
www.ijcrt.org                                                                       © 2020 IJCRT | Volume 8, Issue 8 August 2020 | ISSN: 2320-2882 

IJCRT2008344 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3000 
 

A Trend toward Cloudlet for the Internet-of Things 

Ph.D. Scholar Momin Mohammed Nadeem, Assistant Professor Dr. Gyanendra Kumar Gupta 

IT&CS Department 

Kalinga University Naya Raipur, Chhattisgarh, India 

 
Abstract—The Internet of Things (IoT) is a key driver for smart city initiatives, making it necessary to have an IT infrastructure that can take 

advantage of the many benefits that IoT can provide. The Cloudlet is a new infrastructure model that offers cloud-computing capabilities at the 

edge of the mobile network. This environment is characterized by low latency and high bandwidth, constituting a novel ecosystem where network 

operators can open their network edge to third parties, allowing them to flexibly and rapidly deploy innovative applications and services towards 

mobile subscribers. In this paper, we present a cloudlet architecture that leverages edge computing to provide a platform for IoT devices on top of 

which many smart city applications can be deployed. We first provide an overview of existing challenges and requirements in IoT systems 

development. Next, we analyse existing cloudlet solutions. Finally, we present our cloudlet architecture for IoT, including design and a prototype 

solution. For our cloudlet prototype, we focused on a micro-scale emission model to calculate the CO2 emissions per individual trip of a vehicle, and 

implemented the functionality that allows us to read CO2 data from CO2 sensors. The location data is obtained from an Android smartphone and 

is processed in the cloudlet. Finally, we conclude with a performance evaluation. 
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I. INTRODUCTION 

Mobile devices have become ubiquitous and mobile 

communication is no longer exclusive to smartphones and tablets; 

almost any portable device can now be outfitted with electronics, 

software, network connectivity, and sensors, allowing it to 

provide pervasive services, i.e. communicate and share data with 

other devices. These new capabilities constitute one of the most 

innovative and disruptive technological scenarios of today, the 

Internet of Things (IoT). 

The Internet of Things is becoming more and more widespread, 

and its potential for improving our overall quality of life is 

exceptional. Unfortunately, it inherits all of the many limitations 

that are intrinsic to mobility, regardless of the technology that is 

being used. Reduced computational resources, limited storage, 

and low battery life are, for example, particularly critical for 

resource-rich applications [1]. One very popular contemporary 

solution towards overcoming these impediments is to rely on 

cloud computing services. Finding an efficient strategy to 

leverage the cloud in mobile devices has been a recurrent topic 

across various research efforts, including the design of 

lightweight runtime environments, application partitioning, and 

application offloading, and bringing the cloud closer to mobile 

devices [2]. 

 

1. Problem statement 

The specific problems that we are addressing are scalability, data 

management, and resiliency. First, IoT systems deal with 

heterogeneous data that come from an increasing number of 

devices, making scalability a fundamental requirement. Existing 

cloudlet solutions present certain issues regarding scalability. 

They make use of point-to-point communication protocols like 

HTTP, which has no built-in distribution features. Therefore, 

developers would have to create their own distribution 

mechanisms, making the process of sending and receiving sensor 

data more complex. Moreover, existing cloudlet architectures are 

intended to serve a small number of devices that run interactive 

applications. They use VMs as form of virtualization and they 

often have to run demanding algorithms used to power up 

technologies like augmented reality and speech recognition. In the 

case of a Cloudlet for IoT, a faster and lighter form of deployment 

that is able to serve a considerably bigger number of devices is 

required. 

Second, IoT sensors generate massive amounts of data that has to 

be processed and stored somewhere. Unfortunately, existing 

cloudlet solutions are stateless, therefore all the data would still 

have to be send to the cloud after processing, which can saturate 

the network with traffic coming from IoT devices.  Finally, 

applications that rely on data produced from real time 

environment monitoring using IoT sensors, temporary outages or 

increased response times cannot be accepted. Available solutions 
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use centralized cloud services that are off premises and out of the 

user control. This complete dependence on the cloud can 

deteriorate the response time or even make the system more 

susceptible to failures and attacks that intend to interrupt or 

suspend the services. 

