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Abstract: Oblique stagnation point flow of a Casson nanofluid over a stretching surface is investigated under 

the influence of variable fluid properties.  The effect of variable fluid properties on the flow field is examined 

by taking a convective boundary condition into account. Momentum, energy and concentration equations are 

transformed into the non-linear ODE system through suitable similarity transformations and are solved 

analytically via Semi numerical Technique (OHAM). Effect of pertinent parameters on dimensionless 

velocity, temperature and concentration are depicted graphically.  
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Introduction: 

The study of stagnation point flow has attained remarkable importance by numerous investigators due to their 

valuable manufacturing processes and industrial applications such as polymer extrusion, continuous casting of 

metals, wire drawing, glass blowing, etc. Two-dimensional stagnation point flow was first studied by 

Hiemenz [1]. Later, Matunobu [2-3] investigated the time-dependent flow structure and the wall shear stress 

near the stagnation point. Tamada [4] extended the work of Hiemenz [1] by considering two-dimensional 

stagnation point flow of a viscous fluid impinging on a plane stationary wall obliquely whereas Niimi et al. 

[5] solved the same for the axisymmetric case. Further, Chaim [6] investigated the effects of stagnation point 

flows (taking into account both two dimensional and axisymmetric flow) impinging both normally and 

obliquely on the stretching sheet. In view of this Mahapatra and Gupta [7] have studied two-dimensional 

orthogonal stagnation point flow over a stretching sheet. On the other hand, Nazar et al. [8], Reza and Gupta 

[9] extended the work of Mahapatra and Gupta [7] by considering unsteady flow and oblique stagnation point 

flow respectively. Wu et al. [10] examined the stagnation point flow in a porous medium. Labropulu et al. 

[11] investigated boundary layer nonorthogonal stagnation point flow of a viscoelastic second-grade fluid 

over a stretching surface considering the thermal boundary layer into account. Further, Makinde [12] 

examined the hydromagnetic mixed convection stagnation point flow with thermal radiation past a vertical 

plate embedded in a porous media. Several others have worked extensively on stagnation flows such as 

Makinde et al [13], Khan et al [14], Ibrahim and Makinde [15], Makinde et al [16] and Nadeem et al. [17].  

 

In heat exchange forms, the convective boundary conditions assume a vital job, for instance in thermal 

combustion procedures, gas turbines, nuclear plants, and so forth. Convective boundary condition which is 

likewise called a Newton boundary condition is acquired from surface energy balance. Convective boundary 

condition corresponds to the existence of convection (heating/cooling) at the surface, which assumes that heat 

conduction at the surface of the material is equal to the heat convection at the surface in the same direction. In 
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perspective on this, numerous scientists have chipped away at convective boundary conditions [18– 21]. As of 

late, Ghaffari et al. [22] broadened the work of Labropulu et al. [11] by considering non-Newtonian nanofluid 

and convective boundary condition. Every one of these analysts has worked in the field of flow and heat 

transfer phenomena to be specific variable viscosity, variable thermal conductivity and variable diffusivity, 

which are essential for useful applications in innovative enterprises. The impact of these properties of the 

liquid can't be dismissed. Regardless, it is obvious from work by Prasad et al. [23] that the physical properties 

of the enveloping fluid may change with temperature, especially the fluid consistency and the fluid warm 

conductivity. For lubing up fluids, the heat created by the internal grinding and the relating climb in the 

temperature impacts the physical properties of the nanofluid, and the properties of the fluid are never again 

thought to be steady. The extension in temperature prompts a development in the vehicle ponders, in this way 

the heat trade at the divider is moreover affected. In this manner, to anticipate the flow and heat transfer rates, 

it is imperative to think about the variable liquid properties. Some increasingly significant writing is 

accessible in Refs. [24-28]. 

 

Motivated by the above research work, in the present paper, an investigation have been carried out to study 

the boundary layer oblique stagnation point flow of a Casson nanofluid in the presence of Newton boundary 

conditions. The convergence criteria of obtained solutions are built and exposed. The impact of important 

physical parameters such as liquid viscosity parameter, the Casson parameter, the constant ratio, the thermal 

conductivity parameter, variable species diffusivity parameter, the Prandtl number, thermophoresis parameter, 

the Brownian motion parameter, the Schmidt number and the Biot number on liquid velocity, temperature and 

concentration is examined graphically. The results are elaborated through graphs discussed their physical 

significance. 

