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Abstract 

         The paper provides the Bayes estimate of shape parameter of Generalized Compound Rayleigh 

distribution assuming rest two scale and location  parameter as known under the Linex loss function. Then by 

using Lindley approximation procedure we have obtained the Approximate Bayes estimate of Location  

parameter of Generalized Compound Rayleigh distribution under the Linex loss functions. We have done the 

sensitivity analysis of the Approximate Bayes estimators of model when prior specifications deviate from the 

true values and presented a numerical study to illustrate the above technique on generated observations and 

numerical comparison is done by R-programming. 
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1.   INTRODUCTION  

The Generalized Compound Rayleigh Distribution is a special case of the three-parameter Burr type XII 

distribution. Mostert, Roux, and Bekker (1999) considered a gamma mixture of Rayleigh distribution and 

obtained the compound Rayleigh model with unimodal hazard function. This unimodal hazard function is 

generalized and a flexible parametric model is thus constructed, which embeds the compound Rayleigh model, 

by adding shape parameter.    𝑓(𝑥; 𝛼, 𝛽, 𝛾) = 𝛼𝛾𝛽𝛾𝑥𝛼−1(𝛽 + 𝑥𝛼)−(𝛾+1)           𝑥, 𝛼, 𝛽, 𝛾 > 0                                         

(1.1) 

With Probability Distribution Function 

 F(x) = 1 − (1 − βxα)−γ                                  x, α, β, γ > 0                                                (1.2) 

Reliability function is 

R(t) = (
β

β+tα
)
γ

     

Hazard rate function 

H(t) = αγ
tα−1

β+tα
      

The Generalized compound Rayleigh model includes various well-known pdfs, namely 

(i)  Beta-Prime pdf ,    if  α = β = 1 

(ii) α = 1 

(iii) Burr XII pdf(Burr,1942), if β = 1 

     The most widely used loss function in estimation problems is quadratic loss function given as 𝐿(𝜃, 𝜃) =

𝑘(𝜃 − 𝜃)2  where 𝜃  is the estimate of  𝜃,  the loss function is called quadratic weighed loss function if   k=1, 

we have  

http://www.ijcrt.org/


www.ijcrt.org                                                              © 2020 IJCRT | Volume 8, Issue 8 August 2020 | ISSN: 2320-2882 

IJCRT2008468 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3898 
 

𝐿(𝜃, 𝜃) = (𝜃 − 𝜃)2                                                                                                             (1.3) 

Known as squared error loss function (SELF). This loss function is symmetrical because it associates the 

equal importance to the losses due to overestimation and under estimation with equal magnitudes however in 

some estimation problems such an assumption may be inappropriate. Overestimation may be more serious 

than underestimation or Vice-versa Canfield (1970), Basu and Ebrahimi(1991). Zellner (1986) Soliman 

(2000) derived and discussed the properties of varian’s (1975) asymmetric loss function known as Linex Loss 

Function for a number of distributions. Such as a loss function is derived as 

𝐿(∆) = 𝑏 exp(𝑎∆) − 𝑐∆ − 𝑏                                                          (1.4) 

Where   ∆= (𝜃 − 𝜃) 

And  𝑎, 𝑐 ≠ 0,   𝑏 >0 

    The underestimate of the failure rate results in more serious consequences than an overestimation of the 

failure rate. This leads to the statistician to think about asymmetrical loss function which has been proposed 

in statistical literature. Ferguson (1967), Zellner & Geisel (1968), Rojo (1987), Aitchision & Dunsmore (1975) 

and Berger (1980) have considered the linear asymmetric loss function. Varian (1975) introduced the 

following convex loss function known as LINEX. (Linear Exponential) Loss Function i.e. given as; 

L(∆) =  bea∆ −  c∆ − b ; a, c ≠ 0, b > 0 

Where ∆ =  θ̂ − θ. It is clear that L(0) = 0 and the minimum occurs when ab=c, therefore , L(∆) can be written 

as  

L(∆) = b[ea∆ −  a∆ − 1 ], a ≠ 0, b > 0;                                                                             (1.5) 

Where a and b are the parameters of the loss function may be defined as shape and scale respectively. The 

loss function has been considered by Zellner (1986) , Rojo (1987) , Basu and Ebrahimi (1991) considered the 

L(∆) as  

L(∆) = b[ea∆ −  a∆ − 1 ], a ≠ 0, b > 0                                                                            (1.6) 

Where,     ∆ =  
θ̂

θ
− 1 

2.   The Estimators 

 Let 𝑥1 ≤ 𝑥2 ≤ ……… ≤ 𝑥𝑛  be the n failures in complete sample case. The likelihood function is given by; 

𝐿(𝑥 |𝛼, 𝛽, 𝛾) = ∏𝑓

𝑛

𝑗=1

(𝑥𝑗 , 𝛼, 𝛽, 𝛾) 

= 𝛼𝑛𝛾𝑛𝛽𝑛𝛾 ∏ 𝑥𝑗
𝛼−1𝑛

𝑗=1 ∏ (𝛽 + 𝑥𝑗
𝛼)

−(𝛾+1)𝑛
𝑗=1                                             

𝐿(𝑥 |𝛼, 𝛽, 𝛾)  = (𝛼𝛾)𝑛𝑈𝑒−𝛾𝑇                                                                                              (2.1) 

where 

𝑇 = ∑ 𝑙𝑜𝑔𝑛
𝑗=1 [1 +

𝑥𝑗
−𝛼

𝛽
]            and                        𝑈 = ∏

𝑥𝑗
𝛼−1

(𝛽+𝑥𝑗
𝛼)

