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ABSTRACT

Earth is a living, breathing planet that changes on a regular basis. Weather patterns and events play a
significant role in this development. While these patterns and occurrences are required for our planet to
remain habitable, they may also wreak significant damage and cost billions of dollars in repair and rescue
attempts. Weather phenomena are natural events caused by one or more of the following: the water cycle,
pressure systems, and the Coriolis effect. Precipitation, wind, and heat are frequently involved or related to
them. The main aim of this study is tracking and analysing the variations in.the weather phenomena by utilizing
tree-based diffusion-based processor reallocation strategy.-We devised ways for efficiently partitioning and
repartitioning the nests among the processors in this paper. We look at an application of tracking numerous
ordered cloud clusters in tropical weather systems as a case study. To discover such clouds, we first present a
parallel data analysis approach. We created a tree-based hierarchical diffusion method that reallocates
processors for the nests at a lower cost of redistribution. We do this via a novel tree restructuring method. We
demonstrate that our approach has a lower redistribution cost and 53 percent fewer hop-bytes than a
processor reallocation solution that ignores existing processor allocation.Fortran90 programming language
have been used for implementation of algorithm.

KEYWORDS - Weather phenomenon, Tree based, Redistribution; processor reallocation; data analysis; cloud
tracking etc.

1. INTRODUCTION e Blizzard

e Cloud
Wind, cloud, rain, snow, fog, and dust storms are all e Dust Devils
prevalent meteorological phenomena on Earth. « Fog
Natural disasters such as tornadoes, hurricanes, e Frost
typhoons, and ice storms are less common. Weather e Haboob
is caused by changes in air pressure, temperature, .

e Hailstorm

and moisture from one location to another.
e Heat Wave

Events in Weather phenomenon e Hurricane
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e Lightning

e Rain

e Rainbow

e Snow

e Thunderstorm
e Tornado

Weather forecasting is primarily concerned with
predicting weather conditions for a specific time in
the future. Weather forecasts are essential for
predicting the weather in the future. Weather
forecasting can be done in a variety of ways, ranging
from simple sky observation to extremely
complicated computerised mathematical models.
Weather forecasting is necessary for a variety of
applications. Climate monitoring, drought detection,
severe  weather prediction, agricultural and
production, energy industry planning, aviation
industry  planning, communication, pollution
dispersal, and so on are only a few of them. When it
comes to military operations, there is a long history
of occasions where weather conditions have changed
the outcome of conflicts. Due to the dynamic nature
of the atmosphere, accurate weather forecasting is
challenging. Some variables can be used to indicate
the weather at any given time. One discovered that
the most significant factors are being chosen to be
involved in the prediction process.

Weather simulations are essential for weather
forecasting. PCs have been assuming an imperative
part in weather forecasting since the initiation of
weather displaying. A weather model is a scientific
portrayal of the air forms in view of physical,
biological and chemical standards. The physical
procedures are portrayed by standard and halfway
differential conditions, which are understood
numerically utilizing techniques like finite-contrast
approximations. Different meteorological
associations around the globe create local to-
worldwide scale weather models to understand the
logical premise of weather phenomena, potential
effects of environmental change and choices for
mitigation. Weather models that can predict disasters
ahead of time can save lives and save damage. Fast
variations in rare weather occurrences have recently
been observed, owing to advancements in
barometrical synthesis, and are capable of impacting
the earth's surface atmosphere.

2. LITERATURE REVIEW

Xiaogiang Liu, et al (2021) - The limitation of the
classic FAO-56 Penman—Monteith technique, which
requires complete meteorological input data, must be
addressed to increase the accuracy of predicting
reference crop evapotranspiration for effective water
resource management and optimal irrigation
scheduling design. The impacts of applying five data
splitting procedures and three distinct input dataset
time periods on predicting ETO are investigated in
this study. To achieve this goal, the random forest
(RF) and extreme gradient boosting (XGB) models
were used, together with a K-fold cross-validation
strategy.

C. Lennard, and G. Hegerl, (2015) - They devised
a supervised technique called SOM for analysing
surface rainfall in conjunction with synoptic
circulation. It was investigated for two types of
stations in South Africa's distinct rainfall zones.
These synoptic circulations were identified as mid-
latitude-based cyclones in the winter and summer,
but no circulations were linked to rainfall in the
spring and autumn. The capacity of SOMs to match
the synoptic movers of observed rainfall records is
evaluated in this work, which effectively downscales
large-scale synopses data to an accurate resolute
reaction of the surface.

Piyush Kapoor (2013) - The fluctuation in
historical weather circumstances must be used to
anticipate future weather conditions. It's extremely
unlikely that the weather on the day in question will
be identical to the same day the prior year. However,
the chances of it matching within the next fortnight
of the prior year are extremely high. As a result, for
the previous year's fortnight, a sliding window of the
size of a week is chosen. Every week of the sliding
window is then compared to the week of the current
year. The approach's findings revealed that the
method for forecasting meteorological conditions is
quite effective, with an average accuracy of 92.2
percent.

