
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRT2108099 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a842

Optimizing an Encryption File System On Android

through Blowfish Algorithm
Miss Kirti . P. Lokhande

ME(CSE) 3rd Sem
G.H. Raisoni College of Engineering,Amravati

Dr. Mahip M. Bartere

Asst Prof. (CSE)
G.H. Raisoni College of Engineering,Amravati

Abstract— Recently smart gadgets including smart phones and tablets are gaining popularity. These devices contain Personal

Identifiable Information. An attacker can compromise a smart phone and gain full control of it by connecting another computing
device to it using the USB physical link. Moreover, by simply capturing the smart phones physically, adversaries have access to
confidential or even classified data if the owners are the government officials or military personnel. In this papert, here discuss a
secure and encrypted file system on Android operating system and optimize the performance using certified encryption algorithm
BlowFish provided in OPENSSL libraries. This paper presents EncFS which is a FUSE (File system in USErspace) based file-
system offering encryption file system to protect the removable and persistent storage on heterogeneous smart gadget devices
running the Android platform. In this papet, the data at rest including physical partition on the device and removable storage card
is encrypted using user provided password. The encrypted file system is mounted only after successful password verification
with user at system boot up.

Index Terms— Smart handheld devices, Full disk encryption, Encrypted filesystem, Blowfish, Encryption, Decryption.

1 INTRODUCTION

Technology trends in both hardware and software have driven
the hardware industry towards smaller, faster and more
capable mobile hand-held devices that can support a wider-
range of functionality and open source operating systems.
Mobile hand-held devices are popularly called smart gadgets
(e.g. smart phones, tablets, e-book readers). The smart
gadget life-cycle has evolved drastically in recent years. These
new generations of the smart gadget devices such as the
iPhone and Google Android devices are powerful enough to
accomplish most of the tasks that previously required a
personal computer. However, smart gadgets have to come a
long way in terms of security. Organizations have come to
realize that these commercially available smart gadgets will
soon have to serve as an integral part of their operations. This
requires a level of security that allows for security of data at-
rest and on the move to support secure communications.
Major challenges in providing file system encryption in mobile
devices are:

1. A major obstacle is that there is a serious lack of
National Institute of Standards (NIST) approved
encryption algorithms on these commercially available
smart gadgets.

2. On smart gadgets where resources, like the battery,
are very limited, it is important to keep a low footprint
on such solutions.

3. The expectation for each individual application to
support encryption runs into the key management

problem: other applications in the system can
potentially gain access to the key and render the
encryption useless.

4. This system has to be ubiquitous and integrate into
the ecosystem of smart gadgets with minimal
maintenance and installation cost.

Therefore, there is a need for a practical approach to build
common security libraries that operate at the operating system
level and provide strong encryption. In this paper, the focus is
on analyzing the performance for persistent storage protection
using encryption on smart gadget devices. The paper uses
EncFS which is a FUSE (File system in USErspace) based
encryption file system and uses certified cryptographic
algorithms to store encrypted versions of every file in a source
directory. The volume key is decrypted using a password
supplied by the user. This is different from full-disk encryption
software because the protected data is mounted in memory at
a specified mount point in the file system. Since file I/O
operations on the mount point eventually hit the encrypted
copy of the file on the underlying file system, various
performance optimizations can be possible by adjusting the
file system parameters such as block size, buffer size. Finally,
we discuss the limitations of file system encryption and
demonstrate that it is feasible on smart gadget devices with a
reasonable performance overhead. Additionally, this paper
leverages advantages provided by underlying operating
system:

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRT2108099 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a843

1. Use of NIST validated cryptographic libraries which
are not implemented in kernel-space.

2. The proposed implementation can be extended to
different hardware with negligible effort.

3. This paper needs to focus on data encryption without
having to deal with other aspects of file system
design. Underlying file systems like ext3 and yaffs2
already have strong support for handling data-
corruption and journaling.

2 LITERATURE SURVEY

In 2012 Zhaohui Wang, Rahul Murmuria, Angelos Stavrou

[1] has presented Implementing and Optimizing an Encryption

File system on Android ,a novel FUSE (Filesystem in

USErspace) encryption file system to protect the removable

and persistent storage on heterogeneous smart gadget

devices running the Android platform. The proposed file

system leverages NIST certified cryptographic algorithms to

encrypt the data at-rest. We present an analysis of the security

and performance trade-offs in a wide-range of usage and load

scenarios. Using existing known micro benchmarks in devices

using encryption without any optimization, we show that

encrypted operations can incur negligible overhead for read

operations and up to twenty (20) times overhead for write

operations for I/O intensive programs. In addition, we

quantified the database transaction performance and we

observed a 50% operation time slowdown on average when

using encryption. We further explore generic and device

specific optimizations and gain 10% to 60% performance for

different operations reducing the initial cost of encryption.

