
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c739

TRACKING AND ANALYSING THE

VARIATIONS IN THE WEATHER

PHENOMENA BY UTILIZING TREE

ANDDIFFUSION-BASED PROCESSOR

REALLOCATION STRATEGY
1Author: B Rebecca, Research scholar-CSE department at Sri Satya Sai University

of Technology & Medical Sciences

2Author: Dr. Pankaj Kawadkar, Professor at CSE department at Sri Satya Sai

University of Technology & Medical Sciences

ABSTRACT

Earth is a living, breathing planet that changes on a regular basis. Weather patterns and events play a

significant role in this development. While these patterns and occurrences are required for our planet to

remain habitable, they may also wreak significant damage and cost billions of dollars in repair and rescue

attempts. Weather phenomena are natural events caused by one or more of the following: the water cycle,

pressure systems, and the Coriolis effect. Precipitation, wind, and heat are frequently involved or related to

them. The main aim of this study is tracking and analysing the variations in the weather phenomena by utilizing

tree-based diffusion-based processor reallocation strategy. We devised ways for efficiently partitioning and

repartitioning the nests among the processors in this paper. We look at an application of tracking numerous

ordered cloud clusters in tropical weather systems as a case study. To discover such clouds, we first present a

parallel data analysis approach. We created a tree-based hierarchical diffusion method that reallocates

processors for the nests at a lower cost of redistribution. We do this via a novel tree restructuring method. We

demonstrate that our approach has a lower redistribution cost and 53 percent fewer hop-bytes than a

processor reallocation solution that ignores existing processor allocation.Fortran90 programming language

have been used for implementation of algorithm.

KEYWORDS – Weather phenomenon, Tree based, Redistribution; processor reallocation; data analysis; cloud

tracking etc.

1. INTRODUCTION

Wind, cloud, rain, snow, fog, and dust storms are all

prevalent meteorological phenomena on Earth.

Natural disasters such as tornadoes, hurricanes,

typhoons, and ice storms are less common. Weather

is caused by changes in air pressure, temperature,

and moisture from one location to another.

Events in Weather phenomenon

 Blizzard

 Cloud

 Dust Devils

 Fog

 Frost

 Haboob

 Hailstorm

 Heat Wave

 Hurricane

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c740

 Lightning

 Rain

 Rainbow

 Snow

 Thunderstorm

 Tornado

Weather forecasting is primarily concerned with

predicting weather conditions for a specific time in

the future. Weather forecasts are essential for

predicting the weather in the future. Weather

forecasting can be done in a variety of ways, ranging

from simple sky observation to extremely

complicated computerised mathematical models.

Weather forecasting is necessary for a variety of

applications. Climate monitoring, drought detection,

severe weather prediction, agricultural and

production, energy industry planning, aviation

industry planning, communication, pollution

dispersal, and so on are only a few of them. When it

comes to military operations, there is a long history

of occasions where weather conditions have changed

the outcome of conflicts. Due to the dynamic nature

of the atmosphere, accurate weather forecasting is

challenging. Some variables can be used to indicate

the weather at any given time. One discovered that

the most significant factors are being chosen to be

involved in the prediction process.

Weather simulations are essential for weather

forecasting. PCs have been assuming an imperative

part in weather forecasting since the initiation of

weather displaying. A weather model is a scientific

portrayal of the air forms in view of physical,

biological and chemical standards. The physical

procedures are portrayed by standard and halfway

differential conditions, which are understood

numerically utilizing techniques like finite-contrast

approximations. Different meteorological

associations around the globe create local to-

worldwide scale weather models to understand the

logical premise of weather phenomena, potential

effects of environmental change and choices for

mitigation. Weather models that can predict disasters

ahead of time can save lives and save damage. Fast

variations in rare weather occurrences have recently

been observed, owing to advancements in

barometrical synthesis, and are capable of impacting

the earth's surface atmosphere.

2. LITERATURE REVIEW

Xiaoqiang Liu, et al (2021) - The limitation of the

classic FAO-56 Penman–Monteith technique, which

requires complete meteorological input data, must be

addressed to increase the accuracy of predicting

reference crop evapotranspiration for effective water

resource management and optimal irrigation

scheduling design. The impacts of applying five data

splitting procedures and three distinct input dataset

time periods on predicting ET0 are investigated in

this study. To achieve this goal, the random forest

(RF) and extreme gradient boosting (XGB) models

were used, together with a K-fold cross-validation

strategy.

C. Lennard, and G. Hegerl, (2015) - They devised

a supervised technique called SOM for analysing

surface rainfall in conjunction with synoptic

circulation. It was investigated for two types of

stations in South Africa's distinct rainfall zones.

These synoptic circulations were identified as mid-

latitude-based cyclones in the winter and summer,

but no circulations were linked to rainfall in the

spring and autumn. The capacity of SOMs to match

the synoptic movers of observed rainfall records is

evaluated in this work, which effectively downscales

large-scale synopses data to an accurate resolute

reaction of the surface.

Piyush Kapoor (2013) - The fluctuation in

historical weather circumstances must be used to

anticipate future weather conditions. It's extremely

unlikely that the weather on the day in question will

be identical to the same day the prior year. However,

the chances of it matching within the next fortnight

of the prior year are extremely high. As a result, for

the previous year's fortnight, a sliding window of the

size of a week is chosen. Every week of the sliding

window is then compared to the week of the current

year. The approach's findings revealed that the

method for forecasting meteorological conditions is

quite effective, with an average accuracy of 92.2

percent.

