www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

ISSN : 2320-2882
INTERNATIONAL JOURNAL OF CREATIVE

%%9 RESEARCH THOUGHTS (1JCRT)

& An International Open Access. Peer-reviewed, Refereed Journal

IJCRT.ORG

Optimizing an Encryption File System On Android
through Blowfish Algorithm

Miss Kirti . P. Lokhande
ME(CSE) 3" Sem
G.H. Raisoni College of Engineering,Amravati

Dr. Mahip M. Bartere
Asst Prof. (CSE)
G.H. Raisoni College of Engineering,Amravati

Abstract— Recently smart gadgets including smart phones and tablets are gaining popularity. These devices contain Personal
Identifiable Information. An attacker can compromise a smart phone and gain full control of it by connecting another computing
device to it using the USB physical link. Moreover, by simply capturing the smart phones physically, adversaries have access to
confidential or even classified data if the owners are the government officials or military personnel. In this papert, here discuss a
secure and encrypted file system on Android operating system and optimize the performance using certified encryption algorithm
BlowFish provided in OPENSSL libraries. This paper presents EncFS which is a FUSE (File system in USErspace) based file-
system offering encryption file system to protect the removable and persistent storage on heterogeneous smart gadget devices
running the Android platform. In this papet, the data at rest including physical partition on the device and removable storage card
is encrypted using user provided password. The encrypted file system is mounted only after successful password verification

with user at system boot up.

Index Terms— Smart handheld devices, Full disk encryption, Encrypted filesystem, Blowfish, Encryption, Decryption.

1 INTRODUCTION

Technology trends in both hardware and software have driven
the hardware industry towards smaller, faster and more
capable mobile hand-held devices that can support a wider-
range of functionality and open source operating systems.
Mobile hand-held devices are popularly called smart gadgets
(e.g. smart phones, tablets, e-book readers). The smart
gadget life-cycle has evolved drastically in recent years. These
new generations of the smart gadget devices such as the
iPhone and Google Android devices are powerful enough to
accomplish most of the tasks that previously required a
personal computer. However, smart gadgets have to come a
long way in terms of security. Organizations have come to
realize that these commercially available smart gadgets will
soon have to serve as an integral part of their operations. This
requires a level of security that allows for security of data at-
rest and on the move to support secure communications.
Major challenges in providing file system encryption in mobile
devices are:

1. A major obstacle is that there is a serious lack of
National Institute of Standards (NIST) approved
encryption algorithms on these commercially available
smart gadgets.

2. On smart gadgets where resources, like the battery,
are very limited, it is important to keep a low footprint
on such solutions.

3. The expectation for each individual application to
support encryption runs into the key management

problem: other applications in the system can
potentially -gain access to the key and render the
encryption useless.

4. This system has to be ubiquitous and integrate into
the ecosystem of smart gadgets with minimal
maintenance and installation cost.

Therefore, there is a need for a practical approach to build
common security libraries that operate at the operating system
level and provide strong encryption. In this paper, the focus is
on analyzing the performance for persistent storage protection
using encryption on smart gadget devices. The paper uses
EncFS which is a FUSE (File system in USErspace) based
encryption file system and uses certified cryptographic
algorithms to store encrypted versions of every file in a source
directory. The volume key is decrypted using a password
supplied by the user. This is different from full-disk encryption
software because the protected data is mounted in memory at
a specified mount point in the file system. Since file /O
operations on the mount point eventually hit the encrypted
copy of the file on the underlying file system, various
performance optimizations can be possible by adjusting the
file system parameters such as block size, buffer size. Finally,
we discuss the limitations of file system encryption and
demonstrate that it is feasible on smart gadget devices with a
reasonable performance overhead. Additionally, this paper
leverages advantages provided by underlying operating
system:

IJCRT2108099 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | a842

http://www.ijcrt.org/

www.ijcrt.org

© 2021 IICRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

1. Use of NIST validated cryptographic libraries which
are not implemented in kernel-space.

2. The proposed implementation can be extended to
different hardware with negligible effort.

3. This paper needs to focus on data encryption without
having to deal with other aspects of file system
design. Underlying file systems like ext3 and yaffs2
already have strong support for handling data-
corruption and journaling.