Finally, we show that our approach is easy to install and

configure across all Android platforms including mobile

phones, tablets, and small notebooks without any user

perceivable delay for most of the regular Android applications

[1].

In 2012 Pratap Chnadra Mandal has presented Superiority

of Blowfish Algorithm, containing Information Security has

been very important issue in data communication. Any loss or

threat to information can prove to be great loss to the

organization. Encryption technique plays a main role in

information security systems. This paper provides a fair

comparison between four most common and used symmetric

key algorithms: DES, 3DES, AES and Blowfish. A comparison

has been made on the basis of these parameters: rounds

block size, key size, and encryption / decryption time, CPU

process time in the form of throughput and power

consumption. These results show that blowfish is better than

other algorithm [2].

In 2012 M. Anand Kumar and Dr.S.Karthikeyan has

presented Investigating the Efficiency of Blowfish and

Rejindael (AES) Algorithms, The growth rate of the internet

exceeds than any other technology which is measured by

users and bandwidth. Internet has been growing at a rapid rate

since its conception, on a curve geometric and sometimes

exponential. Today, the Internet is moving exponentially in

three different directions such as size, processing power, and

software sophistication making it the fastest growing

technology humankind has ever created. With the rapid growth

of internet, there is need to protect the sensitive data from

unauthorized access. Cryptography plays a vital role in the

field of network security. Currently many encryption algorithms

are available to secure the data but these algorithms consume

lot of computing resources such as battery and CPU time. This

paper mainly focuses on two commonly used symmetric

encryption algorithms such as Blowfish and Rejindael. These

algorithms are compared and performance is evaluated.

Experimental results are given to demonstrate the

performance of these algorithms [4].

In 2011 Jawahar Thakur1 , Nagesh Kumar has presented

DES, AES and Blowfish: Symmetric Key Cryptography

Algorithms Simulation Based Performance Analysis, Security

is the most challenging aspects in the internet and network

applications. Internet and networks applications are growing

very fast, so the importance and the value of the exchanged

data over the internet or other media types are increasing.

Hence the search for the best solution to offer the necessary

protection against the data intruders’ attacks along with

providing these services in time is one of the most interesting

subjects in the security related communities. Cryptography is

the one of the main categories of computer security that

converts information from its normal form into an unreadable

form. The two main characteristics that identify and

differentiate one encryption algorithm from another are its

ability to secure the protected data against attacks and its

speed and efficiency in doing so. This paper provides a fair

comparison between three most common symmetric key

cryptography algorithms: DES, AES, and Blowfish. Since main

concern here is the performance of algorithms under different

settings, the presented comparison takes into consideration

the behavior and the performance of the algorithm when

different data loads are used. The comparison is made on the

basis of these parameters: speed, block size, and key size.

Simulation program is implemented using Java programming

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRT2108099 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a844

[5].

In 2010 Aditya Rajgarhia , Ashish Gehani Proposed

Performance and Extension of User Space File Systems ,

Several efforts have been made over the years for developing

file systems in user space. Many of these efforts have failed to

make a significant impact as measured by their use in

production systems. Recently, however, user space file

systems have seen a strong resurgence. FUSE is a popular

framework that allows file systems to be developed in user

space while offering ease of use and flexibility and discuss the

evolution of user space file systems with an emphasis on

FUSE, and measure its performance using a variety of test

cases. We also discuss the feasibility of developing file

systems in high-level programming languages, by using as an

example Java bindings for FUSE that we have developed. Our

benchmarks show that FUSE offers adequate performance for

several kinds of workloads [6].

3 INTRODUCTION TO CRYPTOGRAPHY

An encryption algorithm plays an important role in securing the

data in storing or transferring it. The encryption algorithms are

categorized into Symmetric (secret) and Asymmetric (public)

keys encryption. In Symmetric key encryption or secret key

encryption, only one key is used for both encryption and

decryption of data. Example: Data encryption standard (DES),

Triple DES, Advanced Encryption Standard (AES) and

Blowfish Encryption Algorithm. In asymmetric key encryption

or public key encryption uses two keys, one for encryption and

other for decryption. Example: RSA

4 BLOWFISH ALGORITHM

Blowfish is a variable-length key block cipher. It does not meet

all the requirements for a new cryptographic standard. It is

only suitable for applications where the key does not change

often, like a communications link or an automatic file encryptor.