 

 

 

 

Formulation of the Problem: 

A steady two-dimensional oblique flow of a viscous incompressible Casson nanofluid adjoining a stagnation 

point on a heated stretching sheet has been planned. The rheological equation of state for anisotropic and 
incompressible Casson fluid is given by (Ref. [29-30]) 
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where 
ij ije e   and 

ije is the  
th

,i j component of deformation rate,  is the product of component with itself, 

c is a critical value of this product based on the non-Newtonian model, B is the plastic dynamic viscosity of 

the non-Newtonian fluid and 
yP is the yield stress of the fluid. Let the heated surface be along 0y  , the 

origin O  is fixed at the stagnation point. Assume that the flow is confined to 0y  . Two equal and opposite 

forces are applied along -axisx  so as to stretch the sheet keeping the origin O  fixed. Further, it is anticipated 

that the stretching sheet has linear velocity wU cx and temperature wT T , where T  is the uniform 

temperature of the ambient fluid.  
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Fig. 1: Physical model of the problem 

In view of these assumptions, the governing equations for oblique stagnation point flow over a linearly 

stretching sheet with varying fluid properties (variation of fluid viscosity and fluid thermal conductivity with 

temperature) are written as 
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These partial differential equations (PDEs) are subjected to the following boundary conditions  
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Here, u and v are the velocity components along x and y directions, and p   are the constant fluid density 

and nanoparticles density, respectively, 
  is the Casson parameter, p is the pressure of the fluid, andT C are 

the temperature and concentration of the fluid, respectively, whereas andT C  represent their 

ambient values, is the fluid electrical conductivity, ( )T is the temperature dependent viscosity , ( )T is the 

temperature dependent thermal diffusivity and ( )BD C is the species diffusivity. In this investigation, the 

physical quantities ( )T , ( )T  and ( )BD C are taken in the following form  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

𝑦  

𝑧  𝑥  

Nanometer-sized metallic particles 

Stagnation point 

𝑂 

𝑇∞  , 𝐶∞  

𝑈∞   

𝐵0 𝑥    

−𝑘∞

𝜕𝑇 

𝜕𝑦 
 
𝑦 =0

= 𝜆  𝑇𝑓 − 𝑇  𝑦 = 0  , 𝐶𝑤  , 𝑈𝑤    

Nanofluid 

http://www.ijcrt.org/


www.ijcrt.org                                                   ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT2112396 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d789 
 

 
1 1

1 ,
( )

T T
T


 





                                                                                                             (7) 

 1( ) 1 ,
f

T T
T

T T
   





  
   

  
                                                                                                     (8) 

2( ) 1 ,B

w

C C
D C D

C C
 





  
   

   

                                                                                                (9) 

where 
,

and D are the ambient fluid viscosity, the thermal conductivity and the species diffusivity, 

respectively, 1 2and   are small parameters known as the variable thermal diffusivity and the variable species 

diffusion parameters,  , ,a b c are positive constants with dimensions of inverse time and  is the convective 

heat transfer coefficient. After introducing the following quantities 
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Eqs. (1) - (6) become  
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By making use of the stream function formulation     i.e., , v ,u y x      and seeking analytical 

solutions of the form ( , ) ( ) ( )x y xf y g y   , ( )T y and ( )C y , we obtain  
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It worth mentioning here that the functions ( )f y and ( )g y used above are referring to normal and tangential 

components of the nanofluid flow, whereas 1 2andC C are their corresponding integration constants. Moreover, 

the physical parameters Prandtl number ( Pr ), Thermophoresis parameter ( Nt ), Brownian motion parameter (
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Nb ), Biot number ( Bi ), and Schmidt number ( Sc ) are shown in Eqs. (17), (19), (20) and (21) are expressed 

as follows 
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Invoking the boundary conditions ( ) /f a c   and 1( )g     in Eqs. (17) and (18), we obtain 
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The quantities of physical interest are respectively the Skin friction coefficient fxC , the Nusselt number xNu

and the Sherwood number xSh , which are defined as 
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In dimensionless form these quantities become 
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Here, Rex is the local Reynolds number, where Rex wU x  . 

