

Role of Diatoms in Genetics of Cancer Drug Delivery

¹Lovepreet kaur, ²Rishanpreet Kaur and ³Shristy Gautam

¹M.Sc. Student, ²M.Sc. Student, ³Assistant Professor

¹Department of Molecular biology and Genetic Engineering, School of Bioengineering and Biosciences,

¹Lovely Professional University, Punjab, India

Abstract: Diatoms are microalgae that live in the houses made of the glass which is made of silica wall. Diatoms are the only organisms on the planet whose cell wall is composed of opaline silica which is transparent. The Diatomaceous earth, which is a substance that composed of the fossil of diatoms which is used in the filters, for insulation purpose, paints, as a base in the dynamite and abrasives like products. This review is based on the role of diatoms in the cancer drug delivery. The capacity to specifically kill such cancer cell that are large in populations while leaving solid cells which is unaffected is a critical objective in anticancer therapies and its treatment. The utilization of nano- porous material which is silica-based substance used as drug delivery method and used as vehicles which has recently proven and very successful method, yet creation of these materials requires exorbitant and toxic synthetics. Microalgae-determined nano- porous biosilica from diatoms are used to deliver chemotherapy drugs or medications to the cancer cells of the organisms that suffer from cancer. The species of diatom like *Thalassiosira* and *Phaeodactylum* is well defined and genetically designed to show an IgG-binding domain of the protein G which is present on the biosilica surface of the diatom which, empowering the connection of cell which targeting on the antibodies. The Neuroblastoma and the B-lymphoma cells that are specifically well being targeted and killed by the biosilica showing explicit antibodies which sorbed with drug loaded nanoparticles. The treatment with the exact similar biosilica prompts tumor growth relapse in a subcutaneous mouse xenograft which is a method where the mice is the model of neuroblastoma. Therefore, it is observed that hereditarily designed biosilica frustules might be utilized as flexible 'backups' for the targeted delivery of ineffectively water-dissolvable anticancer drugs to the tumor specific sites.

Keywords – Diatoms, Nanoporous, Cancer, Antibodies, Biosilica.

I. INTRODUCTION

As we know that cancer is the major cause of the morbidity and mortality in worldwide, with an estimated range of 18.1 million new cases and such 9.6 million deaths in the 2018. There are various in number which is over 200 types of cancers are present, and then some can spread to other tissues in the body, leading to the metastases and cause death. The cancer progression increase when it harm the genes and it caused by the damaged the DNA structure, abnormal DNA repair mechanism, activation of the cancerous tumors which leads to the death directly, damaged tumor suppression activity where the cells are dividing continuously there is no apoptosis, and promotion of cellular survival by the angiogenesis, and the metastasis. Cancer cases are incidences have been projected to the increase globally by about 68% in the 2030. The Diatoms are a large group of microalgae which is one-cell organism entities which sport clear cell walls which is made up of hydrated silicon dioxide or silica which is a similar kind of permeable material utilized in fabricated nanoparticle medication. These algae growth are only four to six micrometers in diameter, more than ten times less than the width of a human hair. That is the reason the scientists have been dealing with nanoparticle-based cancer drug delivery, and have been sending drug-stacked, permeable silica particles into the body to target tumor cells. The production of these kinds of nanoparticles is costly and requires mechanical synthetic compounds, for example, hydrofluoric acids. The Examination by scientists on porous which contains the pores that silica-based substance has shown the capability for drug delivery include the applications because of that all-inclusive drug which have release its own potential and high viability in delivery water repelling drugs (Vallet-Regí et. al., 2007). Surely, the utilization of nano-porous silica materials for drug delivery is a foundation of the blossoming field of the Nano drugs (McInnes et. al., 2012). The most recently researched silica contains substance for drug delivery are meso structure like porous silica and which is oxidized permeable silicon. Then both element with high surface and spaced area, warm conditions, tunable like pore size of the silica, synthetic idleness, great impact of the biocompatibility and (mainly at any rate on account of permeable silicon) biodegradability. Synthetic functionalization takes into account the fitting of drug restricting and release properties (Simovic et. al., 2011), and for the covalent structure immobilization of useful structure of the antibody particles to the species of diatom containing the pores in the silica (Bariana et. al., 2013). Then consolidating both antibody connection and drug delivery vehicle on a similar diatom silica molecule ought to consider target delivery of genetics to the drug to explicit areas in vivo, for instance, to the cancer cells. Then there is the actively potential of the well targeting of the drug delivery of the inserts which utilizing antibodies which target tumor cells by means of related cell layer

receptors overexpressed in cancer has been appeared to improve remedial results in malignant growth of cancer cells and prevent off target delivery related side effects (Townley et. al., 2008). In any case, concurrent restricting of drugs and antibodies to diatom silica particles has not been accomplished and has scarcely been explored for engineered meso like pores formed porous silica substance (Brannon-Peppas et. al., 2004). Until now, there is just a single fruitful model that explains and has exhibited the targeted insertion or the delivery in doxorubicin that is defined when it testing to cancer-bearing tissue in the lab where the mice utilizing active antibody which is effective specific antibody functionalized mesoporous silica nanoparticles (Natarajan et. al., 2014).