It is significantly faster than DES when implemented on 32-bit

microprocessors with large data caches, such as the Pentium

and the PowerPC. Blowfish is one of the fastest block ciphers

in general use, except when changing keys. Each new key

requires pre-processing equivalent to encrypting about 4

kilobytes of text, which is very slow compared to other block

ciphers. This prevents its use in certain applications, but is not

a problem in others, such as SplashID. In an application, it’s

actually a benefit especially the password-hashing method

used in OpenBSD uses an algorithm derived from Blowfish

that makes use of the slow key schedule. Blowfish is not

subject to any patents and is therefore freely available for

anyone to use. This has contributed to its popularity in

cryptographic software.

4.1 Blowfish Encryption algorithm

Blowfish was designed in 1993 by Bruce Scheier as a fast,

alternative to existing encryption algorithms. Blowfish is a

symmetric block encryption algorithm designed in

consideration with

1. Fast: it encrypts data on large 32-bit microprocessors

at a rate of 26 clock cycles per byte.

2. Compact: it can run in less than 5K of memory.

3. Simple: it uses addition, XOR, lookup table with 32-bit

operands.

4. Secure: the key length is variable, it can be in the

range of 32~448 bits: default 128 bits key length.

5. It is suitable for applications where the key does not

change often, like communication link or an automatic

file encryptor.

6. Unpatented and royalty-free.

4.2 Description of the Algorithm

Blowfish is a variable-length key, 64-bit block cipher. The

algorithm consists of two parts: a key expansion part and a

data- encryption part. Key expansion converts a key of at most

448 bits into several sub key arrays totaling 4168 bytes. Data

encryption occurs via a 16-round Feistel network. Each round

consists of a key-dependent permutation, and a key- and data-

dependent substitution. All operations are XORs and additions

on 32-bit words. The only additional operations are four

indexed array data lookups per round.

 Sub keys: Blowfish uses a large number of sub keys.

These keys must be pre-computed before any data encryption

or decryption.

1. The P-array consists of 18 32-bit sub keys: P1, P2,...,

P18.

2. There are four 32-bit S-boxes with 256 entries each:

S1,0, S1,1,..., S1,255;

S2,0, S2,1,..,, S2,255;

S3,0, S3,1,..., S3,255;

S4,0, S4,1,..,, S4,255.

Need of digits of pi(∏) : The use of digits of pi as a initial sub

key table for two reasons:

1. It is random sequence not related to algorithm.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRT2108099 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a845

2. It could be either stored as part of the algorithm or derived

when needed.

Generating the Sub keys:

The sub keys are calculated using the Blowfish algorithm. The

exact method is as follows:

1. Initialize first the P-array and then the four S-boxes, in

order, with a fixed string. This string consists of the

hexadecimal digits of pi (less the initial 3). For

example:

P1 = 0x243f6a88

P2 = 0x85a308d3

P3 = 0x13198a2e

P4 = 0x03707344

2. XOR P1 with the first 32 bits of the key, XOR P2 with

the second 32-bits of the key, and so on for all bits of

the key (possibly up to P14). Repeatedly cycle

through the key bits until the entire P-array has been

XORed with key bits. (For every short key, there is at

least one equivalent longer key; for example, if A is a

64-bit key, then AA, AAA, etc., are equivalent keys.)

3. Encrypt the all-zero string with the Blowfish

algorithm, using the subkeys described in steps (1)

and (2).

4. Replace P1 and P2 with the output of step (3).

5. Encrypt the output of step (3) using the Blowfish

algorithm with the modified sub keys.

6. Replace P3 and P4 with the output of step (5).

7. Continue the process, replacing all entries of the P-

array, and then all four S-boxes in order, with the

output of the continuously-changing Blowfish

algorithm. In total, 521 iterations are required to

generate all required sub keys. Applications can store

the sub keys rather than execute this derivation

process multiple times.

4.3 Blowfish Encryption

Fig 1 : Blowfish Encryption

Blowfish is a Feistel network consisting of 16 rounds. The

input is a 64-bit data element, x.