𝑛
𝑗=1  

from equation(2.1) the log likelihood function is  

𝐿𝑜𝑔 𝐿 =  𝑛 𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔𝛾 + 𝑛𝛾 𝑙𝑜𝑔𝛽 + (𝛼 − 1)∑𝑙𝑜𝑔𝑥𝑗

𝑛

𝑗=1

 

−(𝛾 + 1)∑ (𝛽 + 𝑥𝑗
𝛼)𝑛

𝑗=1                                                                                          (2.2) 
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and differentiation of equation(2.2) with respect to 𝛼, 𝛽 and 𝛾 yields respectively we get 

𝜕 𝐿𝑜𝑔 𝐿

𝑑𝛼
=

𝑛

𝛼
+ ∑ 𝑙𝑜𝑔𝑥𝑗

𝑛
𝑗=1 − ∑

𝑥𝑗
𝛼𝑙𝑜𝑔𝑥𝑗

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1 − 𝛾 ∑

𝑥𝑗
𝛼𝑙𝑜𝑔𝑥𝑗

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1                                                (2.3) 

𝜕 𝐿𝑜𝑔 𝐿

𝜕𝛽
=

𝑛𝛾

𝛽
− (𝛾 + 1)∑

1

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1                                                                                       (2.4) 

can also be written as   

𝜕 𝐿𝑜𝑔 𝐿

𝜕𝛽
= −∑

1

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1 + 𝛾 ∑

𝑥𝑗
𝛼

𝛽(𝛽+𝑥𝑗
𝛼)

𝑛
𝑗=1                                                                           (2.5) 

𝜕 𝐿𝑜𝑔 𝐿

𝜕𝛾
=

𝑛

𝛾
+ 𝑛 log 𝛽 − ∑𝑙𝑜𝑔 (1 +

𝑥𝑗
𝛼

𝛽
)

𝑛

𝑗=1

− 𝑛 𝑙𝑜𝑔 𝛽 

                =
𝑛

𝛾
− ∑ 𝑙𝑜𝑔 (1 +

𝑥𝑗
𝛼

𝛽
)𝑛

𝑗=1                                                                                    (2.6) 

setting the expressions for the derivatives in 8 equal to zero and solving 𝛼, 𝛽 and 𝛾 yield. The maximum 

likelihood estimators (MLE) of the parameters namely �̂�𝑀𝐿𝐸 , �̂�𝑀𝐿𝐸 and  𝛾𝑀𝐿𝐸 . 

 However, no closed form solutions exist in this case the elimination of 𝛾 in  
𝜕 𝐿𝑜𝑔 𝐿

𝜕𝛽
 and 

𝜕 𝐿𝑜𝑔 𝐿

𝜕𝛼
 and in 

𝜕 𝐿𝑜𝑔 𝐿

𝜕𝛼
 and 

𝜕 𝐿𝑜𝑔 𝐿

𝜕𝛾
 yield a set of equations in terms of 𝛽 and 𝛼. 

∑  
1

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1

∑  
𝑥𝑗

𝛼

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1

−
𝑛

∑  𝑙𝑜𝑔[1+
𝑥𝑗

𝛼

𝛽
]𝑛

𝑗=1

= 0                                                        (2.7)                                                  

and 

𝑛

𝛼
+ ∑ log 𝑥𝑗

𝑛
𝑗=1 − Σ

𝑥𝑗
𝛼𝑙𝑜𝑔𝑥𝑖

(𝛽+𝑥𝑗
𝛼)

−
𝑛 ∑  

𝑥𝑗
𝛼𝑙𝑜𝑔𝑥𝑖

(𝛽+𝑥𝑗
𝛼)

𝑛
𝑗=1

∑  𝑙𝑜𝑔[1+
𝑥𝑗

𝛼

𝛽
]𝑛

𝑗=1

= 0                                          (2.8) 

respectively. Applying the Newton-Raphson method �̂�𝑀𝐿𝐸 and �̂�𝑀𝐿𝐸 can be derived and then from them 𝛾𝑀𝐿𝐸 

can be obtained. 

3.    Bayes estimate for 𝜸 with known parameter 𝜶,𝜷. 

If �̂� and �̂� is known we assume 𝛾(𝑎, 𝑏) as conjugate prior for 𝛾 as 

𝑔(𝛾|𝑥) =
𝑏𝑎

Γa
𝛾𝑎−1𝑒−𝛾𝑏 ;    (a, b) > 0, 𝛾 > 0                                                                        (3.1) 

combining the likelihood function equation(2.1)and prior density equation(3.1) we obtain the posterior 

density of  𝛾 in the form 

ℎ(𝛾|𝑥) =
𝛼𝑛𝛾𝑛𝛽𝛾𝑛 ∏ 𝑥𝑗

𝛼−1𝑛
𝑗=1 ∏ (𝛽 + 𝑥𝑗

𝛼)
−(𝛾+1) 𝑏𝑎

Γa 𝛾𝑎−1𝑒−𝑏𝛾𝑛
𝑗=1

∫ 𝛼𝑛𝛾𝑛𝛽𝛾𝑛 ∏ 𝑥𝑗
𝛼−1𝑛

𝑗=1

∞

0
∏ (𝛽 + 𝑥𝑗

𝛼)
−(𝛾+1) 𝑏𝑎

Γa 𝛾𝑎−1𝑒−𝑏𝛾𝑛
𝑗=1 𝑑𝛾

                (3.2) 

ℎ(𝛾|𝑥) =
𝛾𝑛+𝑎−1𝑒−𝛾(𝑏+𝑇)