Malakar, P., et al (2012) -High-fidelity compute

demanding simulations of several finer regions of

interest within a large simulation domain are

required for accurate and timely prediction of

meteorological phenomena such as hurricanes and

flash floods. Due to their sub-linear scalability,

current weather apps run these stacked models

sequentially utilising all available CPUs, which is

inefficient. We offer a method for running several

nested domain simulations in parallel, based on

http://www.ijcrt.org/
https://www.researchgate.net/scientific-contributions/Xiaoqiang-Liu-2195397283

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c741

partitioning the 2-D processor grid into distinct

rectangular sections for each domain. On torus

interconnects, we offer a novel mix of performance

prediction, processor allocation algorithms, and

topology-aware region mapping.

PreetiMalakar, et al (2011) - Critical weather

applications like as cyclone tracking require online

remote visualisation and steering for effective and

timely analysis by a geographically dispersed

climate scientist community. A steering framework

for controlling high-performance simulations of

critical weather events must take into account both

the scientists' steering inputs as well as the

application's criticality requirements, such as a

minimum simulation progress rate and continuous

visualisation of significant events. We created an

integrated user-driven and automated steering

framework for simulations, online remote viewing,

and analysis for crucial weather applications in this

research. This gives the user control over a variety of

application parameters, such as the region of interest,

simulation resolution, and data frequency for

visualisation.

3. PROPOSED METHODOLOGY

3.1 Parallel Data to Find Organized Cloud

Clusters

We will describe an approach for parallel data

processing of simulation output in this part. To

detect tall clouds in tropical weather systems, the

technique examines the cloud water mixing ratio

(QCLOUD) and outgoing long wave radiation

(OLR) in WRF simulation output. Cumulonimbus

clouds are the name given to these types of clouds.

They extend vertically from 1 km to more than 10

km above the surface. The amount of liquid water in

a cloud is measured by QCLOUD. In general, high

QCLOUD values equate to lofty clouds. The

infrared radiation at the top of the atmosphere is

known as OLR. Low OLR patterns suggest the

presence of organised cloud systems (such as

tropical depressions and cyclones), which would be

characterised by tall cumulonimbus clouds. The use

of OLR and QCLOUD together improves the

detection of such systems and eliminates the

identification of solitary cumulonimbus (as

QCLOUD alone would). We set the highest limit for

OLR at 200.Each WRF process produces output for

its subdomain and saves it to a split file. As seen in

Algorithm 1, these split files are evaluated in

parallel. This algorithm creates small clusters that

are contiguous, non-overlapping, and do not expand

out of control. It is easy and quick, making it ideal

for online analysis. Let P be the number of processes

that run WRF and N represent the number of

processes that examine the QCLOUD values in the

split files. The split files are fed into the algorithm as

input {F1, F2, · · · , FP }. The N processes are given

these split files to work with. k files (lines 1–2) are

analysed by each of the N processes. S is a subset of

files in which |S| = k, as a rectangle subset is chosen

of (Px, Py), where Px·Py = P In WRF, this is the

rectangular process decomposition. As a result, P is

split into N rectangular subsets.If the outgoing long

wave radiation OLR 200 (lines 4–9), the value of

QCLOUD at each grid point in each split file is

aggregated. The olrfraction, or the fraction of grid

points that meet the above requirements, is

determined (lines 7–8). All N processes send the

aggregated QCLOUD values, one value per file, to a

root process, rank 0 in our example. Each process

will send a maximum of k values. It's worth noting

that some of the split files may lack areas with

OLR≤ 200, in which case the process that owns

them will submit fewer than k values. The

aggregated QCLOUD values and the olr fraction

values are gathered by the root process (line 11).The

remainder of the procedure is only run on the root

process. To begin, the non-increasing order of the

aggregated QCLOUD values acquired from the split

files is sorted (line 13). Multiple split files processed

by multiple processes can be spanned by a

contiguous region with heavy cloud cover. We use a

variation of closest neighbour clustering (NNC) to

create a contiguous region (line 14). NNC generates

a collection of clusters, each of which contains a

contiguous zone of high cloud cover. Each cluster is

surrounded by a rectangle (lines 16–19), which

serves as a nest for fine-resolution simulations in

WRF.

Nearest Neighbour Clustering: Algorithm 2 shows

the pseudo code for the NNC algorithm. It takes the

sorted list of QCLOUD values, qcloudinfo, as an

input. Each qcloudinfo element is a tuple of

aggregate QCLOUD values for a split file and the

fraction of the split file with OLR≤200. The cloud

cover for a subdomain is represented by the

QCLOUD value of each element in the list. This

algorithm uses the spatial position of a subdomain,

i.e. the latitude and longitude extents of a

subdomain, to determine proximity between two

subdomains.The method loops through each element

of the qcloudinfo input array (lines 2–20). Line 3

determines whether the total QCLOUD value and

the fraction of the subdomain with OLR ≤200

exceed a threshold, which in our case is 0.005. This

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c742

eliminates the need to analyse smaller cloud-covered

regions with a low QCLOUD score. Clusters are

constructed depending on element proximity (lines

4–18). Each cluster depicts a large area of dense

cloud cover. If an element is 1-hop or 2-hop away

from an existing cluster, it is added to it. The list of

clusters is initially empty. First, we look to see if the

current element is within one hop of any other

element in an existing cluster (lines 6–9). If this isn't

the case, we look to see if the element is two hops

distant from any other element in an existing cluster

(lines 10–13).