The use case of the project consists in the development of a 

cloudlet infrastructure that provides computing resources for 

smartphones and an IoT sensor system (Figure 1). 

 

Fig.1 Cloudlet for IoT    

The proposed architecture addresses the previously described 

challenges as follows: 

Scalable communication and deployment. The cloudlet 

deployment is done using containers since they use less resources 

in comparison with the VMbased cloudlets that we analysed. A 

publish-subscribe messaging pattern using MQTT is also 

implemented. With this approach, the cloudlet can consume 

sensor data in parallel. Moreover, the MQTT protocol is design to 

work even in unreliable networks. 

Data management support. The proposed architecture performs 

the data management directly on the edge, including both 

processing and caching. This approach reduces the system 

throughput to avoid saturating the internet bandwidth with traffic 

coming from IoT devices, since only historic data already 

processed and aggregated is stored in the cloud. 

System Resiliency. we provide a decentralized system to process 

data on the edge, which is able to reduce end-to-end user 

perceived latency and increase the system resiliency1 by 

providing data redundancy, high availability, and a loosely 

coupled architecture. 

The development of such a system leads to the following 

question: 

What are the main requirements for a cloudlet to support the use 

case, and which strategies can we use to improve scalability and 

reliability, and reduce throughput? 

 

 

 

2. Performance evaluation 

The performance evaluation is based on measuring the response 

time of the system, from the moment the device agent is created 

and the client data is sent and processed, until the device agent is 

removed. 

We start by creating a testing workbench – a fixed development 

environment that is reproducible and portable. This environment 

allows us to measure the performance of the cloudlet. One 

measuring cycle consists of measuring the response time given a 

pre-determined number of clients (sensor and smartphone clients) 

sending data We start off the measuring process with a ten-client 

cycle, and then gradually increase the number of clients for each 

further cycle. At the end of each cycle, we collect the desired 

measurements. After having performed all of the cycles, we will 

analyse the obtained data and the performance of our 

implemented cloudlet prototype. 

 

Fig.2 Performance Evaluation 

3. Delimitations 

The prototype is focused on a cloudlet that provides a data 

processing system where sensor data can be cached, processed, 

and aggregated before being ready to be stored in a cloud storage 

service (Figure 3). Given the time frame of this thesis project, 

integration with cloud services, inter-cloudlet communication, 

and multiple cloudlet integration have not been addressed. 

Additionally, the sensors involved are assumed to have sufficient 

communication capabilities to function without a gateway. 

 

Fig.3 Prototype Delimitation 

The client is a smartphone that sends sensor data to the cloudlet. 

The proposed cloudlet architecture includes a message broker that 

implements a publish/subscribe messaging model that facilitates 

one-to-many communication (Figure 4). This enables the 

development of loosely coupled applications, where components 

can be modified and replaced with alternative implementations 

http://www.ijcrt.org/


www.ijcrt.org                                                                       © 2020 IJCRT | Volume 8, Issue 8 August 2020 | ISSN: 2320-2882 

IJCRT2008344 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3002 
 

without interfering with other elements of the system. At the same 

time, the client applications (IoT devices) are less constrained to 

be same developed on the same programming language, operating 

system, or any environment. 

 

Fig.4 Prototype Design 

II. Cloudlet benefits 

A cloudlet is a new architectural element that represents the 

middle layer of a 3-tier hierarchy (Figure 5). The original 

motivation for this architecture is to reduce the latency of MCC 

applications by using a singlehop network and also potentially 

lower battery consumption by avoiding the use of broadband 

wireless networks, which normally consume more energy. The 

characteristics of cloudlets bring additional benefits [8]: 

Easy deployment. The fact that cloudlet servers are stateless 

simplifies management; adding or replacing a cloudlet only 

requires a moderate setup and configuration effort. 