Malakar, P., et al (2012) -High-fidelity compute
demanding simulations of several finer regions of
interest within a large simulation domain are
required for accurate and timely prediction of
meteorological phenomena such as hurricanes and
flash floods. Due to their sub-linear scalability,
current weather apps run these stacked models
sequentially utilising all available CPUs, which is
inefficient. We offer a method for running several
nested domain simulations in parallel, based on
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partitioning the 2-D processor grid into distinct
rectangular sections for each domain. On torus
interconnects, we offer a novel mix of performance
prediction, processor allocation algorithms, and
topology-aware region mapping.

PreetiMalakar, et al (2011) - Critical weather
applications like as cyclone tracking require online
remote visualisation and steering for effective and
timely analysis by a geographically dispersed
climate scientist community. A steering framework
for controlling high-performance simulations of
critical weather events must take into account both
the scientists' steering inputs as well as the
application's criticality requirements, such as a
minimum simulation progress rate and continuous
visualisation of significant events. We created an
integrated user-driven and automated steering
framework for simulations, online remote viewing,
and analysis for crucial weather applications in this
research. This gives the user control over a variety of
application parameters, such as the region of interest,
simulation resolution, and data frequency for
visualisation.

3. PROPOSED METHODOLOGY

3.1 Parallel Data to Find Organized Cloud
Clusters

We will describe an approach for parallel data
processing of simulation output in this part. To
detect tall clouds in tropical weather systems, the
technique examines the cloud water mixing ratio
(QCLOUD) and outgoing long wave radiation
(OLR) in WRF simulation output. Cumulonimbus
clouds are the name given to these types of clouds.
They extend vertically from 1 km to more than 10
km above the surface. The amount of liquid water in
a cloud is measured by QCLOUD. In general, high
QCLOUD values equate to lofty clouds. The
infrared radiation at the top of the atmosphere is
known as OLR. Low OLR patterns suggest the
presence of organised cloud systems (such as
tropical depressions and cyclones), which would be
characterised by tall cumulonimbus clouds. The use
of OLR and QCLOUD together improves the
detection of such systems and eliminates the
identification of solitary cumulonimbus (as
QCLOUD alone would). We set the highest limit for
OLR at 200.Each WRF process produces output for
its subdomain and saves it to a split file. As seen in
Algorithm 1, these split files are evaluated in
parallel. This algorithm creates small clusters that
are contiguous, non-overlapping, and do not expand

out of control. It is easy and quick, making it ideal
for online analysis. Let P be the number of processes
that run WRF and N represent the number of
processes that examine the QCLOUD values in the
split files. The split files are fed into the algorithm as
input {F1, F2, - - -, Fp }. The N processes are given
these split files to work with. k files (lines 1-2) are
analysed by each of the N processes. S is a subset of
files in which |S| = k, as a rectangle subset is chosen
of (Px, Py), where Py-Py = P In WRF, this is the
rectangular process decomposition. As a result, P is
split into N rectangular subsets.If the outgoing long
wave radiation OLR 200 (lines 4-9), the value of
QCLOUD at each grid point in each split file is
aggregated. The olrfraction, or the fraction of grid
points that meet the above requirements, is
determined (lines 7-8). All N processes send the
aggregated QCLOUD values, one value per file, to a
root process, rank 0 in our example. Each process
will send a maximum of k values. It's worth noting
that some of the split files may lack areas with
OLR< 200, in which case the process that owns
them will submit fewer than k values. The
aggregated QCLOUD values and the olr fraction
values are gathered by the root process (line 11).The
remainder of the procedure is only run on the root
process. To begin, the non-increasing order of the
aggregated QCLOUD values acquired from the split
files is sorted (line 13). Multiple split files processed
by multiple processes can be spanned by a
contiguous region with heavy: cloud cover. We use a
variation of closest neighbour clustering (NNC) to
create a contiguous region (line 14). NNC generates
a collection of clusters, each of which contains a
contiguous zone of high cloud cover. Each cluster is
surrounded by a rectangle (lines 16-19), which
serves as a nest for fine-resolution simulations in
WRF.

Nearest Neighbour Clustering: Algorithm 2 shows
the pseudo code for the NNC algorithm. It takes the
sorted list of QCLOUD values, gcloudinfo, as an
input. Each qcloudinfo element is a tuple of
aggregate QCLOUD values for a split file and the
fraction of the split file with OLR<200. The cloud
cover for a subdomain is represented by the
QCLOUD value of each element in the list. This
algorithm uses the spatial position of a subdomain,
i.e. the latitude and longitude extents of a
subdomain, to determine proximity between two
subdomains.The method loops through each element
of the gcloudinfo input array (lines 2-20). Line 3
determines whether the total QCLOUD value and
the fraction of the subdomain with OLR <200
exceed a threshold, which in our case is 0.005. This
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eliminates the need to analyse smaller cloud-covered clusters is initially empty. First, we look to see if the
regions with a low QCLOUD score. Clusters are current element is within one hop of any other
constructed depending on element proximity (lines element in an existing cluster (lines 6-9). If this isn't
4-18). Each cluster depicts a large area of dense the case, we look to see if the element is two hops
cloud cover. If an element is 1-hop or 2-hop away distant from any other element in an existing cluster
from an existing cluster, it is added to it. The list of (lines 10-13).

