IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

ASSESSMENT OF MECHANICAL PROPERTIES OF CONCRETE STRENGTH **USING COPPER SLAG**

¹B. NASREEN,

¹M.Tech Student, Dept. of Civil Engineering, Annamacharya Institute of Technology & Sciences, Utukur(Post), Chinthakomma Dinne(V&M), Kadapa, YSR (Dist) Andhra Pradesh - 516 003

²Dr. P. SRI CHANDANA,

² Professor, Dept. of Civil Engineering, Annamacharya Institute of Technology & Sciences, Utukur(Post), Chinthakomma Dinne(V&M), Kadapa, YSR (Dist) Andhra Pradesh - 516 003

ABSTRACT:

Concrete is widely used in all types of infrastructural applications because it offers considerable strength at a relatively low cost. The popularity of the concrete is due to the fact, that from the common ingredients, it is possible to tailor the properties of concrete to meet the demands of any particular situation. Concrete is an Artificial Stone resulting from hardening of rationally chosen mixture of cement, fine aggregate, coarse aggregate and water.

The advances in concrete technology have paved the way to make the best use of locally available materials by judicious mix proportioning to produce concrete satisfying the performance requirements. This concrete is the most widely used construction material in the world, with about two Billion tons of utilization worldwide during each year.

Natural Sand available from River beds, pits etc., was readily used as fine aggregate in all types concrete mixes. Due to rapid urbanization, there is a huge demand / requirement of natural sand (as fine aggregate) for the construction industry, thereby natural resources of sand was getting depleted day by day, have brought pressures to reduce consumption through the use of supplementary materials. The sustainable development in the construction industry involves the use of non-conventional and innovative materials and recycling of waste materials in order to compensate the lack of natural resources and to find alternative ways for conserving the environment.

Copper slag (by-product material produced during the process of manufacturing Copper), is one of the waste material which could have a promising future in construction industry as partial substitute of fine aggregate in concrete mixes. Hence an attempt has made to study the Compressive Strength, Split tensile Strength and Flexural Strength of concrete using different proportions of Copper Slag in concrete mixes to finalize the optimum % of mix which can yield better strength properties. The results presented in this thesis, form part of an investigation on the use of Copper slag as partial substitute/ replacement for natural sand as fine aggregate in concrete.

I. INTRODUCTION

At present scenario, as a result of continuous growth in population, rapid industrialization and the accompanying technologies involving waste disposal, the amount of discharge of pollutants into the atmosphere. Copper scum is one in all the economic wastes, that comes out from furnace throughout metal extraction method. it's created as a byproduct of metallurgic operations in reverberatory furnaces. The uses of copper scum in the cement and concrete provides a potential environmental in addition as economic edges for all connected industries Due to rapid urbanization, the huge requirement of fine aggregate i.e., natural sand for the production of concrete in construction industry, which led to the continuous mining of natural sand from river beds. These results in lot of environmental issues like lowering of water table, erosion of nearby lands, increased pollution, etc..

Thus, our project is to utilize the copper scoria by the replacement for fine mixture for maintaining the economy and increasing the strength of concrete. By this project, we will conjointly solve the matter of disposal of this sort of business waste. Different types of slag according to the property can be utilized in different purposes.

Composition of Concrete

- Ordinary Portland Cement (OPC)
- Aggregates
- Sand
- Water
- Copper Slag

NEED FOR PRESENT WORK

The demand for natural sand is quite high in developing countries since the available sand is not able to meet the demands of construction sector, because natural sand takes millions of years to form and it is not replenishable. Due to continuous dragging of the sand from watercourse beds reduces the water head, results in less percolation of rain water in to the bottom. This results in lower H₂O level, which ends in deficiency of beverage. Hence there's associate degree imperative have to be compelled to establish an acceptable substitute for natural sand, that ought to be eco-friendly and cheap. On the opposite hand, massive quantities of dross created as a byproduct of scientific discipline operations, leading to environmental considerations with its disposal. Hence, there's a raised have to be compelled to explore the chance of utilization of business waste materials in creating concrete. this can cause the property concrete style and greener surroundings.

OBJECTIVES

- To study the mechanical properties of concrete of M40 grade, replacement of natural sand with copper slag with totally different proportions.
- To check the mechanical properties of concrete which incorporates compressive and split lastingness at seven days and twenty eight days of solidification.

II. LITERATURE REVIEW

Some of the studies were represented below.

R. R. Chavan & D.B. kulkarni (2013) conducted the experimental investigations to study the effect of using copper slag as are placement of fine aggregate on the strength properties and concluded that the Maximum Compressive strength increased by 55% at 40% replacement of fine aggregate by copper slag and flexural strength increased by 14% for 40% replacement.