Security improvement. The proximity of the cloudlet to mobile 

devices can make the architecture more resilient against DoS 

attacks2. It can also reduce information leakage due to traffic 

analysis, since restricting the range of end-toend communication 

prevents distant snoopers from accessing traffic information. 

 

Fig.5 Cloudlet Hierarchy 

Resilience. A cloudlet collection can offer reliable cloud 

computing services even with a fragile connectivity to a distant 

cloud provider. 

III. Cloudlet architectures 

During the past few years, several cloudlet architectures have 

been proposed, many of which are based in VMs deployed in 

elastic cloud computing platforms, such as OpenStack. There 

exist other designs that distinguish between elastic cloudlets and 

ad-hoc cloudlets with fixed resources, and between centralized 

and decentralized cloudlet management. 

1. VM-based cloudlet architecture 

Satyanarayanan et al. [1] [8] [9] [10] have developed a cloudlet 

reference architecture based in VM overlay application 

offloading. The cloudlet system consists in two type of elements, 

the cloudlet host and the mobile client (Figure 6). Mobile devices 

can offload computations to a single mirrored device clone in the 

form of a VM or to a set of VM that handle specific 

computations. 

The cloudlet host manages a discovery service that broadcasts the 

cloudlet IP address and port, a storage system for the base VM 

images, a cloudlet server that handles application overlays for 

code offloading and the life cycle of the VMs, and it also contains 

a VM manager that hosts all guest VM instances corresponding to 

each mobile app. 

 

Fig.6 VM-based Cloudlet Architecture 

2. Ad hoc cloudlet vs elastic cloudlet 

Instead of managing VMs for the deployment of a cloudlet 

system, Verbelen et al. [11] propose a finer-grained cloudlet 

concept that offloads applications on the component level, 

without the need of sending a VM overlay. They also suggest that 

Cloudlets can be formed dynamically with any device in the LAN 

network that has available computing resources. Their 

architecture consists of three layers (Figure 7): the cloudlet level, 

the node level, and the component level.   
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Fig.7 Dynamic Cloudlet 

A component is the unit of deployment managed by an Execution 

Environment (EE). To support distributed execution, the 

components on different EEs can communicate using remote 

procedure calls (RPCs). The EE and the OS together form a node 

that is managed by a Node Agent (NA). The cloudlet is managed 

by a Cloudlet Agent (CA), that communicates with all underlying 

Node Agents. CA of different cloudlets can also communicate 

with each other. Abolfazli et al [13] also propose a dynamic 

cloudlet architecture consisting only of ad hoc cloudlet nodes, all 

of which are administered by a central service governor, a 

replicated supervisory entity that monitors and supervises 

computing augmentation entities (Figure 8). 

 

Fig.8 Centralized Cloudlet 

IV. Cloudlet for the IoT 

IoT applications in general, and sensor and crowd-sensing based 

applications in particular, have to be able to deal with a large 

amount of highly dynamic data coming from the real world. To 

support this scenario, it is necessary to combine computational 

resources at the edge with cloud computing services. 

Cloudlets (As described by Satyanarayanan et. al [37]) were 

originally ideated to reduce end-to-end latency in interactive 

applications while addressing other concerns, such as limited 

processing capability and limited battery capacity of mobile 

devices. One example of such interactive systems is Gabriel [38], 

a wearable cognitive assistant for users in cognitive decline. It 

combines the image capture and sensing capabilities of Google 

Glass devices with cloudlet processing to perform real-time scene 

interpretation. This system is layered on top of an OpenStack 

extension for use in cloudlet environments.   

As we can see in Figure 9, this system includes an ensemble of 

VMs, each encapsulating a different cognitive task. A single 

control VM is responsible for all interactions with the mobile 

device, and a Pub/Sub mechanism distributes sensor streams to 

cognitive VMs. This kind of architecture is intended to be used in 

an environment were only a handful of devices are expected to be 

operating at the same time. 

