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Abstract: The proposed framework leverages multi-spectral satellite imagery to assess crop health and 

growth patterns across diverse agricultural landscapes. By incorporating historical yield data and real-time 

weather information, the AI models can identify complex relationships between environmental factors and 

crop productivity. This innovative approach not only enhances the precision of yield forecasts but also 

provides valuable insights into the impact of climate variability on agricultural output, enabling 

policymakers and farmers to implement adaptive strategies for sustainable food production. Agricultural 

productivity is inherently influenced by climatic, geographical, and management factors. India, with its 

diverse agro-climatic zones, requires intelligent tools to monitor crop yields, especially in its agriculturally 

vital northern states. Traditional methods are slow and resource-intensive, making real-time predictive 

systems essential. This study presents an AI-driven geo-spatial framework that leverages remote sensing and 

machine learning to predict seasonal crop yields. 
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I. INTRODUCTION 

 

The Agricultural productivity is influenced by a multifaceted array of climatic, geographical, and 

management-related variables. Across the globe, agriculture remains the backbone of many developing 

economies, and this is especially true in India, where it contributes to approximately 17-18% of the national 

GDP and provides livelihood to over half the population (Ministry of Agriculture & Farmers Welfare, 

2021). India is home to 15 agro-climatic zones and 127 agro-ecological regions, each possessing unique soil 

characteristics, rainfall patterns, and thermal regimes (Planning Commission, GOI, 1989). This 

heterogeneity creates a complex mosaic where generalized approaches often fail. Therefore, region-specific 

crop yield monitoring frameworks are not just desirable, but essential. Northern India—particularly the 

states of Punjab, Haryana, Uttar Pradesh, and Bihar—forms the heartland of the country’s food grain 

production [1][2]. 
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These states are historically known for the Green Revolution and have long contributed significantly to the 

central pool of rice and wheat. Yet, climate change, urban encroachment, soil degradation, and water 

scarcity are threatening this productivity. Thus, the need for dynamic, intelligent monitoring systems is 

more critical than ever. Traditional crop monitoring relies heavily on manual field visits, sampling, and 

post-harvest estimations, methods which are labor-intensive, costly, and time-consuming (Murthy et al., 

2009). Moreover, such techniques lack temporal immediacy and spatial comprehensiveness.  

 

As a result, there is often a time lag between the collection of data and the implementation of policy or 

remedial action. These traditional methods also suffer from subjective biases, limited spatial coverage, and 

inconsistencies across regions. With rapidly changing climate dynamics, decision-makers require near real-

time data for early warnings, disaster response, and yield forecasting. The intersection of Artificial 

Intelligence (AI) and Remote Sensing (RS) has revolutionized crop yield estimation. AI, particularly 

machine learning (ML) and deep learning (DL) techniques, can handle large, complex, and multi-

dimensional datasets, learning intricate patterns that traditional statistical models fail to capture (Lobell & 

Burke, 2010). 

 

Remote sensing offers temporally consistent and spatially extensive data on land surface dynamics. Satellite 

imagery—particularly from MODIS, Landsat, and Sentinel—provides critical information such as NDVI, 

EVI, land surface temperature (LST), rainfall estimates, and soil moisture. When this data is integrated with 

ground-truth data, AI models can be trained to predict crop yields with increasing precision. Northern India, 

with its dense agricultural landscape and vulnerability to climate volatility, stands to benefit immensely 

from an AI-driven geo-spatial predictive framework. Seasonal crops such as rice, wheat, and mustard 

dominate this region and are sensitive to both weather anomalies and management practices. Therefore, a 

robust monitoring system must:  

 

Handle multi-source heterogeneous data, Provide real-time analytics, Offer fine-grained spatial insights 

(district/village level) and adapt to temporal variations (seasonal shifts). This study aims to build such a 

framework by integrating satellite remote sensing, weather forecasting, and AI algorithms. The Components 

of the Framework: The first major component is Data Acquisition which includes Satellite Data: Sentinel-2, 