Algorithm 1: Parallel Data Analysis (PDA) algorithm

Input: Per-process simulation output of one time step from P
processes {Fy, Fa,--- , Fp}, Number of processes for
parallel data analysis N
Output: Rectangles: Rectangular regions with high cloud water
mixing ratio
/* Divide P files among N processes
1 k= P/N;
Let S be the set of k files assigned to each of the N processes;

(&1

/* Begin ana of QCLOUD v e files

in § by the N prc .

3 count = 0;

4 foreach file € S do

5 Read QcLouD and OLR from file for each grid point;

6 Aggregate geloud and increment count where
OLR|gridpoint] < 200V gridpoint € file ;

7 Let area be the total number of grid points in the file;

8 olr fraction = count/area;

9 end

/+* End analysis

10 root = 0; /+* Assume rank 0 is the root rank =«
11 Root collects the geloud and olr fraction information from every
process in geloudinfo;

/% Form rectangular regicns in root process

12 if (my rank == root) then

13 Sort gcloudinfo in decreasing order of gcloudinfo.qcloud;

14 Clusters = NNCl(gcloudinfo),

15 Rectangles = 0;

16 foreach (list € Clusters) do

17 Let itemn = (minX,maz X, minY, mazxY’) be set of the
minimum and maximum of x and y coordinates of elements
of list;

18 Add item to Rectangles;

19 end

20 end

The DISTANCE function is used to calculate
proximity in lines 6 and 10. If true, the
element is added to the list. If an element is
within a hop distance of a member, it is
included to the cluster list iff it does not
deviate the QCLOUD mean by more than a
threshold (30% in our example) (lines 23-29).
This assures a low standard deviation for a
cluster of contiguous cloud regions and also

aids in regulating the size of an existing
cluster.A new cluster new-list is created if an
element is not within two hops of any other
element in any of the existing clusters. element
is added to new-list, which is then added to the
clusters collection. Clusters (16-18 lines).
Clusters is a set of clusters produced by NNC
that represents different contiguous regions of
cloud cover.

Algorithm 2: Nearest Neighbour Clustering (NNC) algorithm
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Input: Sorted array gcloudinfo
Output: Clusters: List of elements, clustered by proximity

1 Clusters = 0;
LOOP: foreach element € gcloudinfo do

2
3 if (element.qcloud > threshold and
element.olr fraction > threshold) then

C i f nt is p

c e to y m 2Y O
4 foreach list € Clusters do
5 foreach member € list do

6 if (DISTANCE (element,member,list,1)) then
7 Add element to list;

8 Continue next iteration of LOOP;

9

21 Return Clusters;

30 Return False;
31 End Function DISTANCE

end
10 if (DISTANCE (element,member,list,2)) then
11 Add element to list;
12 Continue next iteration of LOOP;
13 end
14 end
15 end

/* Form a new list

16 Initialize newlist;
17 Add element to newlist;
18 Add newlist to Clusters;
19 end
20 end

22 Begin Function DISTANCE (element, member, list, hop)

23 if (distance between member and element == hop) then

24 OldMean = Mean of QCLOUD values of members of list;

25 NewMean = Mean of QCLOUD values of members of list and
element.qcloud;

26 if (NewMean is within 30% of OldMean) then

27 Return True;

28 end

29 end

The parallel data analysis technique runs on a
distinct group of processors from the
processors that operate the WRF simulation.
As a result, PDA execution has no bearing on
WRF execution times. Because the analysis of
QCLOUD values in each split file is the most
time-consuming phase in Algorithm 1, it is
done in parallel. Experiments demonstrate that
for most of the time steps, the number of items
acquired at the root process is less than 200 for
a maximum of 1024 split files. The sequential
NNC algorithm (Algorithm 2) clusters such
few values in less than a second. Parallel
clustering would have been excessive for
online analysis in this situation. In the future,
we'd like to parallelize the NNC algorithm for
simulations with a larger number of
processors.

3.2 Processor Allocation

PDA is an algorithm for computing a
collection of regions of interest (ROI) in a
domain, which in our case are the places with
a high amount of cloud cover. Simulations are
spawned over the regions of interest in nested

fashion. We mimic these nests at high
resolutions in order to get greater precision. In
these layered simulations, the resolutions are
three times higher than those of -the parent
simulation. We made changes to the WRF
code to allow us to-generate nests on the go
without having to halt the simulation. The
initial data for nested domains is interpolated
from the data for the parent domain.

It has been demonstrated that by running the
nests on different subsets of the total number
of processors, P, considerable performance
increases can be realised, P. In order to
calculate the size of the subset of processors
for a nest and their position in the processor
grid, we employ performance modelling and a
Huffman tree-based technique, which are both
implemented in Java processor grid Px X
Py where Px.Py = P. Based on the size and
aspect ratio of the nests, the performance
model is utilised to anticipate the execution
times. The initial processor allocation for each
nested domain is determined using the
Huffman tree-based technique.
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Px

Py

(@) Huffman tree for 5 nests with execution time ratios 0.1 : 0.1 :0.2:0.25: 0.35

(b) Sub-division of the processor grid Px x Py for the 5 nests.

Figure 1: Hlustration of processor allocation for nests.

Figure 1 shows an example of processor
allocation for five nests. Assume the ratios of
the nests' projected execution times are 0.1:
0.1: 0.2: 0.25: 0.35. As shown in Figure 1,
these ratios are used as weights in the
construction of the Huffman tree (a). Figure 1
depicts the relevant processor sub-grid for
each nest (b). The five sub-rectangles

represent the number of processors used to run
each of the nests. Table 1 shows the start rank
of each processor sub-grid for this example
setup, which is the rank of the processor in the
north-west corner of the sub-rectangle, as well
as the rectangular dimensions of each
processor sub-grid for a maximum of 1024
cores.