∫ 𝛾𝑛+𝑎−1𝑒−𝛾(𝑏+𝑇)𝑑𝛾
∞

0
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Assuming; 

∑log (1 +
𝑥𝑗

𝛼

𝛽
) = 𝑇

𝑛

𝑗=1

 

ℎ(𝛾|𝑥) =
𝛾𝑛+𝑎−1𝑒−𝛾(𝑏+𝑇)(𝑏+𝑇)𝑛+𝑎

Γ(𝑛+𝑎)
                                                     (3.3) 

Bayes Estimator under Linex Loss Function  

Let the loss function L(Δ) is  

𝐿(Δ) = 𝑒−𝑘Δ − 𝑘Δ − 1;          k = 0                                          (3.4) 

Where 

Δ = (�̂� − 𝑢)       𝑤ℎ𝑒𝑟𝑒  𝑢 = 𝑢(𝛼, 𝛽, 𝛾) 

Now 

E(L(Δ)) = E(𝑒𝑘(𝑢−𝑢) − k(�̂� − 𝑢) − 1) 

⇒ �̂�𝐴𝐵𝐿 = −
1

𝑘
log 𝐸𝜇 (𝑒−𝑘𝑢)                                                     (3.5) 

The Bayes estimator under Linex loss is given by 

⇒ 𝛾𝐴𝐵𝐿 = −
1

𝑘
log(𝐸ℎ(𝑒−𝑘𝛾)) 

Now 

𝐸ℎ(𝑒−𝑘𝛾) =
(𝑏+𝑇)(𝑛+𝑎)

Γ(𝑛+𝑎)
∫ 𝑒−𝛾(𝑘+𝑏+𝑇)𝛾(𝑛+𝑎)𝑑

∞

0
𝛾                                                    (3.6)    

Assuming         𝛾(𝑘 + 𝑏 + 𝑇) = 𝑦 

𝛾𝐵𝐿 =
(𝑛+𝑎)

𝑘
𝑙𝑜𝑔 (1 +

𝑘

(𝑏+𝑇)
)                                             (3.7) 

4.   Approximate  Bayes Estimators with unknown 𝜶,𝜷 and 𝜸  

Joint prior density 𝛼, 𝛽, 𝛾 is given by 

G (𝛼, 𝛽, 𝛾) = 𝑔1(𝛼)𝑔2(𝛽)𝑔3(𝛾|𝛽)  

=
𝑐

𝛿Γ𝜉
𝛽−𝜉𝛾𝜉−1𝑒𝑥𝑝 [−(

𝛾

𝛽
+

𝛽

𝛿
)]                                                                        (4.1) 

where 

𝑔1(𝛼) = 𝑐                                       (4.2) 

𝑔2(𝛽) =
1

𝛿
𝑒−

𝛽

𝛿                                (4.3) 

𝑔3(𝛾) =
1

Γ𝜉
𝛽−𝜉𝛾𝜉+1𝑒

−
1𝛾

𝛽                                           (4.4) 

The Joint posterior with  likelihood equation (3.3) and joint prior equation  (4.1) 
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ℎ∗(𝛼, 𝛽, 𝛾) =
𝛽−𝜉𝛾𝜉−1𝑒𝑥𝑝[−(

𝛾

𝛽
+

𝛽

𝛿
)].𝐿(𝑥|𝛼,𝛽,𝛾)

∫ ∫ ∫ 𝛽−𝜉𝛾𝜉−1𝑒𝑥𝑝[−(
𝛾

𝛽
+

𝛽

𝛿
)].𝐿(𝑥|𝛼,𝛽,𝛾)𝑑𝛼𝑑𝛽𝑑𝛾

𝛾𝛽𝛼

                                          (4.5) 

The approximate Bayes estimators are evaluated as 

∪ (Θ) =∪ (𝛼, 𝛽, 𝛾) 

∪̂𝐵𝑆= 𝐸(∪ |𝑥) =
∫ ∫ ∫ ∪(𝛼,𝛽,𝛾)𝐺∗(𝛼,𝛽,𝛾)𝑑𝛼𝑑𝛽𝑑𝛾𝛾𝛽𝛼

∫ ∫ ∫ 𝐺∗(𝛼,𝛽,𝛾)𝑑𝛼𝑑𝛽𝑑𝛾𝛾𝛽𝛼

                                                       (4.6) 

Lindley Approximation Procedure 

The ratio of integrals in equation (4.6) does not seem to take a closed form so we must consider the Lindley 

approximation procedure as 

𝐸(𝜇(𝜃, 𝑝)|𝑥) =
∫ 𝜇(𝜃).𝑒(𝑙(𝜃)+𝜌(𝜃))𝑑𝜃     

∫ 𝑒(𝑙(𝜃)+𝜌(𝜃)).𝑑𝜃
                                                                                (4.6a) 

    Lindley developed approximate procedure for evaluation of posterior expectation of  𝜇(𝜃). Several other 

authors have used this technique to obtain Bayes estimators (see Sinha(1986), Sinha and 

sloan(1988),Soliman(2001)).The posterior expectation of Lindley approximation procedure to evaluate of 

𝜇(𝜃) in equation (4.6a and 4.6) under SELF, where where 𝜌(𝜃) = log 𝑔(𝜃) , and 𝑔(𝜃) is an arbitrary function 

of 𝜃  and 𝑙(𝜃) is the logarithm likelihood function (Lindley (1980)). 