 

Fig.9 Cognitive Assistant Architecture 

A VM-Based cloudlet architecture for offloading computations 

faces several drawbacks if it is intended to be used for IoT. First, 

higher synchronization efforts are necessary to preserve a 

consistent state between the mobile device and the VMs that 

handle the computations that are being offloaded [23]. Second, as 

the number of devices that leverage the cloudlet increases (as in 

the case of sensor networks) problems related to scalability 

become evident, and the deployment of numerous heavyweight 

virtual machine images grows unpractical. 

 

Fig.10 Cloudlet Applications for IoT 

1. Cloudlet design and architecture overview 

We assume that various devices such as small servers, personal 

computers, or onpremises small data centers, are available to run 

cloudlet instances. These devices are physically spread 

throughout a geographic area and are close to the network 

infrastructure (Figure 11).  
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Fig.11 Geographical Distribution of Cloudlets 

The cloudlet architecture that we propose consists of four main 

components (Figure 12): the Cloudlet server, Device Agents, 

Message Broker, and Client Application. The interaction between 

a mobile device and the cloudlet starts when the client application 

requests the deployment of a device agent to the cloudlet server. 

Each agent serves an individual device and performs specific 

tasks such as collecting and processing sensor data. The device 

agent and the client application can communicate using the 

message broker. A distributed application in our cloudlet model 

consists of a set of device agents distributed across one or various 

cloudlets. 

 

Fig.12 Cloudlet for IoT Main Components 

1.1 Cloudlet communication 

Our cloudlet architecture uses a combination of two approaches to 

communicate, synchronous HTTP requests and asynchronous 

messaging. Representational State Transfer (REST) is used to 

enable the communication between the client application and the 

cloudlet server to manage the lifecycle of the device agents. 

REST uses a request/response messaging model; if the desired 

response is not available, the application needs to execute the call 

again. Generally speaking, REST is a powerful messaging 

exchange pattern, but the clients always need to know the host 

and port of the server to which they want to communicate. 

MQTT is a lightweight protocol that implements a 

publish/subscribe architecture, minimizing network bandwidth 

and device resource requirements. It is open-source and a single 

MQTT server is capable of supporting thousands of remote 

clients. These characteristics are particularly well suited for an 

IoT environment [39]. furthermore, there exists several 

implementations and client libraries on the majority of 

programming languages, Thereby, MQTT was chosen as the 

communication protocol between clients and device agents. The 

MQTT protocol includes the following benefits [39]: 

 It can easily be adapted to a wide variety of operating 

systems, devices, and platforms. 

 It is very well suited for constrained networks that deal 

with high latency, low bandwidth, and fragile 

connections. 

 It is designed specifically for devices with little memory 

or processing power. 

 It enables massive scalability of deployment. 

 It implements a publish/subscribe messaging model that 

facilitates one-to-many distribution 

 The sender applications or devices do not need to know 

anything about the receiver, not even their address. 

 It delivers relevant data to any component that can use it. 

In order to have a better understanding of the differences between 

the two protocols that we are using, we present a comparison 

between MQTT and HTTP in Table 1. 

 

Table 1. MQTT vs. http 

1.2 Cloudlet: VM vs Containers 

The use of an intermediate software layer to provide virtual 

resources on top of an underlying system is known as resource 

virtualization. In general, the virtualized resources can be seen as 

isolated execution contexts, most commonly virtual machines 

(VM). Instead of using VMs as a method of virtualization, we 

opted for a container-based virtualization alternative for our 

cloudlet development (Figure 13). 

In the case of hypervisor-based virtualization, each VM has its 

own operating system, allowing a single host to execute multiple 

operating systems. Alternatively, in container-based virtualization 

all virtual instances share a single operating system kernel. 

However, from the point of view of the users, each container 

looks and executes like a stand-alone OS. This makes containers a 

lightweight virtualization option [40]. Furthermore, the use of 

Linux containers results in equal or better performance than VMs 

when evaluating benchmarks that stress different aspects such as 

computation, memory bandwidth, memory latency, network 

bandwidth, and I/O bandwidth [41].  
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Fig.13 Containers vs. VMs 

Docker is a widely adopted platform for deploying containerized 

applications. Linux Containers and LXC (a user-space control 

package for Linux Containers) constitute the core of Docker. 