Table 1: Processor Allocation on 1024 Cores

Nest ID Start Rank Processor sub-grid
1 0 13 X 8
2 256 13 x8
3 512 13x16
4 13 19 x 13
5 429 19 x 19

In succeeding time steps, the regions of
interest may persist or vanish. The regions
with a lot of cloud cover are the ones we're
interested in. Clouds can build and dissipate
over a long period of time. The PDA technique
is used to find areas of interest (ROI) in the
output of the current simulation time step on a
regular basis (every 2 minutes). When a new
ROI is discovered, a nest is created. When
PDA fails to output an existing ROI, the nest is
removed. A retained nest is one that has been
output by PDA both in the previous and
current invocations. Nest insertion, deletion,
and retention alter the Huffman tree topology

and, as a result, the processor allocation. As a
result, the newly allocated set of processors
(receivers) for a retained nest may differ from
the previously allotted set of processors
(senders). The data from the nest domain must
be distributed to the receivers by the senders.
To carry out this redistribution, we updated the
WRF code. After calculating the quantity of
data to be redistributed based on the nest size,
MPI_Alltoallv is used to redistribute data for
each nest. During the MPI_Alltoallv for that
nest, processors that are neither senders nor
receivers send and receive 0 value.

0l11)12]3

45|67

16 | 17

819]|10

11

My

12113(14 |15

18 | 19

M

Mx

Figure 2:Data is redistributed from an old set of processors to a new set of processors assigned
to a nest
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Figure 2 shows an example for a nest size of Nx %
Ny. As indicated in the left grid, a nest is equally
distributed across its allocated processors 0 to 15.
As illustrated in the right grid of the picture, these
processors send the nest data to the newly allocated
processors 16 — 19. It can be seen that processor 16
now owns the part of the nest domain that was
previously held by 0, 1, 4, and 5. As a result, 16
receives domain data from 0, 1, 4, and 5. In this
scenario, the other receivers similarly receive data
from four senders.The senders and receivers in the
preceding example are nonintersecting sets. The
cost of data redistribution between senders and
receivers can be reduced if the senders and

0.42

3 6

0.27, 0.31

receivers are in close proximity. The redistribution
cost in torus networks can be reduced by reducing
the number of hops between senders and recipients.

> Partition from scratch

We segment the entire process grid in this method
Px x Pyas mentioned in the preceding section, for
processor allocation based on Huffman tree formed
using the projected execution times of the nests as
weights The tree is built without taking into account
the current processor allocation. As a result of this
method, there may be no overlap between senders
and recipients, resulting in higher redistribution
costs.

Px

(a) Huffman tree for nests 3, 5, 6 with execution times in ratios of 0.27 : 0.42 : 0.31.

(b) Sub-division of the processor grid Px x Py for 3 nests.

Figure 3:Using a partition from scratch to allocate processors to nests

Take, for example, the configuration shown in
Figure 1. Assume that PDA outputs the nests
3, 5, and 6 as regions of interest at the next
invocation. As a result, nests 1, 2, and 4 will
be removed, and a new nest, nest 6, will be
created. The expected execution times of the
nests 3, 5, and 6 should be 0.27: 0.42: 0.31.
Figure 3 depicts the matching Huffman tree as

well as the processor partition. Table 2 shows
the start rank and rectangular dimensions of
each processor sub-grid for each nest with a
maximum of 1024 cores. We can see that there
is no overlap between senders and recipients
when we compare the previous and new
allocations for nests 3 and 5 in Tables 1 and 2.
This may raise the cost of redistribution.

Table 2: Processor Allocation On 1024 Cores

Nest ID Start Rank Processor sub-grid
3 13 19 x 13
5 0 13 x 32
6 429 19 x 19

The cost of redistribution with this strategy may be
substantial in some circumstances. Due to the tree's
creation in order of increasing weights, the
rectangular divisions based on the Huffman tree are
as square-like as possible. The nests' execution
times are reduced by the square like partitions.

> Tree-based hierarchical diffusion

We try to maximise the overlap between the
senders and receivers of the retained nests using
this method. The main concept is to move the
boundaries of rectangular partitions for the retained
nests so that data is distributed across neighbouring

processes and the overlap between old and new nest
data is maximised. This reduces the cost of
redistribution, particularly on torus networks.
Figure 4 shows an illustration of this. The present
processor partitioning for nests 1, 2, and 3 is shown
in Figure 4(a). Existing partitions are resized when
a new nest is added. As illustrated in Figure 4, the
right boundary of rectangle for nest 1 is shifted to
the left, while the left boundaries of nests 2 and 3
are relocated to the right, freeing up some
processors for inserting the new nest (b). As a
result, the old and new processor partitions for nests
1, 2, and 3 have a lot of overlap.
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(a) Existing

(b) new processor

Figure 4:Processor allocation in the hierarchical diffusion approach.

