invex at a on SUSy with respect to the
h=1

same function 77 and with respect to the function bg not necessarily, equal to b.

Then

1
2
—>k (17)
m, (X, y) = (X" Ex)?

sup 00 Y)+(C DY)

yeY

Proof: Suppose to the contrary that

1
T 2

sup 1OV +OTDR?
m (%, y) - (X Ex)?
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Then, we have
1 1
L (X, V,)+(x" Dx)? —k(mi (x,V, )—(xTEx)sto,forall y, €Y.
It follows from (10.5) that
1 1
t {Ii (X, ¥, )+ (x" Dx)? —k(mi (x,V, )—(xTEx)ZJ}<O (18)

with at least one strict inequality, since

From (1), (13), (16) and (18), we have

w,00= 3t {I, (¢, %)+ X Dw—k(m, (x, 5,) - XEV)}

i=1

i=1

<t {Ii (,3,)+ (DY)’ —k[mi (,5)- (€ Ex)i]}

<0§Zs:ti {Ii (a,y, )+aTDW—k(mi (a,y, )—aTEV)}

i=1
= \Pl (a)
Hence

Y (x) <, (a) (19)
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Since Zslti (li -,V )+()" Dw—k (mi (,¥)-0) EV)) is B-(p, r)-invex at a on SUS: with
i1

respect to 77 and b, we have

%b(x,a){ef 3% 1 (x,7,)+ X Dw—k(m (x,5,)-XEV)- 3t (I, (&, 7))

+aTDW—k(mi a,y, )—aTEV)]—l}

From (19) and b(x, a)>0 together with the inequality above,

We get

%{iti {Vli (@, V) +Dw- k(Vmi (a,V,)-EV )}} (epn(x,a) _1) <0

i1
(20)

Using the feasibility of x-together with 4 >0, he H, we obtain

p
D 14,9,(x) <0 (21)
h=1

From hypothesis (ii) we have

% bg (x,a) {er [iﬂh g, (X) - iﬂh gh(a)j|}

z% 3 Vi,0,(2) {670 —1)
h=1

-1

b, (X, @) = 0 then by (10.14) and (10.21), we obtain

1 ° \V4 pr (x,a) 1 <O
th_ll 14,0,(2) {€"*¥ -1} < (22)
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Thus, by (20) and (22), we obtain the inequality

i=1

%{iti (Vli (@ )+ Dw—k(Vm (a,¥) - EV))+Zp:Vyhgh(a)} {em0 -1} <0

which contradicts (12). Hence (17) holds.

Theorem 4 (Strong Duality):

Let x" be an optimal solution of (FP) and Vg, (x), he H(X") are linearly independent.
Then there exist (5,17, y)ek(x), and (X, i,k V,W)eH,(5,T,¥) such that
(X*, I, E, V,W,5S, t, y*) is a feasible solution of (FD) .Further the hypotheses of weak duality
theorem are satisfied for all feasible solutions (a,u,kK,Vv,w,s,t,y) of (FD), then
(X*,H, E, V,W,5S, t, )7*) is an optimal of (FD), and the two objectives have the same optimal

values.

Proof: If x" be an optimal solution of (FP) and Vg, (X'), he H(X) is linearly independent, then
by Theorem 1, there exist (s,t",y)ek(x) and (X', Kk, V,W)eH, (5, T,¥) such that
(X*, I, R, V,W,5S, t, )7*) is feasible for (FD) and problems (FP) and (FD) have the same objective
values and

1

. (x* T *T *)2
< _ L0 y)+(x* De)

1
m, (x*, ¥7) = (x*T Ex")?

The optimality of this feasible solution for (FD) thus follows from Theorem 3.
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Theorem 5 (Strict Converse Duality):

%

Let x* and (5, ﬁ,lz, V,w,5,1,y ) be the optimal solutions of (FP) and (FD), respectively,

and Vg, (X), heH(X) is linearly independent. Suppose that

Zs:t; (li (,¥,)+()" Dw— IZ(mi (,¥)-()"EV )) is strictly B-(p, r)-invex at a on SUS: with
i1

p
respect to 77 and b satisfying b(x, @) >0 for all X €S. Furthermore, assume that Zuhgh(-) is Bg-
h1

(p, r)-invex at a on SUS: with respect to the same function 77 and with respect to the function by,

but not necessarily, equal to the function b. Then X =3, thatis, @ is an optimal point in (FP) and

Proof: We shall assume that X # &, and reach a contradiction fom the strong duality theorm

(theorm 4) it follws that that is, @ is an optimal point in (FP) and

1
I (x*, V) +(x* Dx*)2
(X)) +( )1:K (23)

m, (x*, ¥7) = (x*" Ex")?

Sup

yeY

By feasibility of x” together with g4, >0, he H, we obtain

p
Zﬂhgh(X*)SO (24)
h=1
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p
By assumption, Z,uhgh (*) is Bg-(p, r)-invex at a on SUS; with respect to 1 and with respect
h=1

to the bg. Then, by Definition (12), there exists a function by such that bg (x,a)=>0 for all

Xes and aes, .Hence by (14) and (24).

%bg(X*’g) {e{zplﬂhgh()(*)zp:ﬂhgh(g):'} <0

1

Then, from Definition (10.2), we get

1 (oo
BZvﬂhgh(a){e (x',a)-1}<0 (25)
h=1

Therefore, by (10.25), we obtain the inequality

%{Zslti (V|i (@,vy,)+Dw- E(Vmi (a,y.)-EV ))} {epn(x*’ 3) _1} >0

As Ztl* (Ii (¥.)+()" Dw- IZ(mi -, V)-()"EV )) is strictly B-(p, r)-invex with respect to 77 b
i1

at @ on SUSi. Then, by definition of strictly B-(p, r)-invexity and from above inequality, it follows

that

%b(x*, a) x iti (|i (X, ¥, )+ X" Dw—k(m, (x", ¥, )—x*Ev))

i=1

- iti (I(a, y,)+a Dw-k(m (@, )—aTEV))—l >0

i=1

From the hypothesis b(X", @) >0, and the above inequality,
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We get
> (16,50 +x DW=k (m (¢,5,) -x"EV )

S

-3 (Ii (3 y,)+a Dw-k(m @y, )—aTEV))>o

i=1

Therefore, by (13),

i=1

Zs:ti (Ii (X', V,)+X Dw- IZ(mi x,y,)-x" EV)) >0

Sincet. 20, 1=12,..... s, therefore there exists i~ such that

L (X, ¥)+x Dw— I?(mi <, y)-x" EV) >0
Hence, we obtain the following inequality

1

*x g *T *\2
L0+ 07 DX
m, (x*, 7") - (x*" EX")?

which contradicts (23). Hence the result.
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