The modified form of equation (4.6) is given by 

𝐸(∪ (𝛼, 𝛽, 𝛾|𝑥) =∪ (Θ) +
1

2
(𝐴 ∪1 𝜎11 +∪2 𝜎12 +∪3 𝜎13) + 𝐵(∪1 𝜎21 +∪2 𝜎22 +∪3 𝜎23) +

𝑃 (∪1 𝜎31 +∪2 𝜎32 +∪3 𝜎33)] + (∪1 𝑎1 +∪2 𝑎2 +∪3 𝑎3 + 𝑎4 + 𝑎5) + 0 (
1

𝑛2)            

                                                                                               (4.7) 

Evaluated at MLE = (�̂�, �̂�, 𝛾) where 

𝑎1 = 𝜌1𝜎11 + 𝜌2𝜎12 + 𝜌3𝜎13                             (4.8) 

𝑎2 = 𝜌1𝜎21 + 𝜌2𝜎22 + 𝜌3𝜎23                                  (4.9) 

𝑎3 = 𝜌1𝜎31 + 𝜌2𝜎32 + 𝜌3𝜎33                                              (4.10) 

𝑎4 =∪12 𝜎12 +∪13 𝜎13 +∪23 𝜎23                                      (4.11) 

𝑎5 =
1

2
(∪11 𝜎11 +∪22 𝜎22 +∪33 𝜎33)                                       (4.12) 

and 

𝐴 = [𝜎11𝑙111 + 𝜎12𝑙121 + 2𝜎13𝑙131 + 2𝜎23𝑙231 + 𝜎22𝑙221 + 𝜎33𝑙331]                            (4.13) 

𝐵 = [𝜎11𝑙112 + 2𝜎12𝑙122 + 2𝜎13𝑙132 + 2𝜎23𝑙232 + 𝜎22𝑙222 + 𝜎33𝑙332]                          (4.14) 

𝑃 = [𝜎11𝑙113 + 2𝜎13𝑙133 + 2𝜎12𝑙123 + 2𝜎23𝑙233 + 𝜎22𝑙223 + 𝜎33𝑙333]                          (4.15) 

To apply Lindley approximation on equation ( 4.6) we first obtain 

𝜎𝑖𝑗 = [−𝑙𝑖𝑗𝑘]
−1

𝑖, 𝑗, 𝑘 = 1,2,3 

Likelihood function from Likelihood function(2.2) 
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𝐿 = 𝛼𝑛𝛾𝑛𝛽𝑛𝛾 ∏𝑥𝑗
𝛼−1

𝑛

𝑗=1

∏(𝛽 + 𝑥𝑗
𝛼)

−(𝛾+1)
;

𝑛

𝑗=1

(𝑥, 𝛽, 𝛾 > 0) 

𝐿𝑜𝑔 𝐿 = 𝑛 𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔𝛾 + 𝑛𝛾𝑙𝑜𝑔𝛽 + (𝛼 − 1)∑log 𝑥𝑗

𝑛

𝑗=1

− (𝛾 + 1)∑log(𝛽 + 𝑥𝑗
𝛼)

𝑛

𝑗=1

 

Now  differentiating log likelihood function with respect to  𝛼   

𝑙1 =
𝑛

𝛼
+ ∑ log 𝑥𝑗

𝑛
𝑗=1 − (𝛾 + 1)𝜔11    where     𝜔11 = ∑

𝑥𝑗
𝛼𝑙𝑜𝑔𝑥𝑗

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1                                (4.16) 

Again  differentiating log likelihood function with respect to  𝛽   

𝑙2 =
𝑛𝛾

𝛽
− (𝛾 + 1)𝛿11                 where            𝛿11 = ∑

1

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1                                      (4.17) 

Again  differentiating log likelihood function with respect to  𝛾   

𝑙3 = 
𝑛

𝛾
+ 𝑛 log 𝛽 − 𝑞11         where          𝑞11 = ∑ log  (𝛽 + 𝑥𝑗

𝛼)𝑛
𝑗=1                             (4.18) 

Again   differentiating 𝑙1 with respect to  𝛼   

𝑙11 =
−𝑛

𝛼2 − 𝛽(𝛾 + 1)𝜔122   where          𝜔122 = ∑
 𝑥𝑗

𝛼(log𝑥𝑗)
2

(𝛽+𝑥𝑗
𝛼)

2
𝑛
𝑗=1                                  (4.19) 

Again  differentiating 𝑙2 with respect to  𝛽   

𝑙22 =
−𝑛𝛾

𝛽2 − (𝛾 + 1)𝛿12           where        𝛿12 = ∑
1

(𝛽+𝑥𝑗
𝛼)2

𝑛
𝑗=1                                        (4.20)    

Again  differentiating 𝑙3 with respect to  𝛾   

𝑙33 =
𝜕2𝐿

𝜕𝛾2 =
−𝑛

𝛾2                           (4.21) 

Now   differentiating 𝑙1 with respect to  𝛽   

𝑙12 = (𝛾 + 1)𝜔14                 where          𝜔14 = Σ
 𝑥𝑗

𝛼 log𝑥𝑗

(𝛽+𝑥𝑗)
2                                             (4.22) 

Again  differentiating 𝑙2 with respect to  𝛼   

𝑙21 = (𝛾 + 1)𝜔14                                                                                                           (4.23) 

Again   differentiating 𝑙1 with respect to  𝛾   

𝑙13 = −∑
 𝑥𝑗

𝛼 log𝑥𝑗

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1 = −𝜔11                                                                                       (4.24) 

Again  differentiating 𝑙3 with respect to  𝛼   

𝑙31 =
𝜕2𝐿

𝜕𝛾𝜕𝛼
= −∑

 𝑥𝑗
𝛼 log𝑥𝑗

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1 = −𝜔11                                                                          (4.24a) 