Algorithm 1: Parallel Data Analysis (PDA) algorithm

The DISTANCE function is used to calculate

proximity in lines 6 and 10. If true, the

element is added to the list. If an element is

within a hop distance of a member, it is

included to the cluster list iff it does not

deviate the QCLOUD mean by more than a

threshold (30% in our example) (lines 23–29).

This assures a low standard deviation for a

cluster of contiguous cloud regions and also

aids in regulating the size of an existing

cluster.A new cluster new-list is created if an

element is not within two hops of any other

element in any of the existing clusters. element

is added to new-list, which is then added to the

clusters collection. Clusters (16–18 lines).

Clusters is a set of clusters produced by NNC

that represents different contiguous regions of

cloud cover.

Algorithm 2: Nearest Neighbour Clustering (NNC) algorithm

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c743

The parallel data analysis technique runs on a

distinct group of processors from the

processors that operate the WRF simulation.

As a result, PDA execution has no bearing on

WRF execution times. Because the analysis of

QCLOUD values in each split file is the most

time-consuming phase in Algorithm 1, it is

done in parallel. Experiments demonstrate that

for most of the time steps, the number of items

acquired at the root process is less than 200 for

a maximum of 1024 split files. The sequential

NNC algorithm (Algorithm 2) clusters such

few values in less than a second. Parallel

clustering would have been excessive for

online analysis in this situation. In the future,

we'd like to parallelize the NNC algorithm for

simulations with a larger number of

processors.

3.2 Processor Allocation

PDA is an algorithm for computing a

collection of regions of interest (ROI) in a

domain, which in our case are the places with

a high amount of cloud cover. Simulations are

spawned over the regions of interest in nested

fashion. We mimic these nests at high

resolutions in order to get greater precision. In

these layered simulations, the resolutions are

three times higher than those of the parent

simulation. We made changes to the WRF

code to allow us to generate nests on the go

without having to halt the simulation. The

initial data for nested domains is interpolated

from the data for the parent domain.

It has been demonstrated that by running the

nests on different subsets of the total number

of processors, P, considerable performance

increases can be realised, P. In order to

calculate the size of the subset of processors

for a nest and their position in the processor

grid, we employ performance modelling and a

Huffman tree-based technique, which are both

implemented in Java processor grid 𝑃𝑥 ×

𝑃𝑦 where 𝑃𝑥. 𝑃𝑦 = P. Based on the size and

aspect ratio of the nests, the performance

model is utilised to anticipate the execution

times. The initial processor allocation for each

nested domain is determined using the

Huffman tree-based technique.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c744

(a) Huffman tree for 5 nests with execution time ratios 0.1 : 0.1 : 0.2 : 0.25 : 0.35

(b) Sub-division of the processor grid 𝑃𝑥 × 𝑃𝑦 for the 5 nests.

Figure 1: Illustration of processor allocation for nests.

Figure 1 shows an example of processor

allocation for five nests. Assume the ratios of

the nests' projected execution times are 0.1:

0.1: 0.2: 0.25: 0.35. As shown in Figure 1,

these ratios are used as weights in the

construction of the Huffman tree (a). Figure 1

depicts the relevant processor sub-grid for

each nest (b). The five sub-rectangles

represent the number of processors used to run

each of the nests. Table 1 shows the start rank

of each processor sub-grid for this example

setup, which is the rank of the processor in the

north-west corner of the sub-rectangle, as well

as the rectangular dimensions of each

processor sub-grid for a maximum of 1024

cores.

Table 1: Processor Allocation on 1024 Cores

Nest ID Start Rank Processor sub-grid

1 0 13 × 8

2 256 13 × 8

3 512 13 × 16

4 13 19 × 13

5 429 19 × 19

In succeeding time steps, the regions of

interest may persist or vanish. The regions

with a lot of cloud cover are the ones we're

interested in. Clouds can build and dissipate

over a long period of time. The PDA technique

is used to find areas of interest (ROI) in the

output of the current simulation time step on a

regular basis (every 2 minutes). When a new

ROI is discovered, a nest is created. When

PDA fails to output an existing ROI, the nest is

removed. A retained nest is one that has been

output by PDA both in the previous and

current invocations. Nest insertion, deletion,

and retention alter the Huffman tree topology

and, as a result, the processor allocation. As a

result, the newly allocated set of processors

(receivers) for a retained nest may differ from

the previously allotted set of processors

(senders). The data from the nest domain must

be distributed to the receivers by the senders.

To carry out this redistribution, we updated the

WRF code. After calculating the quantity of

data to be redistributed based on the nest size,

MPI_Alltoallv is used to redistribute data for

each nest. During the MPI_Alltoallv for that

nest, processors that are neither senders nor

receivers send and receive 0 value.

Figure 2:Data is redistributed from an old set of processors to a new set of processors assigned

to a nest

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c745

Figure 2 shows an example for a nest size of 𝑁𝑥 ×

𝑁𝑦. As indicated in the left grid, a nest is equally

distributed across its allocated processors 0 to 15.

