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Abstract 
The purpose of this work is to build a graded algebra A = A(q1, q2, q3) with three shift parameters, q1, q2, 
and q3. By introducing a specific filtration connected with the dominance ordering among partitions, we 
verify the basic features of the algebra A, including commutativity and the Poincar e series. The Gordon 
filtration is a stratification that is characterised by a series of null conditions related with the partitions and 
the shift parameter qi. The elliptic algebra [EO] can be thought of as a smooth limit of our algebra. 
Specifically, the original algebra is built over an elliptic curve, whereas our algebra A is built over a 
degenerate CP1. 
Keyword: Algebra, Poincar. Elliptic Algebra 

1. Introduction 

POLYNOMIAL RING 
          If R is a ring, the ring of polynomials in x with coefficients in R is denoted R[x] . It consists of all formal 
sums.                     
                                                    ∑ 𝑎∞

𝑖=0 ixi 

   

   That is  R[x] =∑ 𝑎𝑖=𝑛
𝑖=0 ixi 

QUOTIENT RING 
      Let R be a ring and I be an ideal of R.Then R/I is form a ring .that ring is called quotient ring . 
EXAMPLE:       Let K[x] is a polynomial ring and its quotient rings are 
                              k[x]= < x2 + x + 1 >,k[x]= < x3 + 2 > etc. 

PRIME IDEAL 
   An ideal P is said to be prime ideal if ab 2 P then a 2 p or b 2 P. 
EXAMPLE:  < x2 + 1> is an prime ideal of R[x]. 
NOTE: 
Let R be a ring and I be an ideal of R.Then R/I is said to be integral domain if and only if I is prime ideal. 

MAXIMAL IDEAL 
     Let R be a commutative ring and ideal M of R is said to be maximal ideal of R, if there exist an ideal N of 
R such that M   N _ R then 
M=N or N=R. 
EXAMPLE: 
Let K[x] be a ring and < x2 + 1 > its maximal ideal. 
NOTE: 
1. R be a commutative ring with unity.an ideal M of R is maximal ideal of R if and only if R=M is a field. 
2. Every maximal ideal is a prime ideal. 

NILRADICAL 
The set N of all Nilpotent element in a ring R is an ideal and R/N has no Nilpotent element (except zero) . 
The Nilradical of a ring R is the intersection of all prime ideal of R. 
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EXAMPLE: 
Let Z be a ring and pZ be its prime ideal (where p is prime ) then Nilradical of this is 0. 

JACOBSON RADICAL 
  The Jacobson radical of J of a ring R is define to be the intersection of all maximal     ideals of R. 

COLON IDEAL 
  Let R be a commutative ring. Let S be a subset of R and I be an ideal of R.Now we define the subset 

  (I : S) = {a 𝜖𝑅/ aS  I} and the (I:S) is an ideal of R.This ideal is called the colon ideal or ideal quotient. 

EXAMPLE:       R = K[x]= < x2 > 

EXTENSION AND CONTRACTION 
Let f : A→B be a ring homomorphism .If I be an ideal of A, define the extension Ie of I to be Ie =< f(I) > ideal 

generated in B .That is , 

        Ie ={∑ 𝑦 − 𝑖 𝑓(𝑥 − 𝑖)/𝑛 ≥𝑖=𝑛
𝑖=0  1, y-i ∈B, x-i ∀i } 

  let an ideal of B then f-1(J) is an ideal of A is called the contration Jc
 of J .That is , 

  Jc= f-1(J) = {x/ f(x) ∈ B} 

MODULES 
DEFINITION:    Let A be a commutative ring.An A module M is an abelian group 
  written additively with scalar multiplication and a mapping f : 
   A ×M → M with following properties 
   a(x+y)=ax+ay 
   (a+b)x=ax+bX 
    (ab)x=a(bx) 
    1x=x 
where a; b ∈ A ,x ,y ∈ M 
 
EXAMPLE: 
1. An ideal I of a ring A is an A-modules. 
2. If A is a _eld k=R, then A-modules=K vector space. 

HOMOMORPHISM 
 Let M,N be A-module,A mapping f : M → N is an A-modules homomorphism if, 
     f(x+y)=f(x)+f(y) 
     f(ax)=af(x) 
where for all a ∈ A and all x; y∈M. 
The set of all A-module homomorphism from M to N is also A-module follow: 
we define, f+g and af by the rule 
              (f+g)x=f(x)+g(x) 
               (af)x=af(x) 

this is also A-module and is denoted by HomA(M;N). 