Again   differentiating 𝑙2 with respect to  𝛾   

𝑙23 =
𝑛

𝛽
− ∑

1

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1 =

𝑛

𝛽
− 𝛿11                                                                                      (4.25) 
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Again differentiating 𝑙3 with respect to  𝛽   

𝑙32 =
𝑛

𝛽
− ∑

1

𝛽+𝑥𝑗
𝛼

𝑛
𝑗=1 =

𝑛

𝛽
− 𝛿11                                                                                      (4.26) 

Again  differentiating 𝑙11 with respect to  𝛼   

𝑙111 =
2𝑛

𝛼3
+ (𝛾 + 1)𝛽  𝜔133 ,where    𝜔133 = ∑

 𝑥𝑗
𝛼(log𝑥𝑗)

3
(𝛽 −𝑥𝑗

𝛼)

(𝛽+𝑥𝑗
𝛼)

3
𝑛
𝑗=1                             (4.27) 

Again  differentiating 𝑙22 with respect to  𝛽   

𝑙222 =
2𝑛𝛾

𝛽3 − 2(𝛾 + 1)  𝛿13        where          𝛿13 = ∑
1

(𝛽+𝑥𝑗
𝛼)

3
𝑛
𝑗=1                                     (4.28) 

Again   differentiating 𝑙33 with respect to  𝛾   

𝑙333 =  
𝜕3𝐿

 𝜕𝛼3   =    
2𝑛

𝛾3                               (4.29) 

Again    differentiating 𝑙11 with respect to  𝛽   

𝑙112 = −(𝛾 + 1) 𝜔123      where      𝜔123 = ∑
 𝑥𝑗

𝛼(log𝑥𝑗)
2
(𝛽 −𝑥𝑗

𝛼)

(𝛽+𝑥𝑗
𝛼)

3
𝑛
𝑗=1                                (4.30) 

 𝑙112   = 𝑙121(∵ 𝑙12 = 𝑙21) 

Again  differentiating 𝑙11 with respect to  𝛽   

𝑙113 = −𝛽 ∑
(log𝑥𝑗)

2𝑥𝑗
𝛼

(𝛽+𝑥𝑗
𝛼)

2 = −𝛽 𝜔122
𝑛
𝑗=1                                                                               (4.31) 

𝑙113 = 𝑙131 

Again   differentiating 𝑙22 with respect to  𝛼   

𝑙221 = −2(𝛾 + 1)𝜔113         where        𝜔113 = ∑
 𝑥𝑗

𝛼 log𝑥𝑗

(𝛽+𝑥𝑗
𝛼)

3
𝑛
𝑗=1                                         (4.32) 

𝑙221         = 𝑙212 

Again   differentiating 𝑙22 with respect to  𝛾 

𝑙223 =
−𝑛

𝛽2
+ 𝛿12                                                                                                                (4.33) 

𝑙223 = 𝑙232 

Again   differentiating 𝑙33 with respect to  𝛼 

𝑙331 = 0 = 𝑙313                                                                                                                (4.34) 

Again  differentiating 𝑙33 with respect to  𝛽 

𝑙332 = 0 = 𝑙323                                                                                                                (4.35) 

Again  differentiating 𝑙23 with respect to  𝛼 

𝑙231 =
𝜕

𝜕𝛽
(

𝜕2𝐿

𝜕𝛾𝜕𝛼
)    = 0   = 𝑙213                                                   (4.36)   
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Again  differentiating 𝑙12 with respect to  𝛽 

𝑙122 =
𝜕

𝜕𝛼
(

𝜕2𝐿

𝜕𝛽2
) = −2(𝛾 + 1)𝜔113                                                                 (4.37) 

Again  differentiating 𝑙13 with respect to  𝛽 

𝑙132 =
𝜕

𝜕𝛼
(

𝜕2𝐿

𝜕𝛾𝜕𝛽
) = ∑

 𝑥𝑗
𝛼 log𝑥𝑗

(𝛽+𝑥𝑗
𝛼)

2
𝑛
𝑗=1 = 𝜔112                                                                     (4.38) 

𝑙132 = 𝑙123 

Again   differentiating 𝑙13 with respect to  𝛾 

𝑙133 =
𝜕

𝜕𝛼
(

𝜕2𝐿

𝜕𝛾2) = 0                                                                                                        (4.39) 

Again   differentiating 𝑙23 with respect to  𝛾 

𝑙233 =
𝜕

𝜕𝛽
(

𝜕2𝐿

𝜕𝛾2) = 0                                                                                                         (4.40) 

The matrix of derivatives is given as 

[−𝑙𝑖𝑗𝑘] = − [

𝑙111 𝑙112 𝑙113

𝑙221 𝑙222 𝑙223

𝑙331 𝑙332 𝑙333

] 

[−𝑙𝑖𝑗𝑘] =

[
 
 
 
 
 
 
2𝑛

𝛼3
+ (𝛾 + 1)𝛽𝜔133 −(𝛾 + 1)𝜔123 −𝛽𝜔122

−2(𝛾 + 1)𝜔113

2𝑛𝛾

𝛽3
− 2(𝛾 + 1)𝛿13 −

𝑛

𝛽2
+ 𝛿12

0 0
2𝑛

𝛾3 ]
 
 
 
 
 
 

 

[−𝑙𝑖𝑗𝑘] = [

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

] 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 𝑜𝑓 − [𝑙𝑖𝑗𝑘] 

