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Abstract

The paper provides the Bayes estimate of shape parameter of Generalized Compound Rayleigh
distribution assuming rest two scale and location parameter as known under the Linex loss function. Then by
using Lindley approximation procedure we have obtained the Approximate Bayes estimate of Location
parameter of Generalized Compound Rayleigh distribution under the Linex loss functions. We have done the
sensitivity analysis of the Approximate Bayes estimators of model when prior specifications deviate from the
true values and presented a numerical study to illustrate the above technique on generated observations and
numerical comparison is done by R-programming.
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1. INTRODUCTION

The Generalized Compound Rayleigh Distribution is a special case of the three-parameter Burr type XIlI
distribution. Mostert, Roux, and Bekker (1999) considered a gamma mixture of Rayleigh distribution and
obtained the compound Rayleigh model with unimodal hazard function. This unimodal hazard function is
generalized and a flexible parametric model is thus constructed, which embeds the compound Rayleigh model,

by adding shape parameter. fxa,B,y) =ayBYx* (B + x*)~¥+D x,a, B,y >0
(1.1)

With Probability Distribution Function
Fx)=1-(1—-Bx")7Y X0 B3,y>0 (1.2)

Reliability function is

R = (Bft“)y

Hazard rate function

o1
H( = ay o
The Generalized compound Rayleigh model includes various well-known pdfs, namely
Q) Beta-Prime pdf, if a=8=1
@i a=1
@iii)  Burr XII pdf(Burr,1942), if =1
The most widely used loss function in estimation problems is quadratic loss function given as L(8,0) =
k(B — 6)? where @ is the estimate of 8, the loss function is called quadratic weighed loss function if k=1,

we have
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L(8,0) = (6 —0)? (1.3)

Known as squared error loss function (SELF). This loss function is symmetrical because it associates the
equal importance to the losses due to overestimation and under estimation with equal magnitudes however in
some estimation problems such an assumption may be inappropriate. Overestimation may be more serious
than underestimation or Vice-versa Canfield (1970), Basu and Ebrahimi(1991). Zellner (1986) Soliman
(2000) derived and discussed the properties of varian’s (1975) asymmetric loss function known as Linex Loss
Function for a number of distributions. Such as a loss function is derived as

L(A) = bexp(ad) —cA—b (1.4)
Where A= (6 —0)
And a,c#0, b>0

The underestimate of the failure rate results in more serious consequences than an overestimation of the
failure rate. This leads to the statistician to think about asymmetrical loss function which has been proposed
in statistical literature. Ferguson (1967), Zellner & Geisel (1968), Rojo (1987), Aitchision & Dunsmore (1975)
and Berger (1980) have considered the linear asymmetric loss function. Varian (1975) introduced the
following convex loss function known as LINEX. (Linear Exponential) Loss Function i.e. given as;

L(A) = be** — cA—b;a,c#0,b>0

Where A = 6 — 8. Itis clear that L(0) = 0 and the minimum occurs when ab=c, therefore , L(A) can be written
as

L(A) =b[e®® — aA—1],a# 0,b > 0; (1.5)

Where a and b are the parameters of the loss function may be defined as shape and scale respectively. The
loss function has been considered by Zellner (1986) , Rojo (1987) , Basu and Ebrahimi (1991) considered the
L(A) as

L(A) =b[e®®* — aA—1],a#0,b>0 (1.6)

Where, A= g— 1
2. The Estimators

Letx; < x, < ........ < x,, bethe n failures in complete sample case. The likelihood function is given by;

L(£ |a,ﬁ,)/) = Hf(xj’a’ﬁ’y)
j=1

= @y Ty T (B +2,%)
L(xla,B,v) = (ay)"Ue™T (2.1)
where
T=Y"_1lo [1 + xj_a] and U=I[I" T
e =1 ()
from equation(2.1) the log likelihood function is
n
Log L = nloga +nlogy +ny logf + (¢ — 1) Z logx;
j=1
~(r + DI (B + %) (22)
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and differentiation of equation(2.2) with respect to «, 8 and y yields respectively we get

dLogL _n x;%logx; xi%logx;
da = o T Xj=1logx = Xj ;ija} - ?:1—;3”],“} (2.3)
7] LogL ny
B -+ DX ,;+x = (2.4)
can also be written as
dLogL _  ¢n x %
aﬁ - j= 1ﬁ+x a +VZ] 1'8(B+xja) (25)
n
d0LogL n+ log 8 l <1+xj“> tog §
=—+nlogp — o —]—nlo
a v ¢ - 7 B 7
I _yn xj®
="~} log (1+ B) (2.6)

setting the expressions for the derivatives in 8 equal to zero and solving a, 8 and y yield. The maximum
likelihood estimators (MLE) of the parameters namely &1z, Buie and Ve -