LXC ensures that the container's root user does not have root 

privileges on the host. Furthermore, Docker can limit the 

resources being consumed by a container, such as memory, disk 

space and I/O. In addition, Docker uses a file system for 

containers. that allows Docker to use a single image as the basis 

for many different containers, which results in savings of storage 

and memory, as well as their faster deployment. All this 

characteristics, including the fact that is open-source, motivated 

our decision to implement our architecture using Docker.  

2. Cloudlet prototype development 

The transportation sector is a one of the main sources of CO2 

emissions, and a major contributor to environmental pollution 

[42] [43]. In order to have an efficient strategy to reduce pollution 

produced by vehicles, it is necessary to have a model that can 

estimate the CO2 emissions accurately. The use case of our 

cloudlet prototype consists of the development of a distributed 

application to calculate CO2 emissions from vehicles using 

mobile devices, and also monitor and process data from CO2 

sensors. 

The most common models used for calculating greenhouse gas 

emissions like CO2 are known as macro-scale models. In these 

models, the estimation is done through area-wide driving cycles. 

For our cloudlet prototype, we focused on a micro-scale emission 

model to calculate the CO2 emissions per individual trip of a 

vehicle. The location data is obtained from an Android 

smartphone and is processed in the cloudlet. We also added a 

functionality that allows us to read CO2 data from CO2 sensors 

(Figure 14). 

 

Fig.14 Use Case: CO2 Monitoring 

3. Client application 

We have developed two kinds of client applications, one for 

Android smartphones and one for CO2 sensors. Both clients make 

use of the cloudlet server REST API (Figure 15) to request 

computing resources to the cloudlet in the form of docker 

containers (device agents). Once the container is ready, the 

mobile client starts publishing data via a message broker that 

implements the MQTT protocol (Figure 16). The client 

application needs to send a POST request a specific cloudlet URI 

that handles the desired type of device to create a device agent. 

POST http://<cloudletserver>:<port>/<device type>/ JSON 

POST http//localhost:3000/smartphone/ {deviceId: "0001", type: 

"smartphone"} 

Similarly, the PUT method is used to stop and start the container. 

Additionally, once the client application has completed the data 

transfer, the device agent can be removed by sending a DELETE 

request. 

PUT/DELETE http://<cloudletserver>:<port>/<device 

type>/<device ID>/ JSON  

PUT/DELETE http//localhost:3000/smartphone/0001/ {deviceId: 

"0001", stop: true} 

 

Fig.15 Client-Cloudlet Communication 

The communication between client applications and device agents 

is done via MQTT message topics. There are four different topics 

that are used: one for the data that is being send from the client, 

one to send a notification to the agent to save the data, one to send 

messages on behalf of the client in case that it has being 

disconnected, and one to publish the results of the processing that 

is being done by the device agent. 
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Fig.16 Client-Device Agent Communication 

3.1 Smartphone client application 

The smartphone client application was designed for Android 

devices. The first step in using the application consists of typing 

the address of the cloudlet server and requesting the creation of a 

device agent for the smartphone (Figure 17a).  After the agent is 

created, we will see the option to start the GPS data transfer 

(Figure 17b). Finally, the device agent starts the calculation of 

CO2 production as a function of speed and acceleration of the 

vehicle (Figure 17c). For testing purposes, a speed simulator is 

also included. The application was developed using Android 

Studio; for the asynchronous message communication, we used a 

client implementation of MQTT provided by the Eclipse Paho3 

project which consists of various open-source MQTT clients for 

many programming languages.  

 

Fig.17 Smartphone Client 

The device used to test the client was a Samsung Galaxy S5 Mini, 

Table 1 presents the main characteristics of this device4. 

 

Table 2. Smartphone Specifications 

3.2 Sensor client application 

The sensor client application is responsible for the publication of 

the sensor data in the cloudlet. It consists of a Java application 

that includes a MQTT client that sends the data from the CO2 

sensor to the message broker, and a HTTP client to handle the 

device agent. 