𝐷 = {𝑀11[𝑀22𝑀33 − 0] + 𝑀12[𝑀21𝑀33 − 0] − 0} 

D= −{𝑀11𝑀22𝑀33 + 𝑀12𝑀21𝑀33} 

D= −𝑀33{𝑀11𝑀22 − 𝑀12𝑀21} 

𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝑜𝑓 𝑀𝑎𝑡𝑟𝑖𝑥 − [𝑙𝑖𝑗𝑘] 

𝐶𝑜𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑀𝑎𝑡𝑟𝑖𝑥 − [𝑙𝑖𝑗𝑘] 

𝑎11 = −[𝑀22𝑀33 − 0] = −𝑀22𝑀33 

𝑎12 = 𝑀21𝑀33 

𝑎13 = 0 

𝑎21 = 𝑀12𝑀33 
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𝑎22 = −𝑀11𝑀33 

𝑎23 = 𝑀11𝑀32 − 𝑀31𝑀12 = 0 

𝑎31 = 𝑀22𝑀13 − 𝑀12𝑀23 

𝑎32 = 𝑀11𝑀23 − 𝑀21𝑀13 

𝑎33 = 𝑀11𝑀22 − 𝑀12𝑀21 

[−𝑙𝑖𝑗𝑘]
−1

=
(𝐴𝑑𝑗𝑜𝑖𝑛𝑡 𝑜𝑓[−𝑙𝑖𝑗𝑘])′ 

[−𝑙𝑖𝑗𝑘]
 

[−𝑙𝑖𝑗𝑘]
−1

=

[
 
 
 
 
 −

𝑀22𝑀33

𝐷

𝑀12𝑀33

𝐷

𝑀22𝑀13 − 𝑀12𝑀23

𝐷
𝑀21𝑀33

𝐷
−

𝑀11𝑀33

𝐷

𝑀11𝑀23 − 𝑀21𝑀13

𝐷

0 0
𝑀11𝑀22 − 𝑀12𝑀21

𝐷 ]
 
 
 
 
 

 

[−𝑙𝑖𝑗𝑘]
−1

= [

𝑌11/𝐷 𝑌12/𝐷 𝑌13/𝐷

𝑌21/𝐷 𝑌22/𝐷 𝑌23/𝐷

0 0 𝑌33/𝐷

] 

[−𝑙𝑖𝑗𝑘]
−1

= [

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

] 

𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞 𝐁𝐚𝐲𝐞𝐬 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐨𝐫 

∪ (𝛼, 𝛽, 𝛾) =∪                              (4.41) 

∪̂𝐴𝐵= 𝐸(∪ |𝑥) 

evaluated from equation number (4.6) and from joint prior density equation (4.1) 

𝐺(𝛼, 𝛽, 𝛾) = 𝑔(𝛼)𝑔2(𝛽)𝑔3(𝛾|𝛽)    

=
𝑐

𝛿Γ𝜉
𝛽−𝜉𝛾𝜉−1𝑒𝑥𝑝 [− (

𝛾

𝛽
+

𝛽

𝛿
)] 

𝜌 = log𝐺 log 𝐶 − 𝑙𝑜𝑔𝛿 − 𝑙𝑜𝑔Γ𝜉 + (𝜉 − 1)𝑙𝑜𝑔𝛾 − 𝜉𝑙𝑜𝑔𝛽 

       − (
𝛾

𝛽
+

𝛽

𝛿 
)                                   (4.42) 

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝜉𝑙𝑜𝑔𝛽 + (𝜉 − 1)𝑙𝑜𝑔𝛾 −
𝛾

𝛽
−

𝛽

𝛿
                                            (4.43) 

𝜌1 =
𝛿𝜌

𝛿𝛽
= 0                                  (4.44) 

𝜌1 =
𝛿𝜌

𝛿𝛽
=

−𝜉

𝛽
+

𝛾

𝛽2 −
1

𝛿
                                            (4.45) 

𝜌3 =
𝛿𝜌

𝛿𝛾
=

𝜉−1

𝛾
−

1

𝛽
                                          (4.46) 

values of A, B and P from equation (4.14) to equation (4.16)  and from equation (4.17) to equation (4.40) 
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𝐴 = [𝜎11𝑙111 + 2𝜎12𝑙121 + 2𝜎13𝑙131 + 2𝜎23𝑙231 + 𝜎22𝑙221 + 𝜎33𝑙331] 

A=
𝑌11

𝐷
(
2𝑛

𝛼3 − (𝛾 + 1)𝜔133) +
2𝑌12

𝐷
(−(𝛾 + 1)𝜔123) +

2𝑌13

𝐷
(−𝛽𝜔122) +        

   2𝑌23

𝐷
. 𝑂 +

𝑌22

𝐷
(−2(𝛾 +

1)𝜔113) +
𝑌33

𝐷
. 𝑂 

𝐴 =
1

𝐷
[𝑌11 (

2𝑛

𝛼3 − (𝛾 + 1)𝜔133) − 2𝑌12(𝛾 + 1)𝜔123 − 2𝑌13𝛽𝜔122 −   2𝑌22(𝛾 + 1)𝜔113]     

                                                                                  (4.47) 

𝐵 = [𝜎11𝑙112 + 2𝜎12𝑙122 + 2𝜎13𝑙132 + 2𝜎23𝑙232 + 𝜎22𝑙222 + 𝜎33𝑙332] 