 

Homomorphism u : M′ → M and v : N′ →N induce mapping u′:Hom (M,N)→ Hom(M′,N) and v′ : Hom 

(M,N)→Hom (M,N′) 

define as follow, 

u′(f) = f0u,v′(f) = v0f these module are A-module homomorphism. 

SUB-MODULES AND QUOTIENT MODULES 
An sub-module N of M is a subgroup of M which is closed under the multiplicaton by element of A.That is 
x:n ∈ N for all x ∈ A and n ∈ N. 
  
EXAMPLE:  A be a ring and itself is a A-modules and its ideal is sub-modules. 
 
 
  

http://www.ijcrt.org/


www.ijcrt.org                                                        © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882 

IJCRT2108118 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b84 
 

The Abelian group M/N gives an A-modules structure from M define  by   a(x+N)=ax+N. The module M/N is 
quotient of M by N. 
 

1. The kernel of f is the set Ker(f) = x 2 M : f(x) = 0 is sub-module of M. 
      2.  The image of f is the set im(f)=f(M) is a sub-module of N. 
      3.  The coker of f is coker(f)=N/im(f) 

ANNIHILATOR 
If N,P are sub-module of M,we de_ne (N:M) to be the set of all a such that aP _ N it is an ideal of A .In 
particular (0:M) is the set of all a 2 A such that aM=0,this ideal is called the annihilator of M and is also 
denoted by Ann(M). An A-module is faithful if Ann(M)=0.If Ann(M)=a then M is faithful as an A/a module. 

DIRECT SUM AND DIRECT PRODUCT 
   If M,N are A-module their direct sum M _ N is the set of all pairs 
       (x,y) with x ∈ M; y∈ N. 
       (x1; y1) + (x2; y2) = (x1 + x2; y1 + y2) 
      a(x; y) = (ax; ay) 
If (Mi)i∈I is any family of A-module,we can de_ne the direct sum (Mi) its element are families (xi)i∈I such that 
(xi) 2 (Mi) for each i ∈ I and at-most all (xi) are zero. If we remove on the number of non zero X's we have the 
direct Product . 

CO-MAXIMAL 
      Let R be a ring ,ideal A and B are said to be co-maximal if A+B=R. 
   EXAMPLE:   Let Z be a ring and I=2Z and J=3Z be two co-maximal ideal. 

2. Chinese Remainder Theorem 

Theorem 1. Let A1;A2;A3……Ak  be an ideals in R.The mapping R→R/A1 × R/A2 ×.........R/Ak  define by, 

r→(r + A1,r + A2,.........r + Ak) is a ring homomorphism with kernel A1 ∩ A2 ∩ ....k. If for each i; j ∈ {1; 2; 3..... k} 
with  i≠j 

the ideals Ai and Aj are co-maximal, then this map is Surjective and A1 ∩A2 ∩......k = A1A2......Ak, so  

R/(A1A2......Ak) = R/(A1∩ A2 ∩.......k) ≅ R/A1/A2 ×....../Ak 

 
Proof.    for k=2  

 We first prove this for k = 2; the general case will follow by  induction.  
Let A = A1 and B = A2 . 

Consider the map f :R → R/A× R/B . 
defined by f(r) = (r modA; r modB), where mod A means the class in R/A containing r ( that is, r+ A). when A 
and B are co-maximal, 
f is surjective and  A∩B = AB. 
Since A + B = R, there are elements x∈A and y∈B s.t. x+y = 
1. This equation show that f (x) = (0,1) and f (y) =(1,0). 
since, for example, x is an element of A and x = 1- y ∈1 + B. If now (r1modA; r2modB) is an arbitrary element 
in R/A*R/B, then element r2x + r1y maps to this to element. 
Since    f(r2x + r1y) = f(r2)f(x) + f(r1)f(y) 
            =(r2modA; r2modB)(0; 1) + (r1modA; r1modB)(1; 0) 
            =(0; r2modB) + (r1modA; 0) 
            =(r1modA; r2modB). 