2 LITERATURE SURVEY

In 2012 Zhaohui Wang, Rahul Murmuria, Angelos Stavrou
[1] has presented Implementing and Optimizing an Encryption
FUSE (Filesystem in

USErspace) encryption file system to protect the removable

File system on Android ,a novel

and persistent storage on heterogeneous smart gadget
devices running the Android platform. The proposed file
system leverages NIST certified cryptographic algorithms to
encrypt the data at-rest. We present an analysis of the security
and performance trade-offs in a wide-range of usage and load
scenarios. Using existing known micro benchmarks in devices
using encryption without any optimization, we show that
encrypted operations can incur negligible overhead for read
operations and up to twenty (20) times overhead for write
operations for /O intensive programs. In addition, we
guantified the database transaction performance and we
observed a 50% operation time slowdown on average when
using encryption. We further explore generic and device
specific optimizations and gain 10% to 60% performance for
different operations reducing the initial cost of encryption.
Finally, we show that our approach is easy to install and
configure across all Android platforms including mobile
phones, tablets, and small notebooks without any user
perceivable delay for most of the regular Android applications
[1].

In 2012 Pratap Chnadra Mandal has presented Superiority
of Blowfish Algorithm, containing Information Security has
been very important issue in data communication. Any loss or
threat to information can prove to be great loss to the
organization. Encryption technique plays a main role in
information security systems. This paper provides a fair
comparison between four most common and used symmetric
key algorithms: DES, 3DES, AES and Blowfish. A comparison
has been made on the basis of these parameters: rounds
block size, key size, and encryption / decryption time, CPU
process time in the form of throughput and power
consumption. These results show that blowfish is better than

other algorithm [2].

In 2012 M. Anand Kumar and Dr.S.Karthikeyan has
presented the Efficiency of Blowfish and
Rejindael (AES) Algorithms, The growth rate of the internet
exceeds than any other technology which is measured by

Investigating

users and bandwidth. Internet has been growing at a rapid rate
since its conception, on a curve geometric and sometimes
exponential. Today, the Internet is moving exponentially in
three different directions such as size, processing power, and
software sophistication making it the fastest growing
technology humankind has ever created. With the rapid growth
of internet, there is need to protect the sensitive data from
unauthorized access. Cryptography plays a vital role in the
field of network security. Currently many encryption algorithms
are available to secure the data but these algorithms consume
lot of computing resources such as battery and CPU time. This
paper mainly focuses on two commonly used symmetric
encryption algorithms such as Blowfish and Rejindael. These
algorithms are compared and performance is evaluated.
Experimental results are given to demonstrate the
performance of these algorithms [4].

In 2011 Jawahar Thakurl , Nagesh Kumar has presented
DES, AES and Blowfish: Symmetric Key Cryptography
Algorithms Simulation Based Performance Analysis, Security
is the most challenging aspects in the internet and network
applications. Internet and networks applications are growing
very fast, so the importance and the value of the exchanged
data over the internet or other media types are increasing.
Hence the search for the best solution to offer the necessary
protection against the data intruders’ attacks along with
providing these services in time is one of the most interesting
subjects in the security related communities. Cryptography is
the one of the main categories of computer security that
converts information from its normal form into an unreadable
that identify and

differentiate one encryption algorithm from another are its

form. The two main characteristics

ability to secure the protected data against attacks and its
speed and efficiency in doing so. This paper provides a fair
comparison between three most common symmetric key
cryptography algorithms: DES, AES, and Blowfish. Since main
concern here is the performance of algorithms under different
settings, the presented comparison takes into consideration
the behavior and the performance of the algorithm when
different data loads are used. The comparison is made on the
basis of these parameters: speed, block size, and key size.