 

Semi-analytical solution:  
Optimal homotopy analysis method has been employed to solve the following nonlinear system of ODEs (For 

more details see Liao [31] and Van Gorder [32]) 
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with their appropriate boundary conditions boundary conditions  
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In accordance with the above boundary conditions, we assume the initial guess and linear operator as 
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Here, the linear operators
fL , hL , L and L verify the following properties  
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Here, 
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the thm order deformation equations are obtained as  

   

   

1 1

1 1

( ) ( ) ( )  ,  ( ) ( ) ( ) ,

( ) ( ) ( )  ,  ( ) ( ) ( ) ,

 

 

   

   

f h

f m m m f m h m m m h m

m m m m m m m m

L f y f y R y L h y h y R y

L y y R y L y y R y 

   

 

     
                               (38) 

in which 

(0) 0  ,  (0) 0  , (0) 0, (0) (0) 0 , (0) 0.

 ( ) 0 ,  ( ) 0 , ( ) 0 ,  ( ) 0 .

m m m m m m

m m m m

f f h

f h

  

 

      

        
                                               (39) 

In addition, the residual terms ( )f

mR y , ( )h

mR y , ( )mR y and ( )mR y are obtained by substituting the 

expressions of Eq. (37) in the set of differential equations described above by Eq. (32), where  

0    if    1,

1    if    1.
m

m

m



 


                                                                                                                   (40) 

Now we evaluate the error and minimize over , , ,f h    in order to obtain the optimal values of 

, , ,f h    and least possible error. At 
thm  order deformation equation, the exact residual errors are given 

by 

   

   

2 2

0 0 0 0

2 2

0 0 0 0

1 1
( ) ( )   ,  ( ) ( ) ,

1 1

1 1
( ) ( )   ,  ( ) ( ) .
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       

       

      
       

       

   

   

M m M m
f h

m f f n k m h h n k

k n k n

M m M m

m n k m n k

k n k n

E N f y E N h y
M M

E N y E N y
M M

 

    

            (41) 

Moreover, it is worth noting here that ( )f

m fE , ( )h

m hE , ( )mE 

 and ( )mE 

 are minimized to get the 

optimal values of f , h ,  and  , where ky k M and0 k M  . 

 

Results and Discussion 

 

The parameters affecting the stagnation point fluid flow, heat and mass transfer are fluid viscosity parameter

r , the Casson parameter    the constanta c , the thermal conductivity parameter
1 , variable species 

diffusivity parameter
2 , the Prandtl number Pr , thermophoresis parameter Nt , the Brownian motion 

parameter Nb , the Schmidt number Sc  and the Biot number . Results are presented through graphs (Figs. 3-
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8). It is seen that the profiles of ( )f y , ( )h y , ( )y  and ( )y tends asymptotically to zero. The impact of a c   

on ( )f y , ( )h y , ( )y and ( )y is depicted in Fig. 3(a-d).  

 

It is clear from Fig. 3(a) that '( )f y  increases for increasing values of a c  . For 1a c   the flow has boundary 

layer structure and thickness of this boundary layer decreases for increasing values of a c  . This is due to the 

fact that for a fixed value of c , as a  increases, the strain at the stagnation point also increases, which in turn 

accelerates the free stream and hence the boundary layer thickness decreases. Moreover, 1a c  implies that 

stretching velocity cx  of the sheet surpasses the stagnation velocity ax . Hence, the flow has an inverted 

boundary layer structure. 

 

 Fig 3(b) portrays the influence of a c  on ( )h y , for 1a c  , the profile of ( )h y  initially increases for 

increasing values of a/c later at a certain point after 1y   the flow gets reversed. Exactly the opposite trend is 

observed when 1a c  . From Fig 3(c-d), it is clear that both temperature and concentration profiles decline 

with the rise in a c . Fig. 4(a-d) shows the impact of  and r    on ( )f y , ( )h y , ( )y and ( )y . It is obvious 

from Fig. 4(a) that the profile of '( )f   decreases for larger values of r . This is credited to the fact that the 

fluid viscosity depends inversely on the temperature difference between the wall and the ambient fluid. So, 

there is a collapse in the momentum boundary layer thickness. On the other hand, the reverse impression is 

observed on temperature and concentration boundary layer thicknesses (see Fig. 4(c-d)). There is a dual effect 

of r on ( )h y (recorded in Fig. 4(b)), the transverse velocity increases near the plate and as one moves away 

from the plate the velocity decreases. The effect of 
 
is to decrease the momentum boundary layer thickness 

and is due to the fact that as Casson parameter approaches larger values, fluid behaves like a Newtonian fluid. 