This shows that f is indeed surjective. Finally, the ideal AB is always contained in A∩B. If A and B are 

comaximal and x and y are as above, then for any c ∈ A ∩ 𝐵; c = c1 = cx + cy ∈ AB.  
The general case follows easily by induction from the case of two ideals using A = A1 and B = A2.......AK  once 

we show that A1 and A2........Ak are co-maximal .By hypothesis for each i ∈ {2, 3, 4 ......k} there are elements 

xi ∈A1 and yi ∈ Ai  s.t.  
 xi + yi = 1. Since xi+yi ≡yi mod A1 , it follows that 1 = (x2+y2)................(xk+yk) 
is an element in A1 + (A2............Ak). 
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3. Hilbert Basis Theorem 
We First describe some general Finiteness condition. Let R be a ring and let M be a left R-module. 
Definition: 
1.The left R-module M is said to be a Noetherian R-module or to satisfy the ascending chain condition on 
submodules (or A.C.C on submodules) if there are no    infinite increasing chain of submodules is an 
increasing chain of submodules of M,then there is a positive integer m  such that for all k≥m;Mk = Mm (of 
the chain becomes stationary at stage  
                                m: Mm =Mm+1  = Mm+2 = ............ 
2. The ring R is said to be Noetherian if it is Noetherian as a left module over itself, i.e   if there is no infinite 
increasing chains of left ideals in R. 
 
 
EXAMPLE: 
Any field is a Noetherian ring. 
 Any Principal ideal domain is also a Notherian ring. So, the integers, considered as a module over the ring 
of integers, is a Noetheria module. 
 

Theorem 2.  

Let R be a ring and let M be a left R-module. then the following are equivalent, 
(1) M is a Noetherian R-module. 
(2) Every nonempty set of submodules of M contain a maximal element under            inclusion.  
(3) Every submodule of M is finitely generated. 

Proof. First we proof that (1) ⇒ (2) 

Assume M is Noetherian and let P be any nonempty collection of submodules of M. 
choose any M1  ∈ ∑.   
If M1 is a maximal element of ∑.(2) holds,so assume M1 is not maximal.  

Then there is some M2 ∈ ∑. such that M1∁ M2. 

 If M2 is maximal in ∑.(2) holds, so we may assume there is an M3 ∈ ∑. properly containing M2. 
 proceeding in this way one see that if (2) fails we can produce by axiom of choice an infinite strictly 
increasing chain of elements of ∑.contray to (1). 

Now we proof (2)  ⇒  (3) 
Assume (2) holds and let N be any submodules of M. 
Let ∑.  be the collection of all finitely generated submoules of N.Since 0 ∈ ∑. this collection is nonempty. 

By (2) ∑. contains a maximal element N′. 
If N  N′ ,Let x  N  N′. 
since N′∈ ∑, the submodule N′ is finitely geneated by assumption,hence also the submodule generated N′ 
and x is finitely generated. 
This contradicts the maximality of N′,so N = N′ is finitely generated. 

Now we proof that 3 ⇒ 1 
Assume (3) holds and let M1 _ M2 _ M3........be a chain of submodules of M. 

Let N =⋃ 𝑀∞
𝑖=1 i  and note that N is a submodule. 

By (3) N is finitely generated by ,say a1, a2,........an. since ai ∈N for all i,each ai lies in one of the submodule in 

the chain,say Mj,i 
Let m = max {j1, j2,j3...............jn}. 

Then ai ∈Mm  for all i so the module they generate is contained in Mm i.e, N _ Mm. 
This implies Mm = N = Mk for all k ≥ m, which proof 1. 

Corollary 1.  R is a Noetherian ring if and only if every ideal of R is finitely generated. 

Corollary 2.  If R is a P.I.D, then every nonempty set of ideal of R has a maximal element and R is a 
Noetherian ring. 
Proof. The P.I.D ,R satisfies condition of the above theorem with M=R. 
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Recall that even if M itself is a finitely generated R-module, submodule of M need not be finitely 
generated,so the condition that M be a noetherian R-module is ingeneral stronger than the condition that 
M be a finitely generated R-module. 
Proposition  Let R be an integral domain and Let M be a free R-module of rank  

n < 1.Then any n+1 element of M are R linearly dependent i.e for any y1,y2,.....yn + 1 ∈M there are elements 
r1,r2........rn+1 2 R not all zero,such that r1y1 + r2y2 + ........+ rn+1yn+1 = 0 
Proof. The quickest way of proving this is to embed R in its quotient field F. 