Simulation program is implemented using Java programming

IJCRT2108099 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | a843

http://www.ijcrt.org/

www.ijcrt.org

© 2021 IICRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

[5].

In 2010 Aditya Rajgarhia , Ashish Gehani Proposed
Performance and Extension of User Space File Systems |,
Several efforts have been made over the years for developing
file systems in user space. Many of these efforts have failed to
make a significant impact as measured by their use in
production systems. Recently, however, user space file
systems have seen a strong resurgence. FUSE is a popular
framework that allows file systems to be developed in user
space while offering ease of use and flexibility and discuss the
evolution of user space file systems with an emphasis on
FUSE, and measure its performance using a variety of test
cases. We also discuss the feasibility of developing file
systems in high-level programming languages, by using as an
example Java bindings for FUSE that we have developed. Our
benchmarks show that FUSE offers adequate performance for

several kinds of workloads [6].

3 INTRODUCTION TO CRYPTOGRAPHY

An encryption algorithm plays an important role in securing the
data in storing or transferring it. The encryption algorithms are
categorized into Symmetric (secret) and Asymmetric (public)
keys encryption. In Symmetric key encryption or secret key
encryption, only one key is used for both encryption and
decryption of data. Example: Data encryption standard (DES),
Triple DES, Advanced Encryption Standard (AES) and
Blowfish Encryption Algorithm. In asymmetric key encryption
or public key encryption uses two keys, one for encryption and
other for decryption. Example: RSA

4 BLOWFISH ALGORITHM

Blowfish is a variable-length key block cipher. It does not meet
all the requirements for a new cryptographic standard. It is
only suitable for applications where the key does not change
often, like a communications link or an automatic file encryptor.
It is significantly faster than DES when implemented on 32-bit
microprocessors with large data caches, such as the Pentium
and the PowerPC. Blowfish is one of the fastest block ciphers
in general use, except when changing keys. Each new key
requires pre-processing equivalent to encrypting about 4
kilobytes of text, which is very slow compared to other block
ciphers. This prevents its use in certain applications, but is not
a problem in others, such as SplashID. In an application, it's
actually a benefit especially the password-hashing method

used in OpenBSD uses an algorithm derived from Blowfish

that makes use of the slow key schedule. Blowfish is not
subject to any patents and is therefore freely available for
anyone to use. This has contributed to its popularity in
cryptographic software.

4.1 Blowfish Encryption algorithm

Blowfish was designed in 1993 by Bruce Scheier as a fast,
alternative to existing encryption algorithms. Blowfish is a
block
consideration with

symmetric encryption algorithm designed in

1. Fast: it encrypts data on large 32-bit microprocessors
at a rate of 26 clock cycles per byte.

2. Compact: it can run in less than 5K of memory.

3. Simple: it uses addition, XOR, lookup table with 32-bit

operands.

4. Secure: the key length is variable, it can be in the
range of 32~448 bits: default 128 bits key length.

5. It is suitable for applications where the key does not
change often, like communication link or an automatic
file encryptor.

6. Unpatented and royalty-free.

4.2 Description of the Algorithm

Blowfish is a variable-length key, 64-bit block cipher. The
algorithm consists of two parts: a key expansion part and a
data- encryption part. Key expansion converts a key of at most
448 bits into several sub key arrays totaling 4168 bytes. Data
encryption occurs via a 16-round Feistel network. Each round
consists of a key-dependent permutation, and a key- and data-
dependent substitution. All operations are XORs and additions
on 32-bit words. The only additional operations are four
indexed array data lookups per round.

Sub keys: Blowfish uses a large number of sub keys.
These keys must be pre-computed before any data encryption
or decryption.

1. The P-array consists of 18 32-bit sub keys: P1, P2,...,

P18.