As illustrated in the right grid of the picture, these

processors send the nest data to the newly allocated

processors 16 – 19. It can be seen that processor 16

now owns the part of the nest domain that was

previously held by 0, 1, 4, and 5. As a result, 16

receives domain data from 0, 1, 4, and 5. In this

scenario, the other receivers similarly receive data

from four senders.The senders and receivers in the

preceding example are nonintersecting sets. The

cost of data redistribution between senders and

receivers can be reduced if the senders and

receivers are in close proximity. The redistribution

cost in torus networks can be reduced by reducing

the number of hops between senders and recipients.

 Partition from scratch

We segment the entire process grid in this method

𝑃𝑥 × 𝑃𝑦as mentioned in the preceding section, for

processor allocation based on Huffman tree formed

using the projected execution times of the nests as

weights The tree is built without taking into account

the current processor allocation. As a result of this

method, there may be no overlap between senders

and recipients, resulting in higher redistribution

costs.

(a) Huffman tree for nests 3, 5, 6 with execution times in ratios of 0.27 : 0.42 : 0.31.

(b) Sub-division of the processor grid 𝑃𝑥 × 𝑃𝑦 for 3 nests.

Figure 3:Using a partition from scratch to allocate processors to nests

Take, for example, the configuration shown in

Figure 1. Assume that PDA outputs the nests

3, 5, and 6 as regions of interest at the next

invocation. As a result, nests 1, 2, and 4 will

be removed, and a new nest, nest 6, will be

created. The expected execution times of the

nests 3, 5, and 6 should be 0.27: 0.42: 0.31.

Figure 3 depicts the matching Huffman tree as

well as the processor partition. Table 2 shows

the start rank and rectangular dimensions of

each processor sub-grid for each nest with a

maximum of 1024 cores. We can see that there

is no overlap between senders and recipients

when we compare the previous and new

allocations for nests 3 and 5 in Tables 1 and 2.

This may raise the cost of redistribution.

Table 2: Processor Allocation On 1024 Cores

Nest ID Start Rank Processor sub-grid

3 13 19 × 13

5 0 13 × 32

6 429 19 × 19

The cost of redistribution with this strategy may be

substantial in some circumstances. Due to the tree's

creation in order of increasing weights, the

rectangular divisions based on the Huffman tree are

as square-like as possible. The nests' execution

times are reduced by the square like partitions.

 Tree-based hierarchical diffusion

We try to maximise the overlap between the

senders and receivers of the retained nests using

this method. The main concept is to move the

boundaries of rectangular partitions for the retained

nests so that data is distributed across neighbouring

processes and the overlap between old and new nest

data is maximised. This reduces the cost of

redistribution, particularly on torus networks.

Figure 4 shows an illustration of this. The present

processor partitioning for nests 1, 2, and 3 is shown

in Figure 4(a). Existing partitions are resized when

a new nest is added. As illustrated in Figure 4, the

right boundary of rectangle for nest 1 is shifted to

the left, while the left boundaries of nests 2 and 3

are relocated to the right, freeing up some

processors for inserting the new nest (b). As a

result, the old and new processor partitions for nests

1, 2, and 3 have a lot of overlap.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c746

(a) Existing (b) new processor

Figure 4:Processor allocation in the hierarchical diffusion approach.

Rather than creating the Huffman tree from

start, this repartitioning method works by

changing the tree that corresponds to the

present allocation. In the tree, the orientations

of the nodes relating to the maintained nests

are preserved. Because the weights represent

the ratios of the multiple processors that will

execute each nest, the weights of the old

nodes, i.e., the retained nests, may be adjusted.

The processor shares of current nests may

change as new nests are added and/or old nests

are eliminated.

When there is no deletion and simply insertion

of new nodes, the new nodes are inserted near

existing nodes with weights that are similar to

the new nodes. We try to get rectangular

partitions for the nests that are more square-

like by inserting a new node near a node in the

Huffman tree with equal weight. Inserting a

new node near a node with a big weight

differential, on the other hand, will result in

skewed rectangles. As a result, square-like

partitions result in shorter nest execution

times, whereas skewed rectangular partitions

result in longer nest execution durations.

(a) Existing trees in the hierarchical diffusion approach (b) new trees in the hierarchical

diffusion approach

Figure 5: The weights at the leaf nodes are the predicted execution time ratios of the nests

This is demonstrated in Figure 4 as an

example. Figure 5 depicts the current and new

trees corresponding to the processor partitions

of Figure 4. Node 4 is inserted near node 1 to

create the new tree in Figure 5(b). This is

because node 4's weight is the closest to that of

node 1's new weight. The size of each node's

partition is proportional to its weight. Thus,

the nodes 1 and 4 get
3

7

𝑡ℎ
𝑎𝑛𝑑

4

7

𝑡ℎ
the number

of processors assigned to their parent node

Because the weight differences between nodes

1 and 4 are smaller, the resulting rectangles for

1 and 4 will be as square as possible. This

would not have been the case if node 4 had

been placed near node 2, which has a weight

of 0.15. This is due to the fact that the shares

for 4 and 2 would have been
0.4

0.55
=

8

11
 𝑎𝑛𝑑

0.15

0.55
=

3

11
.Due to the substantial

discrepancy in weights, the rectangle for node

2 would not have been square. Figure 6 shows

how this works. Rectangle 2 appears to be

warped when compared to rectangle 4.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c747

Figure 6: Skewed rectangle Due to the substantial weight differential between the two nodes

When nests are both inserted and deleted from

the tree, the nodes corresponding to the deleted

nests are removed. Furthermore, new nodes

are placed in the sites of removed nests to

preserve as much as possible the positions of

the retained nests. This may increase the

likelihood of existing and new nest processor

allocations for the retained nests overlapping.