0LogL 0LogL

However, no closed form solutions exist in this case the elimination of y in 38 and o and in

dLoglL dLogL . . .

ao(f and aog yield a set of equations in terms of 8 and «.

n 1

Jj=1 Brx @

- ———=m =0 7

n n

j=1 Bray® Y, log|1+—
and

n n xj logxl

Z4ym logx; — 3 M0g%i I CETo (2.8)
a j=1 g ] (ﬁ"‘xja) al — .

"J
B

Yi=q log|1

respectively. Applying the Newton-Raphson method &,,, and B, can be derived and then from them 7,5
can be obtained.

3. Bayes estimate for y with known parameter a, 3.

If @ and B is known we assume y(a, b) as conjugate prior for y as

g(v|x) ——V“ le7?; (a,b)>0,y>0 (3.1)

combining the likelihood function equation(2.1)and prior density equation(3.1) we obtain the posterior
density of y in the form
( ) Qy "By H?:lx]a 11 1(,8 +x ) v+1) ?‘a a-1,-by
h(ylx) = (3.2)
= o (y+1) b2
fO anynpyn 7]_1=1x]a 1 n 1(5 + x ) Fa ya- 1p-by dy

n+a-1 —y(b+T)

h(]’|£) - f°°yn+a—1e—y(b+T)dy
0
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Assuming;

n x.a

z log (1 + ]—> =T
- B

j=1

n+a—1e—y(b+T) (b _+_T)n+a

h(ylx) = —oim (3.3)
Bayes Estimator under Linex Loss Function
Let the loss function L(A) is
L(A) =e ™ — kA —1; k=0 (3.4)
Where
A= ({l—-u) where u=u(a/p,y)
Now
E(L(A)) = E(eX@ W — k(1 —u) — 1)
= Qg = —%log E, (e7*%) (3.5)
The Bayes estimator under Linex loss is given by

1
= VapL = —Elog(Eh(e‘kV))
Now
Ep(e™) = (b:(i)i’;;a) fome—y(k+b+T)y(n+a)dy (3.6)
Assuming y(k+b+T)=y
Pou = 209 (14 55) @)
4. Approximate Bayes Estimators with unknown a, 8 and y
Joint prior density a, 8,y is given by
G (a,B,7) = g1(0)g2(B)g:(¥|B)
= s By exp - (% +9)] (4.1)
where
g1(a) =c (4.2)
0:(p) =2e7s 4.3)

1y

930 =z 55 e s (4.4)

The Joint posterior with likelihood equation (3.3) and joint prior equation (4.1)
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ﬁ—s‘yf‘lexp[—(%+§)]-L(£|“'B'Y)

h(a,B,y) = 4.5
(@hv) Ja Ig Jy B‘fyf‘lexp[—(%+§)]-L@Ia,ﬁ.y)dadﬁdy (45)

The approximate Bayes estimators are evaluated as

U(©) =U (a,B,7)

~ « U(a,B,y)G*(a,p,y)dadfd

Ops= E(U |£):f Jg J, V(@ By)G" (@B y)dadBdy (4.6)

Iy Ip I, G*(aBy)dadpay
Lindley Approximation Procedure

The ratio of integrals in equation (4.6) does not seem to take a closed form so we must consider the Lindley
approximation procedure as

_ fu(g)_e(l(B)H’(@))dg
E(,Ll(@, p)|£) = fe(l(9)+p(9)).d9 (4.63.)

Lindley developed approximate procedure for evaluation of posterior expectation of u(8). Several other
authors have used this technique to obtain Bayes estimators (see Sinha(1986), Sinha and
sloan(1988),Soliman(2001)).The posterior expectation of Lindley approximation procedure to evaluate of
(@) inequation (4.6a and 4.6) under SELF, where where p(8) = log g(6) , and g(6) is an arbitrary function
of 8 and [(0) is the logarithm likelihood function (Lindley (1980)).