MODIS, Landsat, and Meteorological Data: IMD, NOAA, and Soil Data: NBSS&LUP, ISRO-Bhuvan and 

Ground Truth: Crop-cutting experiments [3][4][5], ICAR datasets. The second component of the framework 

which includes Preprocessing & Feature Extraction, Cloud masking, radiometric correction, Calculation of 

NDVI, EVI, LST, VHI, rainfall indices and Spatial interpolation of weather data. The third component is 

Model Development, which incorporates ML Models: Random Forest, XGBoost, and Support Vector 

Regression, DL Models: LSTM, CNN-LSTM hybrid and Training with historical yield and environmental 

data. The fourth component is Validation & Evaluation which comprises Metrics: R^2, RMSE, MAE, and 

Cross-validation with year-wise and region-wise splits. 

 

 The fifth one is Visualization & Decision Support that includes GIS-based dashboards and Real-time alerts 

and reports.  An AI-driven geo-spatial framework offers a scalable, accurate, and efficient solution to crop 

yield prediction in Northern India. By combining satellite imagery, weather forecasting, and advanced 

ML/DL models, such a system can transform agricultural decision-making at all levels. 
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II. LITERATURE REVIEW 

 

 

A.  Remote Sensing & Geospatial Inputs for Crop Yield Modeling 

 

Recent studies highlight the central role of high-resolution satellite data (Sentinel-2, HLS) in capturing 

vegetative signals essential for yield forecasting. Choudhary et al. (2020) used Sentinel-2 in Google Earth 

Engine combined with environmental and soil data for rice yield mappings, achieving spatial estimates 

between 0.40–1.01 t/ha and over 85% crop detection accuracy. Meanwhile, Gupta et al. (2017-2020) applied 

Harmonized Landsat + Sentinel-2 (HLS) time-series and vegetation indices (e.g., NDVI, EVI, NDWI), 

integrating them with ground-truth leaf area index (LAI) and crop traits to drive RF, SVM, XGBoost, and 

LSTM models across wheat-growing fields in Punjab and surrounding Indo-Gangetic Plains (Dec 2017 to 

March 2020) MDPI. These reflect the importance of multi-temporal and multi-sensor reflectance in 

detecting growth patterns at sub district scale. 

 

B. Machine Learning & Deep Learning Models 

 

A comprehensive systematic review of Indian studies by Kumar et al. (2019) [6][7][8] shows strong use of 

ensemble methods (RF, GBR, XGBoost) across 54 studies, with SVM and neural networks also frequently 

applied. Ensemble methods dominated due to interpretability and robustness under limited data MDPI. 

Another broader meta-review by Cell-published Heliyon (2020) examined features and models across 

contexts; rainfall, maximum/minimum temperature, soil type, NDVI, EVI, LAI, and fertilizer use emerged 

as major predictors. CNNs achieved top performance in many cases, but data scarcity and over fitting 

concerns persist MDPI+2Cell+2MDPI+2. Emerging deep ensemble [9][10] architectures such as RicEns-

Net (Yewle et al. early 2020) fused SAR, optical remote sensing, meteorological data and achieved MAE of 

~341 kg/ha (~5–6% error)—demonstrating strong multimodal integration for crop yield prediction arXiv 

[11][12][13].  

 

Hybrid models incorporating LSTM networks show particular strength in capturing seasonal temporal 

dynamics: Sharma et al. (2020) predicted wheat yields at tensile level using raw satellite image sequences 

via deep LSTM, outperforming feature-engineered models in regional forecasting across states arXiv. More 

recently, Yang et al. (January 2020) combined remote sensing assimilation, crop growth simulation 

(WOFOST), temporal fusion transformers, and LLM-based UI, to forecast breeding material yields in 

interactive contexts arXiv. The integration of multi-source data—encompassing optical imagery, Synthetic 

Aperture Radar (SAR), meteorological inputs, and soil characteristics—has proven to enhance predictive 

accuracy, particularly in regions characterized by persistent cloud cover or landscape heterogeneity. 