Al-Jabri KS et al, studied the impact of Copper dross substitutions as fine sand on the strength and sturdiness of HSC. Concrete mixtures with completely different proportions of Copper dross (ranging from third to 100% replacement) were ready and Concrete samples were tested to assess the properties of concrete made at different solidifying ages. The results showed that workability hyperbolic considerably with rise of Copper dross content within concrete mixture thanks to the tide absorption and glassey surface of Copper dross compared with natural sand.

Najimi et al (2011) investigated the performance of copper dross in concrete in sulfate answer. Associate in Nursing investigation which is experimental on growth measurements, compressive strength degradation and small structural analysis were conducted in sulfate answer on concretes by exchange third, 5%, 100 percent and 15 August 1945 of cement with copper dross waste. The results of this study stressed the effectiveness of copper dross in rising the concrete resistance against sulfate attack.

III. EXPERIMENTAL INVESTIGATION

MATERIALS

The materials used for the present study are cement, fine aggregate(Natural sand), coarse aggregate, Copper Slag and water. The materials were testing and casting according to the IS code specifications. The materials used for casting were discussed below in detail.

- 1. OPC (ordinary Portland cement)-53 grade
- 2. Coarse aggregate of size 20mm
- 3. Natural sand
- Copper Slag 4.
- Water

1. OPC (ordinary Portland cement)

Cement could be a fine mineral powder factory-made with terribly precise processes. Mixed with water, this powder transforms into a paste that binds and hardens once submerged in water. as a result of the composition and the fineness of the powder might vary, cement has completely different properties relying upon its makeup. Cement is the main component of concrete. It's highly economical and high-quality construction material which is used in construction projects worldwide. The Cement selected for this experimental work is the Ordinary Portland Cement of 53-Grade (Ultra-Tech Brand). This brand of cement is most widely used in the construction industry in India. The Physical properties of the cement i.e., initial setting and final setting times, Specific gravity, fineness and consistency has to be checked, before conducting the Mixdesign.

Methods of physical tests for hydraulic cement.

Table 1: Physical properties of ordinary Portland cement

S.	Property	Test	Test	IS
no		Methods	Results	Standards
1	Normal	Vicat	30%	
1	consistenc	apparatus		
	У	(IS:4031		
		Part-4)		
2	Specific	Specific	2.9	
	gravity	gravity		
		bottle		
		(IS:4031		
		Part-4)		
3	Fineness	Sieve test		7.33%
		on sieve		
		no.9		
		(IS:4031		
		Part-4)		
4	Initial	Vicat	7	Not less
	setting	Apparatu	minutes	than 5
	time	S		minutes
	Final	(IS:4031	590	Not more
	setting	Part-5)	minutes	than 600
	time			minutes

2. Coarse aggregate

In the present study, locally available Coarse aggregate of size 20mm was used. The Specific gravity, Sieve analysis and Fineness Modulus have to be checked.

Table 2:Physical properties of coarse aggregates

S. No	PROPERTY	METHOD	TEST RESULTS
1	Specific gravity	Pycnometer (IS:2386 Part 3-1986)	2.75
2	Water Absorption	(IS:2386 Part 3-1963)	0.5%

3. Fine Aggregate - Natural sand

Locally available natural sand was used. Its Specific gravity, Sieve analysis and Fineness Modulus need to be checked. The Sieve analysis has to be conducted to classify the sand belonging to which Zone (I to IV), as per IS 383:1970. As sand grading becomes progressively finer, the grading changes from Zone-I to IV.

Table 3: Observations for sieve analysis

Size	Wt. of sand retaine	Percentage of sand retained (%)	Cumulative percentage of sand retained	Cumulati ve percentag e of sand
	(gms)	(70)	(%)	passed (%)
4.75mm	3	0.3	0.3	99.7
2mm	46	4.6	4.9	95.1
1mm	393	39.3	44.2	55.8
600 microns	301	30	74.2	25.8
300 microns	231	23	97.2	2.8
150 microns	23	2.3	99.5	0.5
Pan	0	0	99.5	0.5

4. 4 Fine Aggregate – Copper Slag:

The analysis of the Copper dross needs to be conducted, to see its Chemical composition. at the same time the tests to see the Physical properties of the Copper dross i.e. relative density, Sieve analysis and Fineness modulus needs to be conducted.

Table4: SIEVE ANALYSIS OF COPPER SLAG:

SIEVE SIZE (mm)	RANGE (%)
4.00 to +3.00	2 to 4
3 to+2.36	3 to 12
2.36 to +1	40 to 50
1 to +0.5	15 to 30
0.5 to +0.212	6 to 12
0.212 below	0.2 to 1.0

6. Water

Water with PH value of 7 should be used for this project work.