The modified form of equation (4.6) is given by

1
E(U (a, ,3:V|£) =U (0) + E(A Uy 011 +U; 015 +Uz 043) + B(Uy 031 +U; 035 +U3 023) +

1

4.7

Evaluated at MLE = (&, £, 7) where

Ay = P1011 + P2012 + P3013 (4.8)
Ay = P1021 + P2022 + P3033 (4.9)
a3 = pP1031 + P2032 + P3033 (4.10)
Ay =Ujgz 012 tU13 013 +Uz3 023 (4.11)
as = %(Un 011 +Uz; 033 +U33 033) (4.12)
and

A = [o11l111 + 012l121 + 20131131 + 20330531 + 0220521 + 0331334] (4.13)
B = [011l112 + 2015l125 + 20131132 + 20331532 + 0220522 + 033l332] (4.14)
P = [011l413 + 2013l133 + 20131123 + 20231533 + 0220223 + 033l333] (4.15)

To apply Lindley approximation on equation ( 4.6) we first obtain
-1, .
O-ij = [_ll]k] l,],k = 1,2,3

Likelihood function from Likelihood function(2.2)
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n n
L = any"ﬁm’ nxja—l l_l(ﬁ + xja)—()’+1); (x’ ﬁ,}/ > 0)
j=1 j=1

n n
Log L = nloga + nlogy + nylogf + (a — 1) Z logx; — (¥ +1) Z log(B + x;%)
j=1 j=1

Now differentiating log likelihood function with respect to «

xi%logx;
I, = g +Yj=1logx; — (v + Dwyy Where  wqq = ;'l=1]ﬁTja] (4.16)
Again differentiating log likelihood function with respect to S
1

l, = ’;—y —(y+ 16y, where 811 = 27=15+—x,-a (4.17)
Again differentiating log likelihood function with respect to y
I, = §+ nlogB —q;,  where q11 = 71 log (B + x,%) (4.18)
Again differentiating [; with respectto «a

-n n xj"‘(long)2
hi=—- By + Dw,,, where W122 = =1 () (4.19)
Again differentiating [, with respectto

-ny 1
l22 = F - (y + 1)612 Where 612 = ?zlm (420)
Again differentiating [ with respect to y

9°’L -n
li3=57=7 (4.21)
Now differentiating [; with respectto
llz = (y + 1)0)14 Where (1)14_ = Z xj log);] (422)

(B+xj)
Again differentiating [, with respect to «
L1=F+ Dy, (4.23)
Again differentiating [; with respectto y
xi%logx;

liz=— ?:1 ;ija L= —wyy (4.24)
Again differentiating /5 with respectto «

%L xi%logx;
ls1 = 5 52 = — Xj=1 ;ija L= —wyy (4.24a)
Again differentiating [, with respectto y

—n_yn 1 _1n_

l23 - ,8 j=1 ,8+xj“ :8 611 (4'25)
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Again differentiating l; with respectto S

Loy = n n 1 _n
32 B j=1 '3+xja B

— 011 (4.26)

Again differentiating [, with respectto «

n xj“(long)3(/3 - x;%)

2
lig = a_z +( + DB wizz where wizz =X, (Brx,) (4.27)
Again differentiating [,, with respectto S

2 1
1222 = % - 2(]/ + 1) 613 Where 613 = 7=1m (428)
Again differentiating l55 with respectto y

3L 2
s = 555 = 33 (4.29)
Again differentiating [;, with respectto f
x;*(logx; 2 B—x;*
Lhiz=—(r+1 w3 where w3 =37~ ( ([5’+]93-0E)3 ) (4.30)
J
Ling =l (v iz = 131)
Again differentiating [,, with respectto
_ n (logxj)?x;* _
liiz = BZFl—(/ﬂx,ﬂ)Z B w122 (4.31)
lits =l
Again differentiating [,, with respectto «
Q] .
la21 = =2(y + Dw113 where w113 = Xj=1 E;eroi;sj (4.32)
]

la21 = lz12
Again differentiating [,, with respectto y
lyps = ;—” + 6, (4.33)
lyas = lysz
Again differentiating l55 with respectto «a
l331 =0 = l313 (4.34)
Again differentiating [55 with respectto S
l332 = 0 = 333 (4.35)
Again differentiating [,5 with respectto «a

o ( 9°L
lyz1 = @(ayaa) =0 =3 (4.36)
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Again differentiating [,, with respectto

0 (03L
liz2 = a(ﬁ) = =2y + Dwi13 (4.37)

Again differentiating [,; with respect to

_ 9 (0% _yn x%logx;
iz = o~ (aya/;) IR 7T W112 (4.38)

liz2 = ly23

Again differentiating ;5 with respect to y

d (9°L
lss = 5, (52) = 0 (4.39)