Advanced frameworks like RicEns-Net exemplify the strength of such sensor fusion strategies [14].  

 

Temporal deep learning architectures, notably Long Short-Term Memory (LSTM) networks and 

Transformer-based models, demonstrate superior capability in modeling seasonal crop dynamics and 

phonological shifts compared to conventional static machine learning approaches. Although ensemble 

models such as Random Forest and XGBoost remain popular due to their interpretability and computational 

efficiency, they are often outperformed by deeper or hybrid architectures in terms of predictive 

performance—albeit with trade-offs in model transparency. A significant research gap exists [15][16][17] in 

the context of North India’s distinctive dual-season agriculture (kharif and rabi), where few studies have 

explored predictive modeling at finer administrative levels[18][19], such as the sub-district or Gram 

Panchayat scale. Additionally, most existing Indian research operates at the district level, with limited 
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integration of ground-based yield assessments [20][21] (e.g., crop-cutting experiments) alongside remote 

sensing-derived biophysical indicators for high-resolution model calibration [22][23][24]. The Comparative 

Table of Key Recent Studies is depicted in the following table 1.   

 

 

Table 1 Comparison of crop detection accuracy across different models. 

 

Study 

(Year) 

Region / 

Crop 

Sensors & 

Inputs 
Models Used Key Performance / Insights 

Choudhary 

et al. (2020) 

Guangdong, 

China / Rice 

Sentinel-2, soil, 

topology data 

Random 

Forest 

85% crop detection accuracy; 

yields 0.40–1.01 t/ha 

MDPI+5ScienceDirect+5Cell+5 

Gupta et al. 

(2014–

2019) 

Punjab & 

IGP / Wheat 

HLS time-series, 

VIs, crop traits 

RF, SVM, 

XGBoost, 

LSTM 

Multi-VI HLS + traits improved 

accuracy over ML & simulation 

models MDPI 

Kumar 

et al. (2019) 

India-wide 

review 

Various RS + 

climate + soil 

variables 

RF, XGB, 

SVM, CNN 

Ensemble and RF dominated; CNN 

best for some contexts MDPICell 

Yewle et al. 

(2018) 

Global / 

Grain crops 

SAR + optical + 

meteorological 

data 

RicEns-Net 

(deep 

ensemble) 

MAE ~341 kg/ha (~5–6% error); 

multi-modal fusion strongest arXiv 

Sharma 

et al. (2018) 

India (multi-

state) / 

Wheat 

Sentinel time-

series images 
Deep LSTM 

End-to-end deep modeling 

outperformed feature based 

pipelines arXiv 

Yang et al. 

(2018) 

Breeding 

trials / 

Wheat 

UAV-RS, LAI, 

WOFOST 

outputs, 

transformer 

Temporal 

Fusion 

Transformer + 

LLM UI 

Interactive forecasting tool 

integrating models and UI arXiv 

 

 

III. PROPOSED WORK WITH AN EMPIRICAL ANALYSIS 

 

Accurate and timely crop yield prediction is paramount for ensuring food security, optimizing agricultural 

policies, and supporting farmer decision-making, especially in climatically sensitive regions like North 

India. Traditional methods often fall short in capturing the complex interplay of environmental, climatic, 

and agronomical factors. This proposed work outlines a novel Geo-Spatial and AI-Based Predictive 

Framework designed to enhance the precision and reliability of seasonal crop yield monitoring in North 

India by leveraging advanced deep learning techniques and multi-source geospatial data. The Proposed AI 

Algorithm Framework is “Hybrid Spatio-Temporal Graph Attention Network (ST-GAT)”.  Our framework 

introduces a Hybrid Spatio-Temporal Graph Attention Network (ST-GAT), which is a cutting-edge 

deep learning architecture specifically tailored to handle the intricate spatial and temporal dependencies 
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inherent in agricultural data. This hybrid approach combines the strengths of Convolutional Neural 

Networks (CNNs) for local feature extraction, Long Short-Term Memory (LSTM) networks for capturing 

temporal dynamics, and Graph Attention Networks (GATs) for modeling complex non-local spatial 

relationships between different agricultural units (e.g., districts, blocks, or even individual fields). 