Physically, an increase in  means  as  , a decrease in the yield stress is recorded and hence decreasing 

pattern of velocity profiles is seen, whereas the reverse trend is observed in case of temperature and 

concentration profiles (see Fig. 4(a-d)).  

 

The impact of Brownian motion parameter Nb  and the Thermophoresis parameter on the temperature and 

concentration profiles are depicted in Fig 5(a-b). With the increase of values of Nb , more and more heat is 

transferred and hence there is an enhancement in the thermal boundary layer thickness and in turn temperature 

profile upsurges. On the other hand, the reverse phenomenon is seen for the concentration profile. 

Thermophoresis force gets enhanced with Nt , which results in the augmentation of concentration boundary 

layer thickness and concentration profile. In this case, the nanoparticles move away from the hot sheet 

towards the ambient fluid. Hence, the same trend is observed in both the profiles, namely temperature as well 

as concentration.  (see Fig 5(a-b)).  
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Fig.3(a):Axial velocity profile for different values of a/c with Pr = 1,

     Sc = 1, Nt = 0.1, Nb = 0.1, 

 = 0.1, 


 = 0.1, 

r
 = -5,  = 2,  = 0.5.

a/c = 1.4, 1.6, 1.7

a/c = 0.1, 0.2, 0.3
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Fig.3(b):Transverse velocity profile for different values of a/c with Pr = 1,

              Sc = 1, Nt = 0.1, Nb = 0.1, 

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Fig.3(c):Temperature profile for different values of a/c with Pr = 1,

    Sc = 1, Nt = 0.1, Nb = 0.1, 

 = 0.1, 


 = 0.1, 

r
 = -5,  = 2,  = 0.5.

a/c = 1.8, 1.6, 1.4, 0.3, 0.2, 0.1, 0
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Fig.3(d):Concentration profile for different values of a/c with Pr = 1,

       Sc = 1, Nt = 0.1, Nb = 0.1, 

 = 0.1, 


 = 0.1, 

r
 = -5,  = 2,  = 0.5.

a/c = 1.8, 1.6, 1.4, 0.3, 0.2, 0.1, 0
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Fig.4(a):Axial velocity profile for different values of 
r
 and  with Sc = 1, 

               Nt = 0.1, Nb = 0.1, 
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 = 0.1, Pr = 1, a/c = 0, 
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 = 0.1,  = 0.5.
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Fig.4(c):Temperature profile for different values of 
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 and  with Sc = 1,
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Fig.4(d):Concentration profile for different values of 
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Fig.5(a):Temperature profile for different values of Nt and Nb with Sc = 1, 

               

 = 0.1,  = 2, 
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 = -5, Pr = 1, a/c = 0.01, 
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 = 0.1,  = 0.5.

y

(y)

Nb = 0.5, 1

 

 

 

 Nt = 0.5,  Nt = 1,  Nt = 1.5

 

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Fig.5(b):Concentration profile for different values of Nt and Nb with Sc = 1, 
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Conclusion: 

Analysis of oblique stagnation point flow of Casson nanofluid over a stretching sheet in the presence of 

variable fluid properties has been carried out. Obtained nonlinear partial differential equations (PDEs) are 

converted to dimensionless nonlinear ordinary differential equations (ODEs) via similarity transformations 

and are solved using Optimal Homotopy Analysis Method (OHAM). Following are some interesting 

conclusions:  

 Axial velocity decreases with an increase in the variable viscosity parameter
r  and the Casson 

parameter    whereas, it increases for increasing values of a c  . On the other hand, the dual effect of 

variable viscosity parameter
r and a c is observed on transverse velocity. 

 Thermal boundary layer thickness enhances for increasing values of variable viscosity parameter
r , 

Casson parameter  , thermal conductivity parameter
1 , thermophoresis parameter Nt , Brownian 

motion parameter Nb and Biot number . On the contrary, the constanta c and Prandtl number Pr

decrease the thermal boundary layer thickness. 