Rather than creating the Huffman tree from
start, this repartitioning method works by
changing the tree that corresponds to the
present allocation. In the tree, the orientations
of the nodes relating to the maintained nests
are preserved. Because the weights represent
the ratios of the multiple processors that will
execute each nest, the weights of the old
nodes, i.e., the retained nests, may be adjusted.
The processor shares of current nests may
change as new nests are added and/or old nests
are eliminated.

2 3
0.25

(a) Existing trees in the hierarchical diffusion approach

diffusion approach

When there is no deletion and simply insertion
of new nodes, the new nodes are inserted near
existing nodes with weights that are similar to
the new nodes. We try to get rectangular
partitions for the nests that are more square-
like by inserting a new node near a node in the
Huffman tree with equal weight. Inserting a
new node near a node with a big weight
differential, on the other hand, will result in
skewed rectangles. As a result, square-like
partitions result in shorter nest execution
times, whereas skewed rectangular partitions
result in longer nest execution durations.

1 4 2 3

03| |04 D15 P15

(b) new trees in the hierarchical

Figure 5: The weights at the leaf nodes are the predicted execution time ratios of the nests

This is demonstrated in Figure 4 as an
example. Figure 5 depicts the current and new
trees corresponding to the processor partitions
of Figure 4. Node 4 is inserted near node 1 to
create the new tree in Figure 5(b). This is
because node 4's weight is the closest to that of
node 1's new weight. The size of each node's
partition is proportional to its weight. Thus,

th th
the nodes 1 and 4 get% and % the number

of processors assigned to their parent node
Because the weight differences between nodes

1 and 4 are smaller, the resulting rectangles for
1 and 4 will be as square as possible. This
would not have been the case if node 4 had
been placed near node 2, which has a weight

of 0.15. This is due to the fact that the shares

for 4 and 2 would have been %:

0.15 .
substantial

8 3
— and — = —Due to the
11 0.55 11

discrepancy in weights, the rectangle for node
2 would not have been square. Figure 6 shows
how this works. Rectangle 2 appears to be
warped when compared to rectangle 4.
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0.15

o4

Figure 6: Skewed rectangle Due to the substantial weight differential between the two nodes

When nests are both inserted and deleted from
the tree, the nodes corresponding to the deleted
nests are removed. Furthermore, new nodes
are placed in the sites of removed nests to
preserve as much as possible the positions of
the retained nests. This may increase the
likelihood of existing and new nest processor
allocations for the retained nests overlapping.

Algorithm 3 describes the algorithm for
changing the existing tree for fresh processor
allocation. The current tree oldtree, the deleted
node list deletednodes, the updated weights of
the retained nests rweights, and the weights of
the new nodes nweights are used as inputs.
The updated tree newtree is the result.

Algorithm 3: Tree-based hierarchical diffusion algorithm

L P

[ - )

11
12
13

e el
R - TS

—
= <=

NN
o -

w

Input: Existing tree oldtree, list of deleted nodes deletednodes.
new weights of retained nests rweights, and weights of new
nests nweights.

Output: New tree newtree

freenodes = 0, siblings = 0;

foreach node € deletednodes do

Mark node as free in the oldtree:

Add node to freenodes:

Add sibling of node to siblings:
end
foreach weight € rweights do

Update weight for the corresponding retained node:
end

Update weights of internal nodes of oldtree:

rt in the

e to the n W >
foreach new_weight € nweights do
if (| freenodes| > 1)) then
Add new_weight to the position of node, where
node € freenodes N sibnode is sibling of node A
d = Weight(sibnode) — new_weight A
d= argmin (Weight(s) — new_weight)
¥ s € siblings
Delete node from freenodes:
Delete sibnode from siblings;
end
end
if (|nweights| > |deletednodes|)) then
Build Huffman tree for the remaining new weights rooted at
node € freenodes;
else
Delete the remaining nodes in freenodes from oldtree;
end
Copy oldtree to newtree;

To begin, deleted nodes in old tree are designated
as free and added to the set free nodes (lines 2-6).
These nodes' siblings are added to the set of
siblings (line 5). These will be utilised as insertion
places later. The weights of the nodes that are kept
are changed (lines 7-9). The weights of internal
nodes are updated based on the deletion and

alteration of weights of maintained nodes (line 10).
In the positions of the deleted nodes (lines 11-17),
new weights are added. As previously stated, new
nodes should be placed near those with the closest
weights. As a result, we look at the weights of the
deleted nodes' siblings. The existing tree structure
will be minimally modified when a new node is
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inserted in lieu of a removed node. Line 13
demonstrates this. A new weight is added to the
position of the node, which was previously
indicated as empty. The weight of a node is chosen
so that the gap between the weight of its sibling
sibnode and the new weight is as small as possible.
Lines 14-15 remove node and sibnode from their
respective sets.

The operation in line 13 is only performed when the
set free nodes contain multiple nodes. Because we
build a Huffman tree wusing the remaining
unmatched weights in nweights when the frequency
of deletions is fewer than the number of insertions,

and this subtree is rooted at the position of the last
element in free nodes. Lines 18-20 demonstrate
this. We destroy the remaining nodes of freenodes
if there are more insertions than deletions (line 21).
The new tree is created from the updated old tree.

When compared to the partition from scratch
method, this methodology reduces data transit
between senders and receivers, resulting in a
considerable reduction in redistribution time. This
is because we try to arrange receivers in such a way
that there is a lot of overlap between senders and
receivers, and the receivers are senders' neighbours.