II. HOW THE ANTIBODIES (GB1) DISPLAY ITS FUNCTIONS IN DIATOMS?

Thalassiosira pseudonana is a diatom which is utilized for the investigation, since this technique has been set up for method like in vivo where the joining of the foreign proteins enters into the biosilica of this diatom, which then utilizing the genetic engineering (Chen et. al., 2013). This strategy, authored LiDSI, depends on presenting a manufactured quality that well encoded the protein with premium combined to an amino-terminal sign peptide (S) and the peptide T8 into the diatom's genome where the whole genetic content is present. Both S (17 amino acids) and T8 (37 amino acids) are gotten from silaffin-3 (231 amino acids), which is a characteristic segment of *T. pseudonana* biosilica (Poulson et. al., 2004). The blend of S and T8 goes about as intracellular location tag for forever securing proteins into the biosilica during its formation. Up to this point, LiDSI has been utilized uniquely to consolidate green fluorescent protein (GFP) and catalysts into biosilica. The fuse GB1 into *T. pseudonana* biosilica, the combination quality S-T8-GFP (green fluorescent protein)-GB1 was built through recombinant DNA innovation and afterward fused into the genome of the diatom *T. pseudonana* and expressed utilizing set up protocols. The GFP tag was acquainted with recognize transformants that express the GB1 fusion protein, by utilizing fluorescence microscopy. The biosilica of diatoms from the four transformant clones like (C7, C12, C19 and C36) that displayed the most noteworthy fluorescence power was tried for IgG binding activity utilizing an IgG-horseradish peroxidase (HRP) form. The biosilica from every one of the GFP fluorescent transformants displayed over ten times more HRP activity per mass unit of biosilica than the wild-type cells, showing that the biosilica from the transformants contained explicit IgG-binding protein domains. To explore whether the T8-GFP area of the combination proteins adds to IgG-HRP binding, the measure was rehashed with the biosilica detached from a transformants of the proteins that expressed the combination of the protein like S-T8-GFP (Sheppard et.al., 2013), which does not have the GB1 space. The T8-GFP- protein that containing biosilica showed <5% IgG-HRP which is a great binding relative to the molecule the T8-GFP-GB1 which containing clone C7. Then they together include the information show that the GB1 space is practically shown on the biosilica of diatoms surface of the transformants that are expressing the molecule which is T8-GFP-GB1 combination protein (Poulson et. al., 2013). As the biosilica came from the clone of C7 showed the most noteworthy IgG-restricting limit, it is utilized for all next trials in the further future research.

III. IN-VITRO TARGET DRUG DELIVERY TO THE CANCER CELLS

For analyzing the in vitro drug target delivery there is a research which shows the how the antibody binding with the biosilica and with the effect of in-vitro conditions that lead to the make a great impact on the anticancer therapy. There is a subsequent stage that is stack chemotherapeutic drugs into the GB1 of the diatom biosilica. The antibodies which give response to atoms and chemotherapy drugs, which for the most part is inadequately water solvent, isn't minor, as the natural solvents needed to break up the drug with its molecules and then denature the structure of antibody particles. To solve this issue, we utilized a two-steps method (Blanco et. al., 2013). In the first step, a hydrophobic type anticancer medication was consolidated into cationic ions which is lipid-based colloids that are (liposomes or micelles). Then in the subsequent advance, the emphatically well charged drug is loaded with colloids were well adsorbed through the electrostatic collaborations to the counter acting agent marked biosilica frustules, which have negative charged surfaces. Camptothecin and its more strong subordinate 7-ethyl-10-hydroxy-CPT were chosen as model mixtures for inadequately water-solvent chemotherapy medicines and drugs. CPT-filled liposomes are well settled or set up with the cationic ion's lipid that is 1,2-dioleoyl-3-trimethylammonium-propane (Stern et. Al., 2004) and SN38 was epitomized into cetyl trimethyl ammonium bromide micelles (Basak et. al, 2013). These are some compounds that reduce the cancer ability to develop in the organism's body.

