
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882

IJCRT2107304 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c612

Least First Sort - New sorting algorithm

Swarna Saha

Narula Institute of Technology

Kolkata, India

Sauna Roy

Narula Institute Of Technology

Kolkata, India

Subhasree Bhattacharjee

Narula Institute of Technology

Kolkata, India

Abstract: Sorting is the process of organising data or specific elements into meaningful order so that

analysis can be done more efficiently. In this paper, we are intending to introduce a new sorting

algorithm called Least-First Sort. In this technique, after each stage of comparison, the smallest

element will come first. We have compared the algorithm with other sorting algorithms. We have

done the comparison with 10000 to 60000 elements. To the best of our knowledge, the newly

proposed algorithm results the least run time than Bubble Sort and Selection Sort.

Keywords: sorting; complexity; smallest; algorithm.

I. Introduction

The process of sorting the data is a fundamental algorithmic problem in the data structure. It helps

to solve many problems in our daily life as well as in the technological world. A programmer face

with many tasks, many problems and sorting algorithms help them to solve the tasks. Nowadays

there are so many different sorting algorithms have been developed. They are developed by using

some methods like divide and conquer, insertion, randomization, exchange, merging etc. [1].

There are too many sorting algorithms, but all are not predominating. Dominate algorithms are

implemented in industrial case [2].

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882

IJCRT2107304 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c613

Primarily sorting algorithms are used depending on what they are needed for. This means we need

a different sorting technique for different circumstances. In our daily life, sorting algorithms are

used to sort the data. For example, if there is a database table that has some attributes like Name,

Roll No., Age, etc. and Roll No. is the primary key. Then it will be easy to arrange the data

according to their Roll No. using a sorting method, in case the data are randomly arranged.

There are many sorting algorithms out there that we can choose for our specific purposes. While

considering which algorithm to choose, we need to consider many factors like different kinds of

complexities. There are two types of complexities in the sorting method. Time complexity and

space complexity. It is very important to reduce the complexity. Generally sorting algorithms is

divided into two categories [3].

1. Comparison Sorting

This type of sorting technique compares elements at every step of the algorithm to decide where the

individual elements should be of another element.

Comparison sorts are normally more straightforward to achieve than integer sorts but compare sorting

technique is limited by a lower bound of O(nlogn), implying that, on average, comparison sorts cannot

be faster than O(nlogn). A lower bound for an algorithm is the worst-case running time of

the best possible algorithm for a given problem.

Time complexity depends on the number of elements used in the sorting algorithm [4]. The complexity

in ascending order is O(n), (nlogn), O(n2). That means O(n) is the best for complexity because it gives

the lowest execution time then (nlogn) then O(n2).
Some of the most famous comparison sort example includes, Quick sort [5], Heap sort [6], Shell sort,

Merge sort, Intro sort, Insertion sort, Selection sort, Bubble sort, etc.

2. Integer Sorting (also known as Non- Comparison Sorting)

Integer sorts are called counting sorts. Integer sorts do not perform comparisons, so they are not limited

by Ω(nlogn). Integer sorts determine for each element x, how many elements are less than x. If there are

14 elements, that are less than x, then x will be placed in the 15th slot. This knowledge is used to place

each element into the correct opening immediately—no need to rearrange the lists.

In non-comparison based sorting, elements of an array are not compared with each other to find the

sorted array.

● Radix sort –
Best, average and worst-case time complexity: nk

where k is the maximum number of digits in elements of an array.

● Count sort –
Best, average and worst-case time complexity: n+k

where k is the size of the count array.

● Bucket sort –
Best and average time complexity: n+k

where k is the number of buckets.

Worst-case time complexity: n^2

if all elements belong to the same bucket. [7]

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882

IJCRT2107304 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c614

II. Overviews and analysis of some well-known sorting techniques

Bubble Sort

 This sort is a comparison based sort. Here sorting is progressed by comparing a data of the array with the

next data of the array. The algorithm works until (n-1) pass where n is the number of elements Complexity of

this sort O(n2) in the worst and average case. It is a simple and less complex sorting technique.