 Influence of variable viscosity parameter
r , Casson parameter   , thermophoresis parameter Nt  and 

variable species diffusivity parameter
2 is to

 
enhance the concentration boundary layer thickness and 

the reverse trend is observed for the constant a c , the Brownian motion parameter Nb and the Schmidt 

number Sc . 

  

 

References  

 

[1]. K. Hiemenz, Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten 

geraden Kreiszylinder, Dinglers Polytech. J. 326 (1911) 321–324. 

[2]. Y. Matunobu, Structure of pulsatile Hiemenz flow and temporal variation of wall shear stress near the 

stagnation point. I, J. Phys. Soc. Japan. 42 (1977) 2041–2049. 

[3]. Y. Matunobu, Structure of pulsatile Hiemenz flow and temporal variation of wall shear stress near the 

stagnation point. II, J. Phys. Soc. Japan. 43 (1977) 326–329. 

[4]. K. Tamada, Two-dimensional stagnation-point flow impinging obliquely on a plane wall, J. Phys. Soc. 

Japan. 46 (1979) 310–311. 

[5]. H. Niimi, M. Minamiyama, S. Hanai, Steady axisymmetrical stagnation-point flow impinging 

obliquely on a wall, J. Phys. Soc. Japan. 50 (1981) 17–18. 

[6]. T. Chiam, Stagnation-point flow towards a stretching plate, J. Phys. Soc. Japan. 63 (1994) 2443–2444. 

[7]. T.R. Mahapatra, A.S. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat 

http://www.ijcrt.org/


www.ijcrt.org                                                   ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT2112396 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d799 
 

Mass Transf. 38 (2002) 517–521. 

[8]. R. Nazar, N. Amin, D. Filip, I. Pop, Unsteady boundary layer flow in the region of the stagnation point 

on a stretching sheet, Int. J. Eng. Sci. 42 (2004) 1241–1253. 

[9]. M. Reza, A.S. Gupta, Steady two-dimensional oblique stagnation-point flow towards a stretching 

surface, Fluid Dyn. Res. 37 (2005) 334. 

[10]. Q. Wu, S. Weinbaum, Y. Andreopoulos, Stagnation-point flows in a porous medium,       Chem. Eng. 

Sci. 60 (2005) 123–134. 

[11]. F. Labropulu, D. Li, I. Pop, Non-orthogonal stagnation-point flow towards a stretching surface in a 

non-Newtonian fluid with heat transfer, Int. J. Therm. Sci. 49 (2010) 1042–1050. 

[12]. O. D. Makinde, Heat and mass transfer by MHD mixed convection stagnation point flow toward a 

vertical plate embedded in a highly porous medium with radiation and internal heat 

generation. Meccanica,  47 (2012) 1173-1184. 

[13]. O. D. Makinde, W. A. Khan, Z. H. Khan, Buoyancy effects on MHD stagnation point flow and heat 

transfer of a nanofluid past a convectively heated stretching/shrinking sheet. International Journal of 

Heat and Mass Transfer 62 (2013), 526-533. 

[14].  W. A. Khan, O. D. Makinde, Z. H.  Khan, Non-aligned MHD stagnation point flow of variable 

viscosity nanofluids past a stretching sheet with radiative heat. International Journal of Heat and Mass 

Transfer, 96 (2016) 525-534. 

[15]. W. Ibrahim, O.D.Makinde, Magnetohydrodynamic stagnation point flow of a power-law nanofluid 

towards a convectively heated stretching sheet with slip. Proceedings of the Institution of Mechanical 

Engineers, Part E: Journal of Process Mechanical Engineering, 230(5), (2016), 345-354. 

[16].  O.D. Makinde, W.A. Khan, Z.H. Khan, Stagnation point flow of MHD chemically reacting nanofluid 

over a stretching convective surface with slip and radiative heat. Proceedings of the Institution of 

Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 231(4) (2017) 695–703. 

[17]. S. Nadeem, R. Mehmood, N.S. Akbar, Optimized analytical solution for oblique flow of a Casson-

nano fluid with convective boundary conditions, Int. J. Therm. Sci. 78 (2014) 90–100. 