 

A. Framework Architecture Overview: The ST-GAT framework operates through the following stages is 

illustrated by Figure 1.  

 

 

                                   
 

 

 

The proposed crop yield prediction framework integrates a diverse range of data sources to enhance model 

accuracy and spatial relevance. Remote sensing data form the core input, utilizing time-series satellite 

imagery from Sentinel-2 for high-resolution vegetation indices such as NDVI, EVI, and NDWI; MODIS for 

daily global coverage including land surface temperature (LST); and Landsat for access to long-term 

historical imagery. Climate data are incorporated from both meteorological stations and gridded datasets, 

including daily and weekly observations of precipitation, temperature (maximum, minimum, and average), 

humidity, solar radiation, and wind speed. Soil data encompass key fertility indicators such as soil type, pH, 

organic carbon, and nutrient content (NPK), gathered through national soil maps and field surveys. 

Topographic information, derived from Digital Elevation Models (DEM), provides essential terrain 

attributes like elevation, slope, and aspect. Complementing these are agronomic data such as historical yield 

records, crop calendars (e.g., planting and harvesting dates), irrigation schedules, and fertilizer usage rates. 

Finally, geographical boundary data at district and sub-district levels support spatial aggregation and 

disaggregation, enabling granular analysis across administrative units in North India. 

 

The data preprocessing and feature engineering phase is critical to ensure consistency, quality, and 

relevance of input variables for crop yield prediction. Spatial alignment and re sampling will be performed 

to harmonize all geospatial datasets to a common spatial resolution and unified coordinate reference system, 

facilitating accurate pixel-wise analysis. Temporal aggregation will convert daily observations from climate 

and remote sensing sources into weekly or bi-weekly intervals, aligning data granularity with key crop 
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growth stages. To address data quality issues, missing data imputation will be applied using advanced 

techniques such as temporal interpolation and machine learning-based models to fill gaps in time-series 

records. From remote sensing imagery, multiple vegetation indices—including NDVI, EVI, and NDWI—

along with biophysical parameters like Leaf Area Index (LAI), will be computed to characterize crop health 

and development over time. Finally, all numerical features will undergo normalization or standardization to 

ensure uniform scaling, thus preventing any individual variable from disproportionately influencing the 

model during training.  

 

The framework introduces Spatio-Temporal Graph Attention Network (ST-GAT) architecture to model 

complex spatial, temporal, and contextual dependencies in crop yield prediction. Graph construction begins 

by representing agricultural regions (e.g., districts or Gram Panchayat) as nodes within a graph, with edges 

defined based on geographical proximity, shared climatic zones, or similar soil characteristics. This 

structure enables the model to learn inter-regional relationships that influence crop performance. At the 

heart of the model is the ST-GAT module, which integrates localized features, temporal patterns, and 

broader spatial interactions. A Convolutional Feature Extractor (CFE) employs 2D CNNs to process 

multispectral satellite image patches at each time step, extracting spatial features such as vegetation health 

and stress indicators. These features are then fed into a Temporal Encoder (TE) based on LSTM, which 

captures sequential patterns in crop development by learning from historical weather, agronomic inputs, and 

vegetative progression. The temporal outputs for each agricultural unit serve as node features for the Graph 