(a) Deleted nodes marked empty and weights of retained nests modified. (b) Node 6 inserted
near node 5

(c) Remaining deleted nodes removed (d) Sub-division of the processor grid based on the
modified tree.

Figure 7: Delete nests 1, 2, 4, keep nests 3, 5, and add a new nest 6 using the tree-based
hierarchical diffusion technique.

Figure 7 shows the processor allocation for the case
in Figure 1 using a tree-based hierarchical diffusion
approach. Let us assume the same output of PDA
that was considered in Figure 3 to compare with the
partition from scratch strategy. Nests 1, 2, and 4
have been removed; nests 3 and 5 have been kept,
and nest 6 has been added as a new zone of interest.
Figure 7(a) depicts the tree after nodes 1, 2, and 4
have been eliminated and the weights of nodes 3
and 5 have been changed. Because the two free
rectangles represented by deleted nodes 1, 2 can be
regarded one free rectangle, they have been
concatenated as one empty node. As a result, there
are two free spaces for inserting new node 6 - one
sibling node has a weight of 0.27, while the other
has a weight of 0.42. Because 0.31-0.27 <0.42-
0.31, i.e., the weight of node 3 is closer to that of
node 6, node 6 is inserted in the position of sibling
of node 3. Figure 7 depicts the rectangular division

based on this tree (d). When comparing this to the
partitioning produced using the partitioning from
scratch method (shown in Figure 3(b), we can see
that there is a lot of overlap between the old and
new set of processors for nests 3 and 5, but the
partitioning from scratch method has no overlap.
Also, because we aim to keep the placements of
retained nests as intact as possible, the rectangles
for 3 and 5 spread to neighbouring processes.

Note that with this method, the changed tree may
no longer be a Huffman tree. The changes,
however, cause some overlap between new and old
processors, as well as redistribution among
neighbouring processes. Our methods can handle a
huge number of processors. With a bigger overall
processor count, the maximum number of hops
between the old and new set of processors is
expected to grow for the scratch approach. As a
result, the scratch method's data redistribution time
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may grow as the number of processors increases.
The number of nests determines how many
processors are reallocated via Huffman tree
building or reorganisation, which is unaffected by
an increase in processor count.

»  Dynamic Strategy

The variations in performance between the two
techniques, namely the partition from scratch
method and our diffusion-based method, are
determined by the execution times of the generated
partitions as well as the redistribution costs. In both
the partition from scratch approach and our
diffusion-based method, the execution time ratios
of the nests, and hence the percentage of total
number of processors allotted to the nests, are the
same. The rectangular grids and aspect ratios of the
rectangles for same nest configuration may not be
precisely the same due to integral sides of the sub-
rectangles. One way might allocate 1618 whereas
the other might allocate 17x 17. As a result, the
execution times of the nests for the two techniques
may differ slightly.

Similarly, while we expect our diffusion-based
method to have lower redistribution costs than the
partition from scratch method, there may be
circumstances where the redistribution costs are
almost the same in both methods. This is because
both methods rely on tree construction with weights
based on the ratios of predicted execution times of
nests. The weights' relative order influences the
tree's construction and, as a result, the rectangular
processor grid given to the nests. Identical relative
weights of those nests that remain between
reconfigurations could lead to similar trees for both
technigues, and hence similar redistribution costs.
As a result, we present a dynamic method that
chooses the approach that takes the least amount of
redistribution and execution time. To do so, we
must forecast both of these times.

e Performance model for redistribution
time:MPI_Alltoallv between the processors
is the most important component of the
redistribution time. In mesh and torus-
based networks, we assume a direct
MPI_Alltoallv  method between the
processors. The maximum communication
time between senders and receivers is
predicted to be MPI_Alltoallv time. The
size of the message that a sender will
deliver to its receiver(s) is determined first,
followed by the number of hops between

the sender and its receivers. We may
calculate the communication time for each
sender-receiver pair using this method.
MPI_Alltoallv is projected to take the
longest of these communication times. For
non-mesh networks, such as switched
networks, the time it takes for the sender to
transmit messages to all receivers can be
added to anticipate the MPI_Alltoallv time.
e Performance model for execution time:
We measured the execution timings of a
small group of domains (size = 13) with
various domain sizes on a few (10 in our
case) processor sizes within the maximum
number of processors (1024 in our case).
The execution timings of these 13 domains
are interpolated using Delaunay
triangulation from the execution times of
the nests produced in our simulation. We
also forecast the execution times of the
nests for each of the 10 processor sizes. We
conduct linear interpolation on these times
to anticipate the execution time on the
desired number of processors. As seen in
Section V, this results in good forecast
accuracies. The prediction execution
durations are employed for @ dynamic
method selection as well as determining the
weights of the nests required for processor
allocation in both _our tree-based
approaches and the partition from scratch.

3.3 Programming language

WRF was created and designed to run efficiently on
massively parallel systems. It's written in Fortran90
and may be configured to run in serial, parallel
(MPI), or mixed-mode (OpenMP and MPI) mode.