[18]. A. Ishak, Similarity solutions for flow and heat transfer over a permeable surface with convective 

http://www.ijcrt.org/


www.ijcrt.org                                                   ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT2112396 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d800 
 

boundary condition, Appl. Math. Comput. 217 (2010) 837–842. 

[19]. P.O. Olanrewaju, O.T. Arulogun, K. Adebimpe, Internal heat generation effect on thermal boundary 

layer with a convective surface boundary condition, Am. J. Fluid Dyn. 2 (2012) 1–4. 

[20]. S. Yao, T. Fang, Y. Zhong, Heat transfer of a generalized stretching/shrinking wall problem with 

convective boundary conditions, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 752–760. 

[21]. A. Aziz, A similarity solution for laminar thermal boundary layer over a flat plate with a convective 

surface boundary condition, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 1064–1068. 

[22]. A. Ghaffari, T. Javed, F. Labropulu, Oblique stagnation point flow of a non-Newtonian nanofluid over 

stretching surface with radiation: A numerical study, Therm. Sci. 21 (2017) 2139–2153. 

[23]. K. V. Prasad, K. Vajravelu, H. Vaidya, M.M. Rashidi, Z.B. Neelufer, Flow and Heat Transfer of a 

Casson Liquid over a Vertical Stretching Surface: Optimal Solution, Am. J. Heat Mass Transf. 5 

(2018) 1–22. 

[24]. K. Vajravelu, K. V. Prasad, H. Vaidya, Influence of Hall Current on MHD Flow and Heat Transfer 

over a slender stretching sheet in the presence of variable fluid properties, Commun. Numer. Anal. 

2016 (2016) 17–36. 

[25]. K.V. Prasad, H. Vaidya, K. Vajravelu, P.S. Datti, V. Umesh, Axisymmetric mixed convective MHD 

flow over a slender cylinder in the presence of chemically reaction, Int. J. Appl. Mech. Eng. 21 (2016) 

121–141. 

[26]. K. V Prasad, H. Vaidya, K. Vajravelu, M.M. Rashidi, Effects of Variable Fluid Properties on MHD 

Flow and Heat Transfer over a Stretching Sheet with Variable Thickness, J. Mech. 33 (2017) 501–512. 

[27]. K. V. Prasad, K. Vajravelu, H. Vaidya, B.T. Raju, Heat Transfer in a Non-Newtonian Nanofluid film 

Over a Stretching Surface, Journal of Nanofluids. 4 (2015) 536-547.  

[28]. K. Vajravelu, K. V. Prasad, H. Vaidya, Influence of Hall Current on MHD flow and Heat transfer 

Over a Slender Stretching sheet in the Presence of Variable Fluid Properties, J. Communications in 

Numerical Analysis. 1 (2016) 17-36. 

[29]. K.V. Prasad  K. Vajravelu, I.S. Shivakumara, Hanumesh Vaidya and Neelufer .Z. Basha, Flow and 

Heat Transfer of a Casson Nanofluid Over a Nonlinear Stretching Sheet, Journal of nanofluids, 

http://www.ijcrt.org/
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=Cefo-EcAAAAJ&sortby=pubdate&citation_for_view=Cefo-EcAAAAJ:Mojj43d5GZwC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=Cefo-EcAAAAJ&sortby=pubdate&citation_for_view=Cefo-EcAAAAJ:Mojj43d5GZwC


www.ijcrt.org                                                   ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT2112396 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d801 
 

American Scientific Publishers, Vol. 5, 743-752 (2016). 

[30]. K.V. Prasad, K. Vajravelu, H. Vaidya, Neelufer Z. Basha and V. Umesh, Thermal and species 

diffusion of MHD Casson fluid at a vertical sheet in the presence variable fluid properties, accepted for 

publication in Ain Sham Engineering Journal, Elsevier, http://dx.doi.org/10.1016/j.asej.2016.08.017. 

[31]. S. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations, 

Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 2003–2016. 

[32]. R.A. Van Gorder, Optimal homotopy analysis and control of error for implicitly defined fully 

nonlinear differential equations, Numer. Algorithms. (2018) 1–16. doi:10.1007/s11075-018-0540-0. 

http://www.ijcrt.org/
http://dx.doi.org/10.1016/j.asej.2016.08.017