MIX PROPORTION

Mix Design For M40 Grade Of Concrete

Procedure for Mix Design for M40 Grade Concrete

The design procedure for Concrete mix of M40 grade as per IS 10262-2009

Table 5: Design stipulations

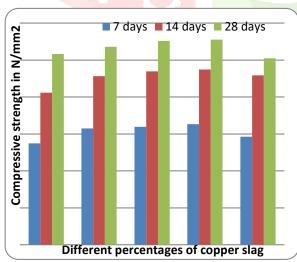
Design of grade	M40
Type of cement	OPC 53 grade
Type of comone	(PENNA
	CEMENT)
Minimum cement content	320 kg m ³
William Cement Content	320 kg III
Maximum cement content	450 kg m ³
TAXAMINI COME OF THE STATE OF T	130 kg m
Type of coarse aggregate	Crushed angular
Type of course aggregate	aggregate
	aggregate
Maximum nominal size of	20mm
aggregate	
Type of fine aggregate	Natural sand
Maximum water cement	0.40
ratio	
Workability	100 mm slump
T	G
Exposure condition	Severe
Dagrae of supervision	Good
Degree of supervision	Joou
Type of replaced fine	Copper Slag
aggregate	copper bing
aggregate	
	l .

Test Data For Materials

Tests conducted for materials used in Concrete i.e., specific gravity, water absorption and surface moisture content were conducted and the outcomes are tabulated below.

Table 6: Test data for the materials

Specific gravity of cement	2.9
Normal Consistency of cement	30%
Specific gravity of coarse aggregate	2.75
Water absorption of coarse aggregate	0.5%


Mix proportions

Water	Cement	Fine	Coarse
		aggregate	aggregate
174ltrs	438 kgs	631 kgs	1087 kgs
0.40	1	1.4	2.48

IV. EXPERIMENTAL RESULTS AND **DISCUSSION**

EXPERIMENTAL RESULTS

Load bearing capacity

The load bearing capability of a replaced copper scum cubes bit by bit increasing because the share of copper scum in concrete is accumulated. By the graph shown below, we are able to see that the strength of concrete cubes begin increasing from four-hundredth to hour replacement. At 60% replacement the strength of concrete is most. As pictured within the graph, the strength is reducing because the share of copper scum is accumulated over hour. therefore the hour replacement of fine mixture within the concrete production will be done.

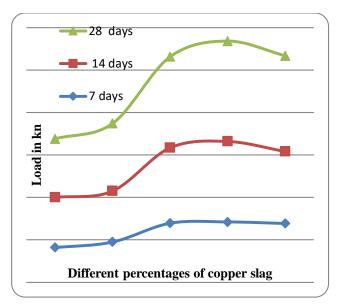


Fig 1: Graph of Load Bearing Capacity of Cubes

Results Of Compressive Strength Of Concrete Using 0-60% Of Copper Slag At 7-Days, 14-Days And 28-Days

%Replacement	M-25 Grade Concrete Mix		
of sand with			
copper slag	7-days	14-days	28-days
0%	27.44	41.16	51.63
20%	31.49	45.67	53.61
40%	31.91	46.91	55.17
50%	32.63	47.41	55.51
60%	29.26	45.85	50.46

Fig 2: comparison of compressive strength at different percentages of copper slag

Results Of Flexural Strength Of Concrete Using 0- 60% Of Copper Slag At 7-Days, 14-Days And 28-Days:

M-25 Grade Concrete Mix		
7-days	14-days	28-days
20.15	27.33	33.11
5.78	25	43.11
29.7	38.2	46.8
24	32	39
21.26	32.5	38.22
	7-days 20.15 5.78 29.7 24	7-days 14-days 20.15 27.33 5.78 25 29.7 38.2 24 32

Results Of Split Tensile Strength Of Concrete Using 0-60% Of Copper Slag At 7-Days, 14-Days And 28-Days:

%Replacem ent of sand	M-25 Grade Concrete Mix			
with copper	7-days	14-day	vs 28-	
slag		days		
0%	1.22	2.35	3.35	
20%	2.35	3.67	4.01	
40%	2.55	3.56	4.19	
50%	1.85	2.67	3.96	
60%	2.00	3.5	4.00	

V. CONCLUSIONS

From the on top of result, it is all over that we tend to area unit planning to use the copper dross as an alternate of fine combination, the value of concrete production are going to be reduced and strength of hr replaced copper dross concrete are going to be raised to doubly the plain concrete strength.