4. RESULT AND DISCUSSIONS
4.1 Data analysis algorithm

The data analysis technique is used to identify
clouds and create nests, which is one of the most
important aspects of our work. Using QCLOUD
values in non-increasing sequence, Wwe create
clusters of continuous places with high cloud cover.
In this list, a QCLOUD value reflects the
aggregated QCLOUD over a subdomain, where
OLR <200. The clustering of contiguous regions is
based on the proximity of the subdomains.

In this part, we compare our disclosed closest
neighbour  clustering  algorithm  against a
straightforward nearest neighbour  clustering
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approach. We present clustering using only two hop
distance criteria in Figure 8(a). This technique
determines whether the list entry is within two hops
of a cluster that already exists. There are some
overlapping clusters, as we can see. The clusters
created by our technique are shown in Figure 8(b).
Because we first check for 1 hop distance and then
2 hop distance, the clusters created by our method

are non-overlapping. Only if the list entry is not
within one hop of an existing cluster are we
checking for a two-hop distance. This guarantees
that the list element is added to the cluster that is
closest to it. To ensure that the cluster size does not
rise uncontrolled, we only insert into a cluster if the
mean deviation is less than 30%.

(a) Clustering of nearest neighbours using a 2-hop distance and no mean deviation condition.
Clusters are spatially overlapping

(b) Clustering of nearest neighbours using 1-hop and 2-hop distances and a 30% mean deviation
criterion. Clusters do not cross each other.

Figure 8: For our parallel data processing approach, we use nearest neighbour clustering

4.2 Domain Configurations or tools used

For all of our experiments, we used a popular open-
source weather forecasting tool called Weather
Research and Forecast Model (WRF) version 3.3.1,
It is a regional and mesoscale numerical weather
prediction model and is used by weather agencies
all over the world. The parent simulation domain
can have several offspring domains, which are
referred to as nests. During the simulation, these
nests formed over several regions of interest. For
dynamic insertion and deletion of nested domains,
we changed the WRF source code. We ran a
simulation over the Indian region from 60°E - 120°E
and 5°N - 40°N for the Mumbai rainstorm of July
2005 the simulation took place from July 24, 2005,
at 18:00 hours, until July 27, 2005, at 18:00 hours.
The parent simulation resolution was 12 km, while
the nested domain resolutions were 4 km. For both

real and simulated test scenarios, we compared our
tree-based hierarchical diffusion strategy against
the partition from scratch method. We
experimented with simulated test cases for the
dynamic method.

Real: Nests formed over areas with a lot of cloud
cover, which our parallel data analysis system
picked up on. During these runs, the greatest
number of nests created was 7. The nests formed
have a maximum and minimum size were 202 X
349 and 175 x 175. There were about 100
processor allocation reconfigurations for the nests.

The real traces for our application showed less
configuration changes and (4-5) nests on average
than the synthetic traces. To test our algorithm for
higher numbers of nests per time step and more
redistributions per adaptation point, we created
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some synthetic test cases. Up to 70 different nest
layout alterations were investigated, with the
number of nests ranging from 2 to 9. Nests were
added and removed at random. The nests formed
have a maximum and minimum size were 361 X
361 and 181 x 181.

4.3 Experimental

Our simulations were run on two different types of
systems: a Blue Gene/L system and a fist Intel
Xeon cluster. Our experimental setups are listed in
Table 3. We created a folding-based topology-

aware mapping that maps neighbouring processes
to neighbouring processors on the 3D torus for the
Blue Gene/L experiments. All of our studies used
this topology-aware mapping, which ensured that
processes in the process grid were only one hop
apart. This benefits both the partition from scratch
method and the diffusion-based strategy in terms of
execution times. All of our studies were carried out
on a graphics workstation at the Indian Institute of
Science (11Sc) with an Intel(R) Pentium(R) 4 CPU
running at 3.40 GHz and an NVIDIA GeForce 7800
GTX graphics card.

Table 3: Configurations on Simulation

Simulation Configuration Maximum Number of
Cores
Blue Gene/L: Dual-core 700 MHz PowerPC 440 processor cores with 1 1024
GB physical memory, 3D torus network
fist: 2 Xeon quad core processors (2.66GHz, 12MB L2 Cache) with 256
16GB memory, connected by Infiniband switched network

4.4 Improvement in redistribution time

For the real test instances, our tree-based hierarchical diffusion method improved redistribution times
by 14 percent and 12 percent over the partition from scratch method on 512 and 1024 Blue Gene/L

cores, respectively.

Table 4: Redistribution Times for Synthetic Test Cases based on Average Improvement

Simulation Configuration Improvement
BG/L 1024 cores 15%
BG/L 256 cores 25%

fist 256 cores 10%

For the simulated test scenarios, Table 4 illustrates
the average % improvement in redistribution times
for our tree-based hierarchical diffusion method
over the partition from scratch method. It can be
seen that in the case of Blue Gene/L, which features
a 3D torus network, the performance improvement
is greater. This is due to the fact that our tree-based
hierarchical strategy picks the new processor
allocation based on the process grid's neighbours.
Because of our topology-aware mapping, Blue
Gene/L neighbours in the process grid are also
neighbours in the processor topology. However,
because there is no regular mesh/torus architecture
in the first cluster, the gains are reduced. However,
because of the overlap between the senders and
receivers in our strategy, we still gain a ten percent
improvement over the scratch method. When there
is a lot of overlap, there is less data exchange
during the redistribution. For 256 cores, we get
even more improvement. We speculate that this is

due to higher per-core data for redistribution in the
case of fewer cores.