Selection sort

 This sorting algorithm follows the method selection of the smallest. That means to select an element of

the array and compare all the elements of the array with it. The process is working until n passes where n is the

number of elements [2].

The complexity of this sorting is O(n2). But this sort is not efficient for a large array.

Insertion sort
 This sort is a compared based sort. The elements of the array are compared with each element. After

comparing the element takes its position in some particular order. This procedure follows the game of cards. It

works by inserting an element at a particular position.

III. Working procedure and algorithm of least first sort

PROCEDURE:

The basic process of the working of the least first sort is given as follows:

(a) In Pass 1, A[0] and A[N-1] are compared, then A[0] is compared with A[N-2], A[0] is compared with

A[N-3], and so on. Finally, A[0] is compared with A[1]. Pass 1 involves n–1 comparisons and after comparing and swapping the

smallest element takes place at the A[0].

 (b) In Pass 2, A[1] and A[N-1] are compared, then A[1] is compared with A[N-2], A[1] is compared with

A[N-3], and so on. Finally, A[1] is compared with A[2]. Pass 2 involves n–2 comparisons and after comparing and swapping the next

smallest element takes place at the A[1].

(c) In Pass 3, A[2] and A[N-1] are compared, then A[2] is compared with A[N-2], A[0] is compared with

A[N-3], and so on. Finally, A[2] is compared with A[3]. Pass 3 involves n–3 comparisons and after comparing and swapping the 3rd

smallest element takes place at the A[2].

(d) In Pass n–1, A[N-1] and A[N] are compared so that A[N-1]<A[N]. After this step, all the elements of

the array is arranged in ascending order.

EXAMPLE :

PASS

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882

IJCRT2107304 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c615

Similar passes for other elements.

Algorithm

STEP 1: Initialize

STEP 2: Repeat for l=0 to n

STEP 3: Repeat for g=(n-1) to l

STEP 4: if(a[l] >a[g])

 swap a[l] and a [g]

 End if

 End loop

STEP 5: End loop

STEP 9: END

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882

IJCRT2107304 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c616

IV. Case study of least first sort

In this section we are analysing the performance of LEAST FIRST SORTING and comparing the performance with other well-known

sorting techniques.

(i) Worst Case:

When data is sorted either in ascending or descending order then best case will occur. In this case only comparison is done. No

swapping is required.

 For n elements,

- in the first pass (n-1) comparison required

- in the second pass (n-2) comparison needed

 So, total comparison needed=T(n)

 =(n-1)+(n-2)+..........+(n-(n-1))

 =O(n2)

(ii) Average Case:

Performance of sorting when evaluated in average case then random data need to be considered.

 In random case, for 10000 elements time required is 187. 721ms.

Total comparison required is O(n2) in this case.

V. Comparison with well-known Sorting Algorithms

FOR 10000 elements

NAME OF

SORTING

 TIME TAKEN BY SORTING TECHNIQUES(in ms)

1 2 3 4 5 6 AVERAG

E

BUBBLE 300.932 343.711 237.215 237.784 323.579 239.213 244.406

SELECTION 249.193 208.314 242.128 203.832 164.751 263.339 221.926

INSERTION 164.330 154.089 108.882 73.659 167.035 145.056 135.5085

QUICK 5.056 4.659 3.717 5.066 5.058 5.061 4.7695

MERGE 4.714 4.715 6.508 5.129 6.439 6.516 5.670

LEAST-FIRST 184.237 221.219 207.751 178.859 201.951 132.309 187.721

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882

IJCRT2107304 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c617

FOR 20000 ELEMENTS

NAME OF

SORTING

 TIME TAKEN BY SORTING TECHNIQUES(in ms)

1 2 3 4 5 6 AVERAG

E

BUBBLE 1051.443 964.823 971.687 1064.721 1038.167 962.219 1008.84

SELECTION 661.053 616.351 621.842 561.889 633.003 618.731 356.1097

INSERTION 335.365 367.161 347.608 320.101 334.882 401.541 618.8115

QUICK 11.171 10.614 11.030 11.013 10.700 11.025 10.93

MERGE 13.516 12.866 13.605 13.441 8.278 13.781 12.58

LEAST-FIRST 606.946 510.439 608.805 558.589 622.907 616.927 588.6

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882

IJCRT2107304 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c618

FOR 30000 ELEMENTS

NAME OF

SORTING

 TIME TAKEN BY SORTING TECHNIQUES(in ms)