𝐵 = −
𝑌11

𝐷
(𝛾 + 1)𝜔123 + 2

𝑌12

𝐷
(−2(𝛾 + 1)𝜔113) +

2𝑌13

𝐷
𝜔112 +

2𝑌23

𝐷
(−

𝑛

𝛽2 +         𝛿12) +
𝑌22

𝐷
(
2𝑛𝛾

𝛽3 −

2(𝛾 + 1)𝛿13) +
𝑌33

𝐷
. 𝑂                        

=
1

𝐷
[−𝑌11(𝛾 + 1)𝜔123 − 4𝑌12(𝛾 + 1)𝜔113 + 2𝑌13𝜔112 + 2𝑌23 (

−𝑛

𝛽2 +  𝛿12) +    𝑌22 (
2𝑛𝛾

𝛽3 − 2(𝛾 + 1)𝛿13)]        

                                              (4.48) 

𝑃 = [𝜎11𝑙113 + 2𝜎12𝑙123 + 2𝜎13𝑙133 + 2𝜎23𝑙233 + 𝜎22𝑙223 + 𝜎33𝑙333] 

     = −
𝑌11

𝐷
𝛽𝜔122 +

2𝑌12

𝐷
𝜔112 +

2𝑌13

𝐷
. 𝑂 +

2𝑌23

𝐷
. 𝑂 +

𝑌22

𝐷
(
−𝑛

𝛽2 +  𝛿12) +
𝑌33

𝐷

2𝑛

𝛾3                              

      =
1

𝐷
[2𝑌12𝜔112 − 𝑌11𝛽𝜔122 + 2𝑌33

𝑛

𝛾3 +
𝑌22

𝐷
(
−𝑛

𝛽2 +  𝛿12)]                                           (4.49) 

∪̂𝐴𝐵= 𝐸(∪ |𝑥) 

= 𝑢 + (𝑢1𝑎1 + 𝑢2𝑎2 + 𝑢3𝑎3 + 𝑎4 + 𝑎5)

+
1

2
[𝐴(𝑢1𝜎11 + 𝑢2𝜎12 + 𝑢3𝜎13) + 𝐵(𝑢1𝜎21 + 𝑢2𝜎22 + 𝑢3𝜎23)

+ 𝑃(𝑢1𝜎31 + 𝑢2𝜎32 + 𝑢3𝜎33)] + 0 (
1

𝑛2
) 

𝐸(∪ |𝑥) = 𝑈 + 𝜑1 + 𝜑2                                                                                  (4.50) 

Where 

𝜑1 = 𝑢1𝑎1 + 𝑢2𝑎2 + 𝑢3𝑎3 + 𝑎4 + 𝑎5 

𝜑2 =
1

2
[(𝐴𝜎11 + 𝐵𝜎21 + 𝑃𝜎31). 𝑈1 + (𝐴𝜎12 + 𝐵𝜎22 + 𝑃𝜎32). 𝑈2 + (𝐴𝜎13 + 𝐵𝜎23 + 𝑃𝜎33)𝑈3] 

evaluated at the MLE ∪̂= (�̂�, �̂�, 𝛾) where 

𝑎1 = 𝜌1𝜎11 + 𝜌2𝜎12 + 𝜌3𝜎13 

= 0. 𝜎11 + (
−𝜉

𝛽
+

𝛾

𝛽2 −
1

𝛿
)

𝑌12

𝐷
+ (

𝜉−1

𝛾
−

1

𝛽
)

𝑌13

𝐷
                                                                    (4.51) 

𝑎2 = 𝜌1𝜎21 + 𝜌2𝜎22 + 𝜌3𝜎23 

= 0. 𝜎21 + (
−𝜉

𝛽
+

𝛾

𝛽2 −
1

𝛿
)

𝑌22

𝐷
+ (

𝜉−1

𝛾
−

1

𝛽
)

𝑌23

𝐷
                                        (4.52) 

 𝑎3 = 𝜌1𝜎31 + 𝜌2𝜎32 + 𝜌3𝜎33 
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= 0. 𝜎31 + 𝜌2. 0 + (
𝜉−1

𝛾
−

1

𝛽
)

𝑌33

𝐷
                                          (4.53) 

𝑎4 = 𝑈12𝜎12 + 𝑈13𝜎13 + 𝑈23𝜎23 

=
1

𝐷
(𝑌12𝑈12 + 𝑌13𝑈13 + 𝑌23𝑈23)                                              (4.54) 

𝑎5 =
1

2
(𝑈11𝜎11 + 𝑈22𝜎22 + 𝑈33𝜎33) 

=
1

2𝐷
(𝑌11𝑈11 + 𝑌22𝑈22 + 𝑌33𝑈33)                                                (4.55) 

Approximate Bayes Estimator under Linex Loss function  

∪̂𝐴𝐵𝐿= −
1

𝑘
𝑙𝑜𝑔(𝐸𝑢(𝑒−𝑘𝑢)) 

where 

𝐸𝑢(𝑒−𝑘𝑢|𝑥) =
∫𝛼∫𝛽∫𝛾𝑒−𝑘𝑢𝐺∗(𝛼,𝛽,𝛾)𝜕𝛼𝜕𝛽𝜕𝛾

∫𝛼∫𝛽∫𝛾𝐺∗(𝛼,𝛽,𝛾)𝜕𝛼𝜕𝛽𝜕𝛾
                                                                          (4.56) 

The above equation (4.56) is evaluated by method of Lindley approximation, whose simplified form is 

equation(4.50) 