Algorithm 3 describes the algorithm for

changing the existing tree for fresh processor

allocation. The current tree oldtree, the deleted

node list deletednodes, the updated weights of

the retained nests rweights, and the weights of

the new nodes nweights are used as inputs.

The updated tree newtree is the result.

Algorithm 3: Tree-based hierarchical diffusion algorithm

To begin, deleted nodes in old tree are designated

as free and added to the set free nodes (lines 2–6).

These nodes' siblings are added to the set of

siblings (line 5). These will be utilised as insertion

places later. The weights of the nodes that are kept

are changed (lines 7–9). The weights of internal

nodes are updated based on the deletion and

alteration of weights of maintained nodes (line 10).

In the positions of the deleted nodes (lines 11–17),

new weights are added. As previously stated, new

nodes should be placed near those with the closest

weights. As a result, we look at the weights of the

deleted nodes' siblings. The existing tree structure

will be minimally modified when a new node is

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c748

inserted in lieu of a removed node. Line 13

demonstrates this. A new weight is added to the

position of the node, which was previously

indicated as empty. The weight of a node is chosen

so that the gap between the weight of its sibling

sibnode and the new weight is as small as possible.

Lines 14–15 remove node and sibnode from their

respective sets.

The operation in line 13 is only performed when the

set free nodes contain multiple nodes. Because we

build a Huffman tree using the remaining

unmatched weights in nweights when the frequency

of deletions is fewer than the number of insertions,

and this subtree is rooted at the position of the last

element in free nodes. Lines 18–20 demonstrate

this. We destroy the remaining nodes of freenodes

if there are more insertions than deletions (line 21).

The new tree is created from the updated old tree.

When compared to the partition from scratch

method, this methodology reduces data transit

between senders and receivers, resulting in a

considerable reduction in redistribution time. This

is because we try to arrange receivers in such a way

that there is a lot of overlap between senders and

receivers, and the receivers are senders' neighbours.

(a) Deleted nodes marked empty and weights of retained nests modified. (b) Node 6 inserted

near node 5

(c) Remaining deleted nodes removed (d) Sub-division of the processor grid based on the

modified tree.

Figure 7: Delete nests 1, 2, 4, keep nests 3, 5, and add a new nest 6 using the tree-based

hierarchical diffusion technique.

Figure 7 shows the processor allocation for the case

in Figure 1 using a tree-based hierarchical diffusion

approach. Let us assume the same output of PDA

that was considered in Figure 3 to compare with the

partition from scratch strategy. Nests 1, 2, and 4

have been removed; nests 3 and 5 have been kept,

and nest 6 has been added as a new zone of interest.

Figure 7(a) depicts the tree after nodes 1, 2, and 4

have been eliminated and the weights of nodes 3

and 5 have been changed. Because the two free

rectangles represented by deleted nodes 1, 2 can be

regarded one free rectangle, they have been

concatenated as one empty node. As a result, there

are two free spaces for inserting new node 6 - one

sibling node has a weight of 0.27, while the other

has a weight of 0.42. Because 0.31-0.27 <0.42-

0.31, i.e., the weight of node 3 is closer to that of

node 6, node 6 is inserted in the position of sibling

of node 3. Figure 7 depicts the rectangular division

based on this tree (d). When comparing this to the

partitioning produced using the partitioning from

scratch method (shown in Figure 3(b), we can see

that there is a lot of overlap between the old and

new set of processors for nests 3 and 5, but the

partitioning from scratch method has no overlap.

Also, because we aim to keep the placements of

retained nests as intact as possible, the rectangles

for 3 and 5 spread to neighbouring processes.

Note that with this method, the changed tree may

no longer be a Huffman tree. The changes,

however, cause some overlap between new and old

processors, as well as redistribution among

neighbouring processes. Our methods can handle a

huge number of processors. With a bigger overall

processor count, the maximum number of hops

between the old and new set of processors is

expected to grow for the scratch approach. As a

result, the scratch method's data redistribution time

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c749

may grow as the number of processors increases.

The number of nests determines how many

processors are reallocated via Huffman tree

building or reorganisation, which is unaffected by

an increase in processor count.

 Dynamic Strategy

The variations in performance between the two

techniques, namely the partition from scratch

method and our diffusion-based method, are

determined by the execution times of the generated

partitions as well as the redistribution costs. In both

the partition from scratch approach and our

diffusion-based method, the execution time ratios

of the nests, and hence the percentage of total

number of processors allotted to the nests, are the

same. The rectangular grids and aspect ratios of the

rectangles for same nest configuration may not be

precisely the same due to integral sides of the sub-

rectangles. One way might allocate 16×18 whereas

the other might allocate 17× 17. As a result, the

execution times of the nests for the two techniques

may differ slightly.

Similarly, while we expect our diffusion-based

method to have lower redistribution costs than the

partition from scratch method, there may be

circumstances where the redistribution costs are

almost the same in both methods. This is because

both methods rely on tree construction with weights

based on the ratios of predicted execution times of

nests. The weights' relative order influences the

tree's construction and, as a result, the rectangular

processor grid given to the nests. Identical relative

weights of those nests that remain between

reconfigurations could lead to similar trees for both

techniques, and hence similar redistribution costs.

As a result, we present a dynamic method that

chooses the approach that takes the least amount of

redistribution and execution time. To do so, we

must forecast both of these times.