Based on the experimental investigations carried out, the following conclusions were drawn:

- The behavior of Copper scum looks to be like stream Sand, for its use as fine mixture (partially or in blending) in Concrete mixes.
- Addition to the Copper dross (having higher Density) in Concrete will increase the density, thereby the selfweight of Concrete, (by concerning four.5% for five hundredth replacement).
- The results showed that the workability of Concrete exaggerated well with increase of Copper dross content within the concrete mixture thanks to the tide absorption, coarser (in nature than sand) and also the glassy surface of Copper dross, thereby the Strength properties additionally improved.
- The Compressive Strength of Concrete is such as the management confusion to five hundredth of Copper dross substitution, however they decrease with an extra increase in Copper dross contents (due to the rise of free water content within the mix). The early Compressive Strength of Concrete was not adversely affected by Copper Slag addition up to the proportion
- Compressive Strength and Flexural Strength of Copper dross admixture Concrete, exaggerated because of high toughness of Copper dross.
- Replacement of Copper dross as fine mixture in concrete mixes, reduces the value of concrete production.
- The results showed that copper dross utilized in concrete, strength will increase 2 hundredth to hr then when it starts decreases.

SCOPE FOR THE FUTURE WORK

- Further analysis work is required to explore the result of Copper dross as fine mixture on the sturdiness properties of concrete, at aggressive atmosphere locations on coastal belt.
- As Copper dross contains quite five hundredth of the metallic element content, it's necessary to search out corrosion properties of Concrete having Copper dross (as partial replacement of fine aggregate).
- To investigate the performance of High Strength Concrete victimisation Copper dross as fine mixture with Super plasticizer.

REFERENCES

- Akihiko, Y. and Takashi, Y. "Study of utilisation of copper slag as fine aggregate for concrete Kogyo Da", Ashikaya igaku Kenkyu Shuroku, Vol. 23, pp. 79-85,
- Al-Jabri, K. and Makoto Hisada. "Copper slag as sand replacement for high performance concrete", Cement & Concrete Composites, Vol. 31, pp. 483-488, 2009.
- Al-Jabri, K., Taha, R. and Al-Ghassani, M. "Use of copper slag and cement by-pass dust as cementitious materials" Cement, Concrete Aggregates, Vol. 24, No.1,pp. 7-12, 2005.
- Al-Jabri, K.S., Abdullah, H., Al-Saidy and Ramzi Taha. "Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete", Construction and Building Materials, Vol. 25, pp. 933-938, 2011.
- Al-Jabri, K.S., Taha, R.A., Al-Hashmi, A. and Al-Harthy, A.S. "Effect of copper slag an-8d cement bypass dust addition on mechanical properties of concrete", Construction and building materials, Vol. 20, pp. 322-331, 2006.
- Alpa, I. and Deveci, H. "Utilization of flotation wastes of copper slag as raw material in cement production", Journal of hazard materials, Vol. 159, No. 2, pp. 390 395, 2008.
- Al-Jabri, K.S., Makoto Hisada, Abdulla, H.A. and Aloraini, S.K. "Performance of high strength concrete made with copper slag as a fine aggregate", Construction and building materials, Vol.23, pp. 2132-2140, 2009.
- Arino, A.M. and Mobasher, B. "Effect of copper slag on the strength, and toughness of cementitious mixtures", ACI Materials Journal, Vol. 96, No. 1, pp. 68-75, 1999.
- ASTM C-1202-09--Standard test method for electrical indication of concrete's ability to resist chloride ion penetration: Annual Book of ASTM standards (Philadelphia) 192
- ASTM C642-97, Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken (PA): ASTM International, 1997.
- ASTM C-876-09, Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. Annual Book of ASTM standards (Philadelphia).
- ASTM D5233-1995d, Standard Test Method for Single Batch Extraction Method for Wastes: ASTM International, 1992.

- Al-Karni, and Abdulhafiz Awad Alshenawy, "Modeling of Stress- Strain Curves of Drained Triaxial Test on Sand", American Journal of Applied Sciences, Vol. 3, No. 11, pp. 2108-2113, 2006.
- Ayano Toshiki, Kuramoto Osamu, and Sakata Kenji, "Concrete with copper slag fine aggregate", Society of Materials Science, Vol. 49, pp. 1097-1102, 2000.
- Ayano, T. and Sakata, K. "Durability of concrete with copper slag fine aggregate", Proceedings of the fifth ACI international conference on durability of concrete, Vol.192, pp.141-158, 2000.
- Ayano, T., Kuramoto, O. and Sakata, K. "Concrete with copper slag as fine aggregate", Jounal of Society Material Science Japan, Vol. 49, No. 10, pp. 1097-1102, 2000.
- Behnood, A. "Effects of high temperatures on highstrength concrete incorporating copper aggregates", Proceedings of seventh international symposium on high performance concrete, pp. 1063-1075, 2005.
- Bipra Gorai, Jana, R. K. and Premchand, "Characteristics and utilisation of copper slag-a review", Resources, Conservation and Recycling, Vol. 39, No. 4, pp. 299-313, 2002.
- Biswas, A.K. and Davenport, W.G. "Extractive metallurgy of copper", Pergamon Press, pp.518, 2002.
- Biswas, A.K. and Davenport, W.G. "Extractive metallurgy of copper", Pergamo Press, p. 518, 2002.193.