2. There are four 32-bit S-boxes with 256 entries each:

S1,0,S1,1,..., S1,255;

S2,0,S2,1,..,, S2,255;

S3,0, S3,1,..., S3,255;

S4,0, S4,1,..,, S4,255.

Need of digits of pi([) : The use of digits of pi as a initial sub
key table for two reasons:
1. Itis random sequence not related to algorithm.

IJCRT2108099 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | a844

http://www.ijcrt.org/

www.ijcrt.org

© 2021 IICRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

2. It could be either stored as part of the algorithm or derived

when needed.

Generating the Sub keys:

The sub keys are calculated using the Blowfish algorithm. The

exact method is as follows:

1.

Initialize first the P-array and then the four S-boxes, in
order, with a fixed string. This string consists of the
hexadecimal digits of pi (less the initial 3). For

example:

P1 = 0x243f6a88
P2 = 0x85a308d3
P3 = 0x13198a2e
P4 = 0x03707344

2.

XOR P1 with the first 32 bits of the key, XOR P2 with
the second 32-bits of the key, and so on for all bits of
the key (possibly up to P14). Repeatedly cycle
through the key bits until the entire P-array has been
XORed with key bits. (For every short key, there is at
least one equivalent longer key; for example, if Ais a
64-bit key, then AA, AAA, etc., are equivalent keys.)
Encrypt the all-zero string with the Blowfish
algorithm, using the subkeys described in steps (1)
and (2).

Replace P1 and P2 with the output of step (3).
Encrypt the output of step (3) using the Blowfish
algorithm with the modified sub keys.

Replace P3 and P4 with the output of step (5).
Continue the process, replacing all entries of the P-
array, and then all four S-boxes in order, with the
output of the continuously-changing Blowfish
algorithm. In total, 521 iterations are required to
generate all required sub keys. Applications can store
the sub keys rather than execute this derivation

process multiple times.

4.3 Blowfish Encryption

Plamntext

32 Bits

&4 Bits

32 Bits

13 more terations

Pis

Fis

F

32 Bits

i &4 Bits

32 Bits

Ciphertext

Fig 1 : Blowfish Encryption
Blowfish is a Feistel network consisting of 16 rounds. The

input is a 64-bit data element, x.

Divide x into two 32-bi
Fori=11t016:

XL = xL XOR Pi

XR = F(XL) XOR xR
Swap xL and xR

Next i

t halves: xL,xR

Swap xL and xR(Undo thelast swap.)

XR = xR XOR P17
XL = xL XOR P18
Recombine xL and xR

IJCRT2108099 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | a845

P17

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

Function F

Ciphertext

64 Bits

Bbits Bbits 8bits 8 bits

32 Bits F 32 Bits LC;

S-box | | S-box | | S-box | | S-box
1 2 3 |
32bits 32{bits 32\bits 32 |bits ?

]

Rl

\y

13 More Iterations

™
.l

D

y

| |
|

32 Bits 32 Bits

Fig 3: Function F

&4 Bits
r

Divide xL into four eight-bit quarters: a, b,c, and d
F(xL) = ((S1,a + S2,b mod 232) XOR S3,c) + S4,d mod
232

Plaintext

Fig 4: Blowfish decryption

4.4 Blowfish Decryption

Decryption is exactly the same as encryption, except that P1,
P2,..., P18 are used in the reverse order. Implementations of
Blowfish that require the fastest speeds should unroll the loop
and ensure that all Sub keys are stored in cache.