Divide x into two 32-bit halves: xL,xR

For i = 1 to16:

xL = xL XOR Pi

xR = F(xL) XOR xR

Swap xL and xR

Next i

Swap xL and xR(Undo thelast swap.)

xR = xR XOR P17

xL = xL XOR P18

Recombine xL and xR

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRT2108099 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a846

Function F

Fig 3: Function F

Divide xL into four eight-bit quarters: a, b,c, and d

F(xL) = ((S1,a + S2,b mod 232) XOR S3,c) + S4,d mod

232

4.4 Blowfish Decryption

Decryption is exactly the same as encryption, except that P1,

P2,..., P18 are used in the reverse order. Implementations of

Blowfish that require the fastest speeds should unroll the loop

and ensure that all Sub keys are stored in cache.

Fig 4: Blowfish decryption

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRT2108099 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a847

4.5 Flow chart of Blowfish algorithm

Fig 5: Flowchart of Blowfish Algorithm

5 RESULT

Snapshot 1 Select Target

Snapshot 2 Confirm Password

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRT2108099 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a848

Snapshot 3 Final Output 1

Snapshot 4 Final Output 1

6 CONCLUSION

In this paper, presented an implementation of a portable
filesystem encryption engine that uses NIST certified
cryptographic algorithms for Android mobile devices. We offer
a comparative performance analysis of our encryption engine
under different operating conditions and for different loads
including file and database (DB) operations. By optimizing the
file system block-size and I/O mode, we were able to gain 20%
to 57% performance. There are various encryption algorithms
available like AES, DES, 3DES, blowfish. Therefore, we
conclude that our encryption engine is easily portable to any
Android device and the overhead due to the encryption
scheme is an acceptable trade-off for achieving the
confidentiality requirement.

REFERENCES

[1] Zhaohui Wang, Rahul Murmuria, Angelos Stavrou,”

Implementing and Optimizing an Encryption File system

on Android”,2012

[2] Pratap Chnadra Mandal, “Superiority of Blowfish

Algorithm”, 2012.

[3] M. Anand Kumar and Dr.S.Karthikeyan,” Investigating the

Efficiency of Blowfish and Rejindael (AES)

Algorithms”,2012.

[4] Jawahar Thakur1 , Nagesh Kumar,” DES, AES and

Blowfish: Symmetric Key Cryptography Algorithms

Simulation Based Performance Analysis”,2011.

[5] Aditya Rajgarhia , Ashish Gehani,” Performance and

Extension of User Space File Systems”,2010.
[6] “Android honeycomb encryption,”

http://source.android.com/tech/encryption/android crypto
implementation.html.

[7] “Whispercore android device encryption,”
http://whispersys. com/whispercore.html.

[8] “Openssl fips 1402 security policy, version 1.2.”
[9] Independent Security Evaluators, “Exploiting android,”

http://securityevaluators.com/content/case-
studies/android/ index.jsp.

[10] S.Pavithra, Mrs. E. Ramadevi “STUDY AND
PERFORMANCE ANALYSIS OF CRYPTOGRAPHY
ALGORITHMS ” International Journal of Advanced
Research in Computer Engineering & Technology Volume
1, Issue 5, July 2012 14, pp.82-86

[11] Independent Security Evaluators, “Exploiting android,”
http://securityevaluators.com/content/case-
studies/android/ index.jsp.

[12] J. P. Anderson, “Computer security technology planning
study, volume II,” Deputy for Command and Management
Systems, HQ Electronics Systems Division (AFSC), L. G.
Hanscom Field, Bedford, MA, Tech. Rep. ESD-TR-73-51,
October 1972.

[13] “Fips pub 1402, security requirements for cryptographic
modules.” [Online]. Available:
http://csrc.nist.gov/publications/ fips/fips1402/fips1402.pdf

[14] “Boost c++ library,” http://www.boost.org/. [Online].
Available: http://www.boost.org/.

[15] “Librlog,” http://www.arg0.net/rlog.

http://www.ijcrt.org/
http://source.android.com/tech/encryption/android%20crypto%20implementation.html
http://source.android.com/tech/encryption/android%20crypto%20implementation.html
http://whispersys/
http://securityevaluators.com/content/case-studies/android/
http://securityevaluators.com/content/case-studies/android/
http://securityevaluators.com/content/case-studies/android/
http://securityevaluators.com/content/case-studies/android/
http://csrc.nist.gov/publications/
http://www.boost.org/