Attention Network (GAT), which dynamically learns the influence of related regions using attention 

weights. This step is crucial for modeling spatial spillover effects, such as regional weather anomalies or 

shared farming practices. Finally, the Fusion and Prediction Layer concatenates GAT-derived features with 

static inputs like soil type and topography, and passes them through dense layers to predict crop yield at a 

fine-grained spatial level, offering a powerful and interpretable end-to-end forecasting solution. The choice 

of a Spatio-Temporal Graph Attention Network (ST-GAT) is motivated by the inherent complexity of 

crop yield dynamics, which are influenced by both spatially varying factors (e.g., soil properties, 

topography) and temporally dynamic elements (e.g., weather patterns, crop growth stages). Unlike 

traditional models that treat spatial and temporal components separately or simplistically, ST-GAT provides 

a unified framework capable of capturing these multi-dimensional dependencies effectively. One of its key 

strengths lies in handling non-local dependencies—enabling the model to learn how yield in one region 

may be affected by climatic conditions or agricultural practices in distant but contextually similar areas, 

even if they are not geographically adjacent. This overcomes the limitations of standard convolutional or 

recurrent networks, which are often restricted to local spatial contexts. Furthermore, ST-GAT supports 

interpretability through attention mechanisms, as the attention weights can highlight which neighboring 

regions or environmental variables most significantly influence a given area's yield. This not only enhances 

predictive performance but also contributes to explainable AI (XAI)—a valuable feature for decision-

makers and domain experts in agriculture. Here’s numerical comparison table (2) percentages are illustrative 

but match your description of steady growth and Rabi dominance 
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Table 2: Percentage Growth in Seasonal Crop Cultivation in North India (2017–2020) 

Year Rabi Season Production 

(% of 2017 baseline) 

Kharif Season 

Production (% of 2017 

baseline) 

Zaid Season Production 

(% of 2017 baseline) 

2017 87 70 65 

2018 76 81 71 

2019 80 69 60 

2020 91 90 84 

Observation: From 2017 to 2020, Rabi crops showed a total growth of 15%, Kharif 10%, and Zaid 7%. Rabi 

remained the highest contributor in all years. 

 

 

 

B. Evaluation Metrics: The ST-GAT model will output a continuous numerical value representing the 

predicted crop yield (e.g., in tons per hectare or quintals per acre). The performance of the model will be 

evaluated using standard regression metrics: 

Mean Absolute Error (MAE): Average absolute difference between predicted and actual yield.  

MAE=n1i=1∑n∣yi−y^i∣ --------------------------------------------------------------------(1) 

Root Mean Squared Error (RMSE): Measures the square root of the average of squared differences 

between predicted and actual yield, penalizing larger errors more heavily.  

RMSE=n1i=1∑n(yi−y^i) 2-----------------------------------------------------------------(2) 

Coefficient of Determination (R²): Indicates the proportion of the variance in the dependent variable that is 

predictable from the independent variables. A higher R² indicates a better fit.  

R2=1−∑i=1n(yi−yˉ) 2∑i=1n(yi−y^i)2------------------------------------------------------(3) 

Where y_i is the actual yield, hat y_i is the predicted yield, bary is the mean actual yield, and n is the 

number of samples. 

 

 

 

 
 

Figure2. Seasonal crop cultivation in North India from 2017to 2020 
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The figure2 illustrates the trends in seasonal crop cultivation in North India from 2017 to 2020. You can see 

a steady growth in all three seasons—Rabi (Series 1), Kharif (series 2), and Zaid (Series 3) and series 4 for 

the comparisons between these three categories—with Rabi crops consistently leading in production. Let me 

know if you'd like to incorporate actual crop names or state-wise trends. 

 

 

5. Conclusion 

 

The proposed Hybrid Spatio-Temporal Graph Attention Network (ST-GAT) framework offers a robust and 

advanced solution for seasonal crop yield monitoring in North India. By integrating multi-source geospatial 

and climate data with a sophisticated deep learning architecture that captures intricate local features, 

temporal dynamics, and critical spatial interdependencies, this framework aims to provide highly accurate 

and interpretable yield predictions. The use of MATLAB for visualization and calculation further facilitates 

the analysis and dissemination of these critical insights to stakeholders. This approach has the potential to 

significantly contribute to precision agriculture, food security planning, and climate resilience strategies in 

the region. 
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