 Performance model for redistribution

time:MPI_Alltoallv between the processors

is the most important component of the

redistribution time. In mesh and torus-

based networks, we assume a direct

MPI_Alltoallv method between the

processors. The maximum communication

time between senders and receivers is

predicted to be MPI_Alltoallv time. The

size of the message that a sender will

deliver to its receiver(s) is determined first,

followed by the number of hops between

the sender and its receivers. We may

calculate the communication time for each

sender-receiver pair using this method.

MPI_Alltoallv is projected to take the

longest of these communication times. For

non-mesh networks, such as switched

networks, the time it takes for the sender to

transmit messages to all receivers can be

added to anticipate the MPI_Alltoallv time.

 Performance model for execution time:

We measured the execution timings of a

small group of domains (size = 13) with

various domain sizes on a few (10 in our

case) processor sizes within the maximum

number of processors (1024 in our case).

The execution timings of these 13 domains

are interpolated using Delaunay

triangulation from the execution times of

the nests produced in our simulation. We

also forecast the execution times of the

nests for each of the 10 processor sizes. We

conduct linear interpolation on these times

to anticipate the execution time on the

desired number of processors. As seen in

Section V, this results in good forecast

accuracies. The prediction execution

durations are employed for dynamic

method selection as well as determining the

weights of the nests required for processor

allocation in both our tree-based

approaches and the partition from scratch.

3.3 Programming language

WRF was created and designed to run efficiently on

massively parallel systems. It's written in Fortran90

and may be configured to run in serial, parallel

(MPI), or mixed-mode (OpenMP and MPI) mode.

4. RESULT AND DISCUSSIONS

4.1 Data analysis algorithm

The data analysis technique is used to identify

clouds and create nests, which is one of the most

important aspects of our work. Using QCLOUD

values in non-increasing sequence, we create

clusters of continuous places with high cloud cover.

In this list, a QCLOUD value reflects the

aggregated QCLOUD over a subdomain, where

OLR ≤200. The clustering of contiguous regions is

based on the proximity of the subdomains.

In this part, we compare our disclosed closest

neighbour clustering algorithm against a

straightforward nearest neighbour clustering

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c750

approach. We present clustering using only two hop

distance criteria in Figure 8(a). This technique

determines whether the list entry is within two hops

of a cluster that already exists. There are some

overlapping clusters, as we can see. The clusters

created by our technique are shown in Figure 8(b).

Because we first check for 1 hop distance and then

2 hop distance, the clusters created by our method

are non-overlapping. Only if the list entry is not

within one hop of an existing cluster are we

checking for a two-hop distance. This guarantees

that the list element is added to the cluster that is

closest to it. To ensure that the cluster size does not

rise uncontrolled, we only insert into a cluster if the

mean deviation is less than 30%.

(a) Clustering of nearest neighbours using a 2-hop distance and no mean deviation condition.

Clusters are spatially overlapping

(b) Clustering of nearest neighbours using 1-hop and 2-hop distances and a 30% mean deviation

criterion. Clusters do not cross each other.

Figure 8: For our parallel data processing approach, we use nearest neighbour clustering

4.2 Domain Configurations or tools used

For all of our experiments, we used a popular open-

source weather forecasting tool called Weather

Research and Forecast Model (WRF) version 3.3.1,

It is a regional and mesoscale numerical weather

prediction model and is used by weather agencies

all over the world. The parent simulation domain

can have several offspring domains, which are

referred to as nests. During the simulation, these

nests formed over several regions of interest. For

dynamic insertion and deletion of nested domains,

we changed the WRF source code. We ran a

simulation over the Indian region from 60◦E - 120◦E

and 5◦N - 40◦N for the Mumbai rainstorm of July

2005 the simulation took place from July 24, 2005,

at 18:00 hours, until July 27, 2005, at 18:00 hours.

The parent simulation resolution was 12 km, while

the nested domain resolutions were 4 km. For both

real and simulated test scenarios, we compared our

tree-based hierarchical diffusion strategy against

the partition from scratch method. We

experimented with simulated test cases for the

dynamic method.

Real: Nests formed over areas with a lot of cloud

cover, which our parallel data analysis system

picked up on. During these runs, the greatest

number of nests created was 7. The nests formed

have a maximum and minimum size were 202 ×

349 and 175 × 175. There were about 100

processor allocation reconfigurations for the nests.

The real traces for our application showed less

configuration changes and (4–5) nests on average

than the synthetic traces. To test our algorithm for

higher numbers of nests per time step and more

redistributions per adaptation point, we created

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c751

some synthetic test cases. Up to 70 different nest

layout alterations were investigated, with the

number of nests ranging from 2 to 9. Nests were

added and removed at random. The nests formed

have a maximum and minimum size were 361 ×

361 and 181 × 181.

4.3 Experimental

Our simulations were run on two different types of

systems: a Blue Gene/L system and a fist Intel

Xeon cluster. Our experimental setups are listed in

Table 3. We created a folding-based topology-

aware mapping that maps neighbouring processes

to neighbouring processors on the 3D torus for the

Blue Gene/L experiments. All of our studies used

this topology-aware mapping, which ensured that

processes in the process grid were only one hop

apart. This benefits both the partition from scratch

method and the diffusion-based strategy in terms of

execution times. All of our studies were carried out

on a graphics workstation at the Indian Institute of

Science (IISc) with an Intel(R) Pentium(R) 4 CPU

running at 3.40 GHz and an NVIDIA GeForce 7800

GTX graphics card.