IV. ROLE VITAMIN B12 IN ENHANCING THE DIATOM TO KILL CANCER CELLS

Diatomaceous are the earth like microparticles which got from marine water microalgae which were covered with nutrient B12 which is cyanocobalamin is act as a cancer targeting agent on specialist and stacked with the notable anticancer specialists' cisplatin, 5-fluorouracil, and a tris-tetraethyl[2,2'-bipyridine]-4,4'-diamine-ruthenium (II) complex. It was observed that while the cisplatin and the 5-FU are quickly lost from the material which is necessary, then the ruthenium complex showed an extraordinary delivery profile status, being held in the material as long as 5 or 6 days in aqueous medium however promptly released in the lipophilic conditions like in the cell layer of the diatoms. The well expanded adherence of the B12 covered the diatoms to colorectal malignant growth cell line like HT-29 and bosom disease cell line like MCF-7 was exhibited in vitro. In the two cases, the adherence of the B12 adjusted diatoms was in any event multiple times higher than that of the unaltered ones and was corresponded with the expanded transcobalamin II and the transcobalamin II receptor articulation of the focused-on tissue. Our outcomes recommend that this kind of the B12 altered diatoms could be a very well and useful apparatus to accomplish focused on delivering of water insoluble inorganic molecules which prior to the cancer tissues by going about such a miniature transport collaborating with the areas of the interest prior to delivering the drug which is nearby the tumor or the cancer tissue.

V. CONCLUSION

Cancer is a dangerous disease in which there is no apoptosis and the cells are uncontrollably divided in the organism cells. Diatoms are the microalgae which is very precious used in water pollution as an indicator, it also has so many advantages in daily life basis and for commercial use also. Diatoms are well enhanced in producing the anticancer compounds which reduce the chance of cancer development, like it binds with the antibodies and then produce clones that reduce the growth of cancer. As we know there are various researches which showed the various aspects of treatment of cancer but this review paper proposed the diatoms' role in cancer treatment which is very efficient and well defined. Recent studies shows that the cancer is not effective by the chemotherapy because sometimes the radiations over harm the cancer patients. So, for the new technology and the development in the researches it was observed that the use of diatoms in this cancer field is very useful and even used for the future aspects also.

VI. ACKNOWLEDGEMENTS: Authors are thankful to Lovely Professional University for providing necessary facilities for the research study.

REFERENCES

- [1] Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous materials for drug delivery. *Angewandte Chemie International Edition*, 46(40), 7548-7558.
- [2] McInnes, S. J., Irani, Y., Williams, K. A., & Voelcker, N. H. (2012). Controlled drug delivery from composites of nanostructured porous silicon and poly (L-lactide). *Nanomedicine*, 7(7), 995-1016.
- [3] Simovic, S., Ghouchi-Eskandar, N., Moom Sinn, A., Losic, D., & A Prestidge, C. (2011). Silica materials in drug delivery applications. *Current drug discovery technologies*, 8(3), 250-268.
- [4] Bariana, M., Aw, M. S., & Losic, D. (2013). Tailoring morphological and interfacial properties of diatom silica microparticles for drug delivery applications. *Advanced Powder Technology*, 24(4), 757-763.
- [5] Townley, H. E., Parker, A. R., & White-Cooper, H. (2008). Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. *Advanced Functional Materials*, 18(2), 369-374.
- [6] Brannon-Peppas, L., & Blanchette, J. O. (2004). Nanoparticle and targeted systems for cancer therapy. *Advanced drug delivery reviews*, 56(11), 1649-1659.
- [7] Natarajan, S. K., & Selvaraj, S. (2014). Mesoporous silica nanoparticles: importance of surface modifications and its role in drug delivery. *RSC advances*, 4(28), 14328-14334.
- [8] Chen, F., Hong, H., Zhang, Y., Valdovinos, H. F., Shi, S., Kwon, G. S., ... & Cai, W. (2013). In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. *ACS nano*, 7(10), 9027-9039.
- [9] Poulsen, N., Berne, C., Spain, J., & Kroeger, N. (2007). Silica immobilization of an enzyme through genetic engineering of the diatom *Thalassiosira pseudonana*. *Angewandte Chemie International Edition*, 46(11), 1843-1846.
- [10] Sheppard, V. C., Scheffel, A., Poulsen, N., & Kröger, N. (2012). Live diatom silica immobilization of multimeric and redox-active enzymes. *Applied and environmental microbiology*, 78(1), 211-218.
- [11] Poulsen, N., Scheffel, A., Sheppard, V. C., Chesley, P. M., & Kröger, N. (2013). Pentalysine clusters mediate silica targeting of silaffins in *Thalassiosira pseudonana*. *Journal of Biological Chemistry*, 288(28), 20100-20109.
- [12] Blanco, E., Sangai, T., Hsiao, A., Ferrati, S., Bai, L., Liu, X., ... & Ferrari, M. (2013). Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. *Cancer letters*, 334(2), 245-252.
- [13] Stern, A. M., Flaten, G. E., & Brandl, M. (2004). A method to determine the incorporation capacity of camptothecin in liposomes. *Aaps Pharmscitech*, 5(3), 30-37.
- [14] Basak, R., & Bandyopadhyay, R. (2013). Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. *Langmuir*, 29(13), 4350-4356.