Again differentiating l,; with respectto y

o (9%L
lyzs = ﬁ(a_yz) =0 (4.40)
The matrix of derivatives is given as

litn Lz lias
[_lijk] = —(l21 22 la23
l331 l332 lass

r2n i
a3 +( + DBwisz —(¥ + Dwqys —Bwiy
2ny n
[_lijk] =| —2(r+Dwis F —2(y+1)6;5 _E + 615
2n
0 0 y_3
My, My, My
M3y Mz, Mg

Determinant of — [li]-k]

D = {M11[M3;M35 — 0] + My3[M31 M35 — 0] — 0}
D= —{M;,M,, M35 + M;, M, M33}

D= —M;33{M;; My, — M1, M,,}

Adjoint of Matrix — [ll-jk]

Cofactors of Matrix — [li]-k]

a;; = —[Mp;M33 — 0] = —M,,M33

a1z = My M33
a13 = 0
az1 = My, M35
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Ay = —M711 M3

Az = My M3, — M3: My, =0

az; = My;My3 — My, My

A3, = My Mysz — My M5

a3z = M1, My — My, My,

[—Liji]

-1 _ (Adjoint of [~ ])’

[—Liji]

[ M, M35 M, M33 My, M3 — M1, My37
D D D
[—l--]_l— M1 M3 _M11M33 M1 My3 — My M3
Lk D D D
M, M,, — M, M
0 0 1122 1234
D
» _Y11/D Y12/D Y13/D
[_lijk] = Y210 Yazp Yoz
0 O Y33/D
(011 012 013
-1
[—lijk] =021 Oz22 023
031 032 033
Approximate Bayes Estimator
U(a,B,y)=u (4.41)

Usp= E(U |x)
evaluated from equation number (4.6) and from joint prior density equation (4.1)

G(a,B,y) = g(@)g(B)gs(v|B)

s enl-o3)

p =logGlogC —logd — logl'é + (¢ — 1)logy — élogp

_ (% + ?) (4.42)

= constant — &logB + (6 — 1)logy — % —g (4.43)
p, = g_z =0 (4.44)
1=§—;_‘f+%—§ (4.45)
ps=g=tt-2 (4.46)

values of A, B and P from equation (4.14) to equation (4.16) and from equation (4.17) to equation (4.40)
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A = [011l111 + 20131121 + 20731131 + 20531531 + 0221521 + 0331334]

Y11

A= — 5 ( -+ 1)(1’133) +
Dwi13) + 2.0

2y, 2y, 2Y. %
Dlz (—(r+ 1)0)123)“‘713(—,3‘0122) + TB-O +%(—2(Y+

1 2
A= D [Yn (a_z -+ 1)w133) = 2Y1,(y + Dwqp3 — 2Y13w10 — 2V (v + 1)0)113]

(4.47)

B = [oy1l112 + 20150125 + 2033l135 + 20330535 + 0221525 + 033133;]

Y, Y. 2Y. )
B = —L(Y + Dwips +2— 2 ( 2(y + Dwy13) + Wy12 +— == ( /;lz + 512) 22 (;lgy -
2y + 1)éy3) + 2.0

1 -n 2ny
=3 [_Yn()’ + Dwizz — 4V (¥ + Dwyg3 + 2Y130112 + 2Y53 (F + 512) + Y5 (F —2(y + 1)513)]
(4.48)
P = [041l113 + 20121123 + 20431133 + 20331533 + 0231523 + 0330333]
B 122 + 22 2 w1 + 2Y13 0 +— 2Y23 0+ (ﬁz + 512) + Ez_n
Y —_
[2Y12w112 = Y11 fwiz; + 2Y33 13 + % (E_Z + 512)] (4.49)

Uap= E(U [x)
=u+ (ua; + uya, +uzaz + a, + as)
1
+ > [A(uy011 + U015 + U3073) + B(U1021 + Up05; + U3023)

1
+ P(u10'31 + u20-32 + U30-33)] + O (ﬁ)

EUI[x)=U+¢o+ ¢, (4.50)
Where

@1 =Uaq + Uya, +uzas + ay + as

1
P, = E [(AO'11 + BO—ZI + PU31). U1 + (AO'12 + BO—ZZ + PO—32). UZ + (A0-13 + BO-23 + PO-33)U3]

A~

evaluated at the MLE U= (&, §, 7) where
Ay = p1011 + P2012 + P3013

=00+ (F+5-5) 2+ (-2 (451)

Ay = P1021 T P202; + P3023

=00+ (F+5-3) 2+ (-2 (4.52)

a3z = P1031 T P203; + P3033
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&-1 1) Y33