IJCRT2108099 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | a846

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

4.5 Flow chart of Blowfish algorithm 5 RESULT

Select EncFS target directory

‘ Eegin

v

w2 = . o xR

-

¥

xL = L. TOR B
#¥R = Fal) TOR xR

v

Swarap xL and xE

| o« emulated/0

et

Alarms
Android
Audiobooks
DCiImM
Documents

Download

Movies
Music
NMotifications

Pictures

Podcasts
Ringtones
csh.cryptonite

+ Use current folder

. Snapshot 1 Select Target

SW-EIP ZH'I_. -El.'l:’ﬂ }{'R Enter password:

]

xR = xR ZOR P17
#xL = xLEDOR F1&

Recorbine L. and xR q w rpt I O
¢ a s d f g h j k |
<> z X c v b n m &
End
123 ~

Fig 5: Flowchart of Blowfish Algorithm

Snapshot 2 Confirm Password

IJCRT2108099 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | a847

http://www.ijcrt.org/

> |JCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

@
g,.

s 50O i

& gemu-system-x86_64

B

Do a P B

Snapshot 4 Final Output 1

6 CONCLUSION

In this paper, presented an implementation of a portable
filesystem encryption engine that uses NIST certified
cryptographic algorithms for Android mobile devices. We offer
a comparative performance analysis of our encryption engine
under different operating conditions and for different loads
including file and database (DB) operations. By optimizing the
file system block-size and I/0O mode, we were able to gain 20%
to 57% performance. There are various encryption algorithms
available like AES, DES, 3DES, blowfish. Therefore, we
conclude that our encryption engine is easily portable to any
Android device and the overhead due to the encryption
scheme is an acceptable trade-off for achieving the
confidentiality requirement.

REFERENCES

[1] Zhaohui Wang, Rahul Murmuria, Angelos Stavrou,”
Implementing and Optimizing an Encryption File system
on Android”,2012

[2] Pratap Chnadra
Algorithm”, 2012.

[3] M. Anand Kumar and Dr.S.Karthikeyan,” Investigating the
Efficiency of Blowfish and Rejindael (AES)
Algorithms”,2012.

[4] Jawahar Thakur1 , Nagesh Kumar,” DES, AES and
Blowfish: Symmetric Key Cryptography Algorithms
Simulation Based Performance Analysis”,2011.

[5] Aditya Rajgarhia , Ashish Gehani,” Performance and
Extension of User Space File Systems”,2010.

Mandal, “Superiority of Blowfish

[6] “Android honeycomb encryption,”
http://source.android.com/tech/encryption/android __ crypto
implementation.html.

[7]1 “Whispercore android device encryption,”

http://whispersys. com/whispercore.html.

[8] “Openssil fips 1402 security policy, version 1.2.”

[9] Independent Security Evaluators, “Exploiting android,”
http://securityevaluators.com/content/case-
studies/android/ index.jsp.

[10] S.Pavithra, Mrs. E. Ramadevi “STUDY AND
PERFORMANCE ANALYSIS OF CRYPTOGRAPHY
ALGORITHMS 7 International Journal of Advanced
Research in Computer Engineering & Technology Volume
1, Issue 5, July 2012 14, pp.82-86

[11] Independent Security Evaluators, “Exploiting android,”
http://securityevaluators.com/content/case-
studies/android/ index.jsp.

[12]J. P. Anderson, “Computer security technology planning
study, volume II,” Deputy for Command and Management
Systems, HQ Electronics Systems Division (AFSC), L. G.
Hanscom Field, Bedford, MA, Tech. Rep. ESD-TR-73-51,
October 1972.

[13] “Fips pub 1402, security requirements for cryptographic

modules.” [Online]. Available:
http://csrc.nist.gov/publications/ fips/fips1402/fips1402.pdf
[14] “Boost c++ - library,” = http://www.boost.org/. [Online].

Available: http://www.boost.org/.
[15] “Librlog,” http://www.arg0.net/rlog.

IJCRT2108099 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | a848

http://www.ijcrt.org/
http://source.android.com/tech/encryption/android%20crypto%20implementation.html
http://source.android.com/tech/encryption/android%20crypto%20implementation.html
http://whispersys/
http://securityevaluators.com/content/case-studies/android/
http://securityevaluators.com/content/case-studies/android/
http://securityevaluators.com/content/case-studies/android/
http://securityevaluators.com/content/case-studies/android/
http://csrc.nist.gov/publications/
http://www.boost.org/