Special Cases :– 

∪ (𝛼, 𝛽, 𝛾) =∪ 

1. Approximate Bayes Estimate of 𝜸 

∪ (𝛼, 𝛽, 𝛾) =∪=  𝑒−𝑘𝛾 

∪1=∪12=∪13=∪11= 0 

∪2=∪21=∪22=∪23= 0 

∪3=
𝜕

𝜕𝛾
(𝑒−𝑘𝛾) = −𝑘𝑒−𝑘𝛾;     ∪33=

𝜕

𝜕𝛾
(−𝑒−𝑘𝛾) = 𝑘2𝑒−𝑘𝛾 ,    ∪31=∪32= 0 

𝜑1 =∪1 𝑎1 +∪2 𝑎2 +∪3 𝑎3 + 𝑎4 + 𝑎5 

= 0. 𝑎1+0. 𝑎2 − 𝑒−𝑘𝛾 (
𝜉 − 1

𝛾
−

1

𝛽
)
𝑌33

𝐷
+ 0 +

1

2𝐷
𝑘2𝑒−𝑘𝛾 

= −𝑘𝑒−𝑘𝛾 ((
𝜉 − 1

𝛾
−

1

𝛽
−

𝑘2

2
)

𝑌33

𝐷
) 

𝜑2 =
1

2
[(𝐴𝜎11 + 𝐵𝜎21 + 𝑃𝜎31) ∪1+ (𝐴𝜎12 + 𝐵𝜎22 + 𝑃𝜎32) ∪2+ (𝐴𝜎13 + 𝐵𝜎23 + 𝑃𝜎33) ∪3] 

= −𝑘𝑒−𝑘𝛾 (
𝐴𝜎13 + 𝐵𝜎23 + 𝑃𝜎33

2
) 

𝐸(𝑢|𝑥) = 𝑒−𝑘𝛾 − 𝑘𝑒−𝑘𝑟 (
𝜉 − 1

𝛾
+

𝛾

𝛽
−

𝑘2

2
)

𝑌33

𝐷
− 𝑘𝑒−𝑘𝑟 (

𝐴𝜎13 + 𝜎23𝐵 + 𝑃𝜎33

2
) 
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𝐸(𝑢|𝑥) = 𝑒−𝑘𝛾 [1 − 𝑘 (
𝜉 − 1

𝛾
+

1

𝛽
−

𝑘2

2
)

𝑌33

𝐷
+ (

𝐴𝜎13 + 𝐵𝜎23 + 𝑃𝜎33

2
)] 

𝐸(𝑢|𝑥) = 𝑒−𝑘𝛾𝜑5  

𝛾𝐴𝐵𝐿 = 𝛾 + 𝑘′𝑙𝑜𝑔𝜑5;  at  (�̂�𝑀𝐿,�̂�𝑀𝐿,𝛾𝑀𝐿)                                          (4.57) 

Where 

𝜑5 = 1 − 𝑘 (
𝜉 − 1

𝛾
+

1

𝛽
−

𝑘2

2
)

𝑌33

𝐷
+ (

𝐴𝜎13 + 𝐵𝜎23 + 𝑃𝜎33

2
) 

Simulation and Numerical Comparison  

The simulations and numerical calculations are done by using R Language programming and results are 

presented in form of  table(1). 

1. The Random variable of Generalized Compound Rayleigh Distribution is generated by R-Language 

programming by taking the values of the parameters  𝛼, 𝛽, 𝛾 , taken as 𝛼 = 0.9 , 𝛽 = 0.6 and 𝛾 = 0.5  in the 

equations[(4.2)-(4.4)] and equation(1.1). 

2. Taking the different sizes of samples n=10(10)80 with complete sample, MLE's, the Approximate Bayes 

estimator, and their respective MSE's (in parenthesis) are obtained by repeating the steps 500 times, are 

presented in the tables from (1), for t=0.4, k= -8, R(t)=0.34, H(t)=0.45 and parameters of prior distribution 𝑎 

=2.5 and 𝑏 =3.4. 

3. Table (1) presents the MLE of 𝛼, 𝛽 and 𝛾 and Approximate Bayes estimators of 𝛾  (for 𝛼, 𝛽 and 𝛾 unknown) 

under LLF. The MSE's in all above cases are presented in parenthesis.   

         

 

 Table (1) 

                                   Mean and MSE'S of 𝜶,𝜷, 𝜸  

                               (𝛼 = 0.9 , 𝛽 = 0.6  and 𝛾 = 0.5  ) 

n �̂�𝑴𝑳 �̂�𝑴𝑳 �̂�𝑴𝑳 �̂�𝑩𝑳 �̂�𝑨𝑩𝑳 

10 0.648415 0.66795 0.60056  0.61431 0. 85476 

 
[0.891112] [0.049521] [0.032419] [1.223x10-3] [3.444x10-2]  

20 0.77054 0.49999 0.67545 0.719821 0. 77564 

 
[0.98342] [0.84537] [0.035421] [1.5994x10-2] [3.1912x10-2] 

30 0.7751648 0.558288 0.6865478 0. 739252 0. 793433 

 
[0.057125] [0.658458] [0.096548] [.02589461]  [0.4317145] 

40 0.79865421 0.5482658 0.86975682 0. 768581 0. 8937546 

 
[0.46572] [0.003254] [0.003272] [0.0074623] [0.85739] 

50 0.8973214 0.603484 0.839511 0.886543 0.865738 

 
[0.004578] [0.004577] [0.004265] [0.001624] [0.015437] 

60 0.91478523 0.6990011 0.9490011 0.9757613 0.9792358 
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[0.004325] [0.054663] [0.004226] [0.001624] [0.015437] 

70 1.000001 0.6988845 0.9454543 0.9924443 0.9807398 

 
[0.000125] [0.001125] [0.001367] [0.003718] [0.010374] 

80 1.2354782 0.7235814 0.9657432 1.0524443 1.007398 

 
[0.325874] [0.025258] [0.001245] [0.004012] [0.010544] 
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