1 2 3 4 5 6 AVERAG

E

BUBBLE 2244.853 2207.052 2376.420 2207.364 2214.017 2313.600 2260.551

SELECTION 1276.382 1262.456 1317.8480 1270.115 1287.416 1286.485 1283.45

INSERTION 630.764 719.781 751.354 710.108 704.126 706.747 703.81

QUICK 12.181 13.525 13.568 15.196 16.482 13.551 14.084

MERGE 18.179 8.980 11.212 20.153 20.018 18.832 16.229

LEAST-FIRST 1114.122 1137.429 1157.431 1125.803 1114.427 1217.150 1144.394

FOR 40000 ELEMENTS

NAME OF

SORTING

 TIME TAKEN BY SORTING TECHNIQUES(in ms)

1 2 3 4 5 6 AVERAGE

BUBBLE 4068.297 4110.165 4010.122 4084.865 4004.996 4008.773 4047.8697

SELECTION 2124.927 2123.295 2067.118 2126.148 2125.300 2180.036 2124.470

INSERTION 1197.157 1206.384 1118.178 1183.461 1204.298 1200.976 1185.0757

QUICK 11.717 19.717 19.175 21.824 15.771 18.933 17.856

MERGE 25.633 16.279 13.816 23.541 25.901 24.675 21.640

LEAST-FIRST 2007.400 2066.947 2075.914 1998.457 1958.633 1962.924 2011.7125

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882

IJCRT2107304 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c619

FOR 50000 ELEMENTS

NAME OF

SORTING

 TIME TAKEN BY SORTING TECHNIQUES(in ms)

1 2 3 4 5 6 AVERAGE

BUBBLE 6331.342 6426.341 6363.233 6335.358 6384.409 6384.030 6370.7855

SELECTION 3275.189 3271.414 3188.651 3187.897 3275.119 3271.018 3244.88

INSERTION 1850.325 1779.815 1845.694 1827.848 1798.386 1855.709 1826.296

QUICK 23.530 22.617 23.545 22.715 23.319 19.381 22.5178

MERGE 32.461 29.421 22.488 31.270 22.509 29.412 27.9268

LEAST-FIRST 3054.896 3151.587 3067.161 3137.647 3108.880 3090.979 3101.8583

VI. Conclusion

In this paper comparison between our newly proposed algorithms least first sort and other sorting techniques have been done. In

this sorting, the time taken for a different number of an element is compared with another sorting method. It is found that the running

time of least first sort is lower than bubble sort and selection sort. But higher than quick sort and merge sort. In future, we will try to

reduce complexity by introducing a divide and conquer strategy.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 7 July 2021 | ISSN: 2320-2882

IJCRT2107304 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c620

 VII. Reference

[1]International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249 – 8958, Volume-3, Issue-1, October 2013

[2]International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN: 2278-3075, Volume-8 Issue-12, October 2

[3]Communications of ACM SIGPALN, Vol.31, No.3, March, 1996, ACM, pp.28-36

[4]S. Jadoon , S.Solehria, S.Rehman and H.Jan.(2011,FEB). " Design and Analysis of Optimized Selection Sort Algorithm".11. (1),pp. 16-

21.

Available: http://www.ijens.org/IJECS%20Vol%2011%20Issue%2001.html.

[5] C.A.R. Hoare, "Algorithm 64: Quicksort," Communications of the ACM, Vol. 4 , pp. 321, 1961.

[6] J.W.J. Williams. "Algorithm 232: Heapsort," Communication of the ACM, No.7, pp.347-348, 1964.

[7] Available at: https://www.geeksforgeeks.org/analysis-of-different-sorting-techniques/

[8] Cormen, T.H., Leiserson, C.E., & Rivest, R.L. Introduction to Algorithms (2nd ed.). Prentice Hall of India private limited, New Delhi-110001
(2001).

http://www.ijcrt.org/