since R is an integral domain and observe that since M ≅R ᶱR ᶱ..... R (n times). 
the latter is an n-dimensioal vector space over F,so any n+1 element of M are F linearly dependent.  
By clearing the denominators of the scalar ,we obtain an R-linear 
dependence relation among the n+1 elements of M.  
If R is any integral domain and M is any R-module recall that 

Torsion (M)={x ∈ M/rx= 0 for some nonzero r ∈ R} 
Theorem . R is a Noetherian if and only if every prime ideal is finite generated. 
proof   
Assume R is Northerian . 
Ƭ ={ I is an ideal of R which is NOT finitely generated} 

By assumption Ƭ ≠ 𝜑 

Now we used zorn's lemma to show that Ƭ has a maximal element. 
Let {I∝  be a chain , 
Let I=U Iα. 
Then I is an ideal. 
we claim I is not Finite generated becaue if it is cheak,then 

I = Rx1 + Rx2 +…….Rxn   for xi ∈ I αi 
Set r = max αj , where j=1,2,......n 
where {α1,………,αj} = totally ordered finite set. 

xi∈ Ir for all i 
 

By zorn's lemma  T as a maximal element say P. 
we will show P is prime which will be a contradiction . 

suppose ∃x∈ R/P; y ∈ R/P with xy∈  P. 
Look at (x,P ) is not proper superset of P and P:x is not prpper 
super set of P. 
By maximality of P,(p,x),(P:x) are finitely generated 
=˃ (P; x) = Rx1 + Rx2 + ……. + Rxn +……….:Rx 

Assume x1; x2; ……. ∈P. 
But P = Rx1 + Rx2 + ………+ Rxn +(P : x)x 

because if z P∈ 

=˃ Z ∈ (P; x) = Rx1 + Rx2 + ………..Rxn + Rx 
=˃ z =λ1x1 + λ2x2 + …………λnxn + λx 

=˃ λx  ∈P 

=˃ λ∈ (P : x). 
 

4. Hilbert Basis Theorem 
If R is a Noetherian Ring ,then the polynomial ring R[x1; x2,………xn] is Noetherian. 
Proof. 
 we may assume that n=1, 
we show that R is Noetherian  
=˃ R[x] is Noetherian. 
I ∁ R[x] be an R[x]-ideal. 
Set 

In = {a∈ 𝑅∃f∈(x) ∈ 𝐼 with degree n and leading coefficient a }U{0}. 
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Then In is an R-ideal. 

(For all a; b  ∈ 𝐼n∃ two polynomial f; g of order n such that the 
leading coe_cient of f; g are a; b respectively . 
=˃ f –g is also a polynomial of degree n and leading coefcient of 
f - g in a - b 
=˃ a -b  ∈In 

Thereforr(6≠ 0) ∈R; a ∈ In , rf is a polynomial of degree n and leading 
coeffcient is ra . 
=˃ ra ∈In 

In is an R-ideal.) 
 
(∀ a ∈ Ij ∃ a polynomial f of degree j such that leading coeffcient of 
f is a .Now consider xf. This is a polynomial of degree j + 1 and 
leading coeffcient is a. This implies a ∈Ij+1) 
Since R is Noetherian. 
Let fni ; 1 ≤ i ≤ ln; 0 ≤ n ≤ r be polynomial such that degfni = n 
and leading coe_cient of fni ; 1 ≤ i ≤ ln  generated In. 
claim:{ fni ; 1 ≤ i ≤ ln; 0 ≤ n ≤ r} = W generates I 
By definition the leading coeffcient of fni generates In; ∀i. 
Now let g(x) ∈I; g ≠ 0. By induction on deg g, 
We show g ∈(W)R[x]. 
If degree of g equals 0 then g ∈I ∪R CI0 = Rf01 + _ _ _ + Rf0l0 

Assume by induction that the result is true for all deg ≤ n -1. 
Now let deg g = n. Since the leading coeffcient of g is In; ∃𝜆𝑖 ∈R 
with deg(g-ƩλiFn-1)≤ 𝑛 − 1 
 
By induction we know Fn-1∈ (𝑊)𝑇[𝑥]. 
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