= 0.0'31 + pZ' 0 + (T E)? (453)
ay = Uy00; + Uy3013 + Uy3053

1
=5 (Y12U1z + Yi3Us3 + Ya3U33) (4.54)
1
as = E(U11011 + Uy0,; + Us3033)
1
=5 (Y11U11 + YooUpp + Y33Us33) (4.55)
Approximate Bayes Estimator under Linex Loss function
e 1 —-ku
UgpL= — EZOH(Eu(e ))

where

ol gf e 746" (@.B.y)dad oY
T ol gJ,G* (@B y)dadpay

E, (e ™|x) = (4.56)

The above equation (4.56) is evaluated by method of Lindley approximation, whose simplified form is
equation(4.50)

Special Cases :—

U (a,B,y) =V

1. Approximate Bayes Estimate of y
U(a,B,y) =U= e ®
U;=U;,=U;13=U;;=10
Up=U31=Up;=U33=10

F] 0
Ug= ﬂ(e‘ky) = —ke™; Ug= 5(—‘3_"”) =k?e™, U31=Ug,=0

P1 =U1 aq +U2 a, +U3 as + ay + as

5_1 1>Y33 1 2 K
= — —kY
D +0+2Dk e

B

o E—1 1 Kk?\VYss
= —ke ky(<7_[_g_7>7>

[(Aoy, + Boyy + Po3q) Ui+ (Aogy, + Boyy, + Pos,) U+ (Aoys + Boys + Poss) Us]

=0.a;,+0.a, —e™*¥ (

Py =

N[ =

ety (A013 + Bo,; + Pa33)

2

2
E(ulx) = e_k]/ — ke—kr (E__l + Z_ k_)&_ ke_kr <A0-13 + 0—23B + PO'33)
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E =e M [1—k|Z——+—-—= | ( )

(ulx) =e l (Y +ﬁ 2>D+ 2

E(ulx) = e ¢

VapL =V t+ k'loges; at (&ML,BML,)?ML) (4.57)

Where

D

E—1 1 k?\Ysys (A013 + Boys + P033>
B A T

Simulation and Numerical Comparison

The simulations and numerical calculations are done by using R Language programming and results are
presented in form of table(1).

1. The Random variable of Generalized Compound Rayleigh Distribution is generated by R-Language
programming by taking the values of the parameters a, 3,y ,takenasa = 0.9, 8 = 0.6 and y = 0.5 inthe
equations[(4.2)-(4.4)] and equation(1.1).

2. Taking the different sizes of samples n=10(10)80 with complete sample, MLE's, the Approximate Bayes
estimator, and their respective MSE's (in parenthesis) are obtained by repeating the steps 500 times, are
presented in the tables from (1), for t=0.4, k= -8, R(t)=0.34, H(t)=0.45 and parameters of prior distribution a
=2.5and b =3.4.

3. Table (1) presents the MLE of «, f and y and Approximate Bayes estimators of y (for «, # and y unknown)
under LLF. The MSE's in all above cases are presented in parenthesis.

Table (1)
Mean and MSE'S of a, B8,y
(=09,8=06 andy =0.5)

n Ay, BuL YmL VYL Y aBL

10 | 0.648415 0.66795 0.60056 0.61431 0. 85476

[0.891112] | [0.049521] |[0.032419] |[1.223x107] |[3.444x107]

20 | 0.77054 0.49999 0.67545 0.719821 0. 77564

[0.98342] | [0.84537] |[0.035421] |[1.5994x107] |[3.1912x107]

30 | 0.7751648 | 0.558288 0.6865478 | 0.739252 0. 793433

[0.057125] | [0.658458] | [0.096548] |[.02589461] | [0.4317145]

40 | 0.79865421 | 0.5482658 | 0.86975682 | 0. 768581 0. 8937546

[0.46572] | [0.003254] |[0.003272] |[0.0074623] |[0.85739]

50 |0.8973214 | 0.603484 0.839511 0.886543 0.865738

[0.004578] | [0.004577] | [0.004265] |[0.001624] | [0.015437]

60 | 0.91478523 | 0.6990011 | 0.9490011 | 0.9757613 0.9792358
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[0.004325] | [0.054663] | [0.004226] |[0.001624] [0.015437]
70 | 1.000001 0.6988845 | 0.9454543 | 0.9924443 0.9807398

[0.000125] |[0.001125] |[0.001367] | [0.003718] [0.010374]
80 |1.2354782 | 0.7235814 | 0.9657432 | 1.0524443 1.007398

[0.325874] |[0.025258] | [0.001245] | [0.004012] [0.010544]
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