We saw a 4 percent increase in execution durations
for our approach over the partition from scratch
method for both actual and simulated test situations.
This is because the Huffman tree isn't built from the
ground up in our method, and we strive to
maximise the overlap. As a result, the resulting
divisions are not necessarily square. When the
number of adaption points is large, however, it is
more crucial to keep the redistribution cost low.

4.5 Distance between senders and receivers

For 70 simulated test cases on 1024 Blue Gene/L
cores, Figure 8 illustrates the average hop-bytes
during sender-receiver communication for partition
from scratch versus our technique. The hop-bytes
metric is the weighted sum of message sizes, where
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the weights indicate the number of hops (links)
each message has traversed. A larger hop-byte
count indicates a higher network communication
demand. The average in the case of partitioning

from scratch is 5.25, whereas the average in our
12

approach is 2.44. This is because the receiver
process grid in our technique is situated closer to
the sender process grid, reducing the number of
hops between a sender and receiver pair.

Partition from scratch
10| — Tree-based hierarchical diffusion

8

Average hopbytes
()}

40 50 60 70

Case number

Figure 9: For both the partition from scratch method and the tree-based hierarchical diffusion
strategy, the percentage overlap between senders and receivers is calculated.

For 70 synthetic test cases on 1024 Blue
Gene/L cores, Figure 10 displays the
percentage of data points overlap between
senders and receivers for partitioning from

scratch versus our technique. It can be seen
that our method has a higher overlap, implying
that our method requires less redistribution
time.
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Figure 10: For the partition from scratch method and the tree-based hierarchical approach, the
percentage overlap between senders and recipients is shown.

The X-axis represents the number of test cases,
while the Y-axis represents the percentage overlap.
The scratch method has greater overlap than the
tree-based hierarchical approach.

The X-axis represents the number of test cases,
while the Y-axis represents the percentage overlap.
The scratch method has greater overlap than the
tree-based hierarchical approach. For our tree-based
hierarchical method, we discovered a 27 percent
data point overlap between senders and recipients
in the fist cluster. There was 15% overlap with the
scratch method. This is because we strive to
maximise the overlap between senders and
recipients in our system so that data communication
during redistribution is minimised.

4.6 Dynamic Approach

The findings of our dynamic method, which
chooses between scratch and tree-based approaches,
are presented in this section. For a 4-hour
simulation session, we tested 12 reconfigurations
for simulated situations on 1024 BG/L cores. The
dynamic approach chose the approach with the
shortest sum of expected execution and
redistribution times. We computed the Pearson's
correlation coefficient between the actual and
expected execution times since the efficacy of the
dynamic selection strategy is dependent on the
ability to forecast the execution timings of different
nest  configurations.  Pearson's  correlation
coefficient was 0.9 when we used our prediction
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approach. This demonstrates a linear relationship
between the two, indicating that our execution time
forecast is nearly accurate.

Scratch method was chosen twice out of the 12
reconfiguration  scenarios, whereas tree-based
approach was chosen ten times. In ten of the twelve

examples, the dynamic approach made the correct
conclusion. In 9 situations, our tree-based diffusion
method produced a lesser sum of execution and
redistribution times than the partition from scratch
method, while in the remaining three cases, the
partition from scratch method produced a smaller
sum.

35

Time (seconds)

i
o

5

I Execution time
3 Redistribution time

Tree-based

Scratch Dynamic

Figure 11: Time of execution and redistribution

Figure 10 shows the total time for the tree-based
technique, partition from scratch method, and
dynamic approach, including execution and
redistribution times. It can be seen that our tree-
based method takes the least amount of time to
redistribute data, while the partition from scratch
method takes the least amount of time to execute.
The dynamic selection method combines the
benefits of both methods, with redistribution times
comparable to those of the tree-based method and
execution times comparable to those of the partition
from scratch method. The dynamic strategy reduced
overall execution time by 3% compared to the next
best-performing tree-based solution. It should be
highlighted that in our real runs (around 70
adaptation points), more frequent adaptation points
result in larger performance increase for the
dynamic scheme.

5. CONCLUSION

To detect and monitor towering clouds in tropical
weather systems, we presented a parallel data
analysis approach and an effective processor
reallocation algorithm in this paper. Using a form
of closest neighbour clustering, our data analysis
approach discovers ordered cloud networks. For the
places with a lot of cloud cover, we ran layered
high-resolution simulations. A disjoint subset of the
entire number of processors was used to run the
layered simulations. The nests may form and
dissolve over time due to the dynamic nature of
clouds. We devised a tree-based efficient processor
allocation approach for persistent nests that has a
low data redistribution cost.

Our method takes into account the current
processor allocation and chooses a new subset of
processors that has the most overlap with the
rectangular subset of processors. In comparison to
the partition from scratch strategy, we were able to
reduce redistribution times by up to 25% with only
a minor increase in execution times. We also
devised a dynamic scheme to determine which of
the two approaches, partitioning from scratch and
our approach, is the best.

6. FUTURE SCOPE

Our tracking and detection techniques are rather
generic. We hope to use these techniques in the
future for other applications that need simultaneous
tracking of several dynamic events.
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