Table 3: Configurations on Simulation

Simulation Configuration Maximum Number of

Cores

Blue Gene/L: Dual-core 700 MHz PowerPC 440 processor cores with 1

GB physical memory, 3D torus network

1024

fist: 2 Xeon quad core processors (2.66GHz, 12MB L2 Cache) with

16GB memory, connected by Infiniband switched network

256

4.4 Improvement in redistribution time

For the real test instances, our tree-based hierarchical diffusion method improved redistribution times

by 14 percent and 12 percent over the partition from scratch method on 512 and 1024 Blue Gene/L

cores, respectively.

Table 4: Redistribution Times for Synthetic Test Cases based on Average Improvement

Simulation Configuration Improvement

BG/L 1024 cores 15%

BG/L 256 cores 25%

fist 256 cores 10%

For the simulated test scenarios, Table 4 illustrates

the average % improvement in redistribution times

for our tree-based hierarchical diffusion method

over the partition from scratch method. It can be

seen that in the case of Blue Gene/L, which features

a 3D torus network, the performance improvement

is greater. This is due to the fact that our tree-based

hierarchical strategy picks the new processor

allocation based on the process grid's neighbours.

Because of our topology-aware mapping, Blue

Gene/L neighbours in the process grid are also

neighbours in the processor topology. However,

because there is no regular mesh/torus architecture

in the first cluster, the gains are reduced. However,

because of the overlap between the senders and

receivers in our strategy, we still gain a ten percent

improvement over the scratch method. When there

is a lot of overlap, there is less data exchange

during the redistribution. For 256 cores, we get

even more improvement. We speculate that this is

due to higher per-core data for redistribution in the

case of fewer cores.

We saw a 4 percent increase in execution durations

for our approach over the partition from scratch

method for both actual and simulated test situations.

This is because the Huffman tree isn't built from the

ground up in our method, and we strive to

maximise the overlap. As a result, the resulting

divisions are not necessarily square. When the

number of adaption points is large, however, it is

more crucial to keep the redistribution cost low.

4.5 Distance between senders and receivers

For 70 simulated test cases on 1024 Blue Gene/L

cores, Figure 8 illustrates the average hop-bytes

during sender-receiver communication for partition

from scratch versus our technique. The hop-bytes

metric is the weighted sum of message sizes, where

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c752

the weights indicate the number of hops (links)

each message has traversed. A larger hop-byte

count indicates a higher network communication

demand. The average in the case of partitioning

from scratch is 5.25, whereas the average in our

approach is 2.44. This is because the receiver

process grid in our technique is situated closer to

the sender process grid, reducing the number of

hops between a sender and receiver pair.

Figure 9: For both the partition from scratch method and the tree-based hierarchical diffusion

strategy, the percentage overlap between senders and receivers is calculated.

For 70 synthetic test cases on 1024 Blue

Gene/L cores, Figure 10 displays the

percentage of data points overlap between

senders and receivers for partitioning from

scratch versus our technique. It can be seen

that our method has a higher overlap, implying

that our method requires less redistribution

time.

Figure 10: For the partition from scratch method and the tree-based hierarchical approach, the

percentage overlap between senders and recipients is shown.

The X-axis represents the number of test cases,

while the Y-axis represents the percentage overlap.

The scratch method has greater overlap than the

tree-based hierarchical approach.

The X-axis represents the number of test cases,

while the Y-axis represents the percentage overlap.

The scratch method has greater overlap than the

tree-based hierarchical approach. For our tree-based

hierarchical method, we discovered a 27 percent

data point overlap between senders and recipients

in the fist cluster. There was 15% overlap with the

scratch method. This is because we strive to

maximise the overlap between senders and

recipients in our system so that data communication

during redistribution is minimised.

4.6 Dynamic Approach

The findings of our dynamic method, which

chooses between scratch and tree-based approaches,

are presented in this section. For a 4-hour

simulation session, we tested 12 reconfigurations

for simulated situations on 1024 BG/L cores. The

dynamic approach chose the approach with the

shortest sum of expected execution and

redistribution times. We computed the Pearson's

correlation coefficient between the actual and

expected execution times since the efficacy of the

dynamic selection strategy is dependent on the

ability to forecast the execution timings of different

nest configurations. Pearson's correlation

coefficient was 0.9 when we used our prediction

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c753

approach. This demonstrates a linear relationship

between the two, indicating that our execution time

forecast is nearly accurate.

Scratch method was chosen twice out of the 12

reconfiguration scenarios, whereas tree-based

approach was chosen ten times. In ten of the twelve

examples, the dynamic approach made the correct

conclusion. In 9 situations, our tree-based diffusion

method produced a lesser sum of execution and

redistribution times than the partition from scratch

method, while in the remaining three cases, the

partition from scratch method produced a smaller

sum.

Figure 11: Time of execution and redistribution

Figure 10 shows the total time for the tree-based

technique, partition from scratch method, and

dynamic approach, including execution and

redistribution times. It can be seen that our tree-

based method takes the least amount of time to

redistribute data, while the partition from scratch

method takes the least amount of time to execute.

The dynamic selection method combines the

benefits of both methods, with redistribution times

comparable to those of the tree-based method and

execution times comparable to those of the partition

from scratch method. The dynamic strategy reduced

overall execution time by 3% compared to the next

best-performing tree-based solution. It should be

highlighted that in our real runs (around 70

adaptation points), more frequent adaptation points

result in larger performance increase for the

dynamic scheme.

5. CONCLUSION

To detect and monitor towering clouds in tropical

weather systems, we presented a parallel data

analysis approach and an effective processor

reallocation algorithm in this paper. Using a form

of closest neighbour clustering, our data analysis

approach discovers ordered cloud networks. For the

places with a lot of cloud cover, we ran layered

high-resolution simulations. A disjoint subset of the

entire number of processors was used to run the

layered simulations. The nests may form and

dissolve over time due to the dynamic nature of

clouds. We devised a tree-based efficient processor

allocation approach for persistent nests that has a

low data redistribution cost.

Our method takes into account the current

processor allocation and chooses a new subset of

processors that has the most overlap with the

rectangular subset of processors. In comparison to

the partition from scratch strategy, we were able to

reduce redistribution times by up to 25% with only

a minor increase in execution times. We also

devised a dynamic scheme to determine which of

the two approaches, partitioning from scratch and

our approach, is the best.

6. FUTURE SCOPE

Our tracking and detection techniques are rather

generic. We hope to use these techniques in the

future for other applications that need simultaneous

tracking of several dynamic events.

REFERENCES

1. G. Gu and C. Zhang, “Cloud components of the

Intertropical Convergence Zone,” Journal of

Geophysical Research: Atmospheres, vol. 107,

no. D21, pp. ACL 4–1–ACL 4–12, 2002. \

2. S. Kumar, Y. Sabharwal, R. Garg, and P.

Heidelberger, “Optimization of All-to-all

Communication on the Blue Gene/L

Supercomputer,” in International Conference

on Parallel Processing, 2008.

3. S. Sahany, V. Venugopal, and R. Nanjundiah,

“The 26 July 2005 heavy rainfall event over

Mumbai: numerical modeling aspects,”

Meteorology and Atmospheric Physics, vol.

109, pp. 115–128, 2010.

4. IBM Blue Gene Team, “Overview of the Blue

Gene/L system architecture,” IBM Journal of

Research and Development, vol. 49, 2005.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 11 November 2021 | ISSN: 2320-2882

IJCRT2111309 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c754

5. H. Yu, I.-H. Chung, and J. Moreira, “Topology

Mapping for Blue Gene/L Supercomputer,” in

Proceedings of the 2006 ACM/IEEE

conference on Supercomputing.

6. A. Bhatele, G. Gupta, L. V. Kale, and I.-H.

Chung, “Automated Mapping of Regular

Communication Graphs on Mesh

Interconnects,” in International Conference on

High Performance Computing, 2010.

7. Liu, Xiaoqiang&wu, Lifeng& Zhang, Fenxia&

Huang, Guomin& Yan, Fulai& Bai, Wenqiang.

(2021). Splitting and Length of Years for

Improving Tree-Based Models to Predict

Reference Crop Evapotranspiration in the

Humid Regions of China. Water. 13. 3478.

10.3390/w13233478.

8. C. Lennard and G. Hegerl, “Relating changes in

synoptic circulation to the surface rainfall

response using self-organising maps”, Climate

Dynamics, Vol.44, No.3-4, pp.861-879, 2015.

9. Piyush Kapoor (2013) - Weather Forecasting

Using Sliding Window Algorithm. Hindawi

Publishing Corporation ISRN Signal

Processing Volume 2013, Article ID 156540, 5

pages

10. Malakar, P., George, T., Kumar, S., Mittal, R.,

Natarajan, V., Sabharwal, Y., Saxena, V.,

&Vadhiyar, S.S. (2012). A divide and conquer

strategy for scaling weather simulations with

multiple regions of interest. 2012 International

Conference for High Performance Computing,

Networking, Storage and Analysis, 1-11.

11. PreetiMalakar, et al (2011) - INST: An

Integrated Steering Framework for Critical

Weather Applications. Procedia Computer

Science 00 (2011) 1–10

12. Reddy, S.S. Bat algorithm-based back

propagation approach for short-term load

forecasting considering weather

factors. ElectrEng 100, 1297–1303 (2018).

https://doi.org/10.1007/s00202-017-0587-2

13. P. Malakar, T. George, S. Kumar, R. Mittal, V.

Natarajan, Y. Sabharwal, V. Saxena, and S. S.

Vadhiyar, “A Divide and Conquer Strategy for

Scaling Weather Simulations with Multiple

Regions of Interest,” in Proceedings of the

2012 ACM/IEEE conference on

Supercomputing.

14. W. C. Skamarock and et al., “A Description of

the Advanced Research WRF version 3,”

NCAR Technical Note TN-475, 2008.

15. S. Sinha and M. Parashar, “Adaptive System

Sensitive Partitioning of AMR Applications on

Heterogeneous Clusters,” Cluster Computing,

vol. 5, 2002.

16. A. Bhatele, G. Gupta, L. V. Kale, and I.-H.

Chung, “Automated Mapping of Regular

Communication Graphs on Mesh

Interconnects,” in International Conference on

High Performance Computing, 2010.

17. Z. Lan, V. E. Taylor, and G. Bryan, “Dynamic

load balancing of SAMR applications on

distributed systems,” in Proceedings of the

2001 ACM/IEEE conference on

Supercomputing.

http://www.ijcrt.org/
https://doi.org/10.1007/s00202-017-0587-2