Figure 18 shows the user interface of the application. First, we 

need to input the details of the port where the sensor is connected 

and the address were the MQTT server and the Cloudlet server 

are hosted (Figure 18 a & b). Afterwards, we can start and stop 

the readings from the CO2 sensor (Figure 18 c & d). Finally, we 

start the MQTT client to initiate communication with the device 

agent (Figure 18 e & f). 

 

Fig.18 CO2 Sensor Client 

The sensor used for the prototype was a CO2 Engine K30 sensor 

produced by SenseAir, with Table 3 showing its main 

specifications5. 

 

Table 3. CO2 Sensor Specifications 

V. Cloudlet Server 

The cloudlet server is the main element of the architecture. It 

implements a REST API to handle requests from client 

applications, binds all the requests related to the device agent 

lifecycle to the Docker engine, and provides a user interface to 

monitor all connected devices in real time. 
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Fig.19 Cloudlet Server UI 

The cloudlet server was implemented using Node.js, an open 

source back-end JavaScript environment that supports long-

running server processes and is focused on low memory 

consumption. Node.js is based on Google’s V8, a JavaScript 

runtime implementation. Unlike server-side environments like 

Java, that rely on multithreading to support the concurrent 

execution of business logic, Node implements a non-blocking 

asynchronous I/O event-driven model (Figure 20).  

 

Fig.20 Node.js Process Model 

1. Message Broker 

The Message Broker is an intermediary module that mediates the 

communication between different entities within the cloudlet 

architecture. Its main purpose is to implement decoupling, i.e. to 

make sure that applications are mutually aware of each other only 

to the minimal extent necessary for them to be able to exchange 

messages. 

As our message broker, we decided to use Mosquitto6, a 

lightweight MQTT server implementation. In order to run on 

machines of low capacity, Mosquitto is written in C. The current 

implementation consumes around 3MB RAM with 1000 clients 

and it has been successfully tested with up to 100,000 connected 

clients7. In order to offer scalability, Mosquitto has bridge 

capabilities that allow it to connect to other MQTT servers and 

not only Mosquitto instances, which, in turn, allows for the 

constructions of MQTT server networks, passing MQTT 

messages from any location in the network to any other. It also 

provides Websocket support so that one can implement MQTT 

clients directly on top of the web browser. 

2. Device Agents 

The data produced by the mobile devices and sensors is processed 

by the device agents. They are subscribed to specific topics via 

the Mosquitto message broker and are intended to be very 

flexible. 

There are two different types of device agents: smartphone agents 

and sensor agents. Both types of agents are based on the Iron 

microcontainer image for Node.js, instead of using the official 

Docker Image repository for Node.js. This is mainly because the 

size of the official Node image is ∼600 MB, which is 

exceptionally demanding, considering the amount of agents that 

we need to deploy. 

Iron microcontainers are much smaller, they only include the 

application itself and the OS libraries and language dependencies 

required to run it. In the case of the Iron Node image, the size is 

∼20 MB. The main benefits8 of using microcontainers are: easier 

distribution (since the image is much smaller, different cloudlets 

can be distributed much quicker) and improved security (since 

less code is allocated in the container, we have a smaller attack 

surface). 

The sensor agent collects CO2 data from a sensor and when the 

client sends a save request, it creates a JSON object that includes 

the mean value of the CO2 readings, the device Id, and a 

timestamp. This object can be saved on a database or published 

on a different topic to be used by another agent. The smartphone 

agent collects the location data and speed from the mobile device 

and uses it to calculate the CO2 production (grams per second) as 

a function of speed and acceleration [49]. When the agent 

receives a save request, it returns a JSON object containing the 

total CO2 produced during the whole trip, including the duration 

of the trip and the coordinates of the start and end. 

 
Fig.21 Device Agents Output 

3. Performance evaluation 

The performance evaluation is based on measuring the response 

time of the system, from the moment the device agent is created 

and the client data is sent and processed, until the device agent is 

removed. We start by creating a testing workbench, which is a 

fixed development environment that is reproducible and portable. 

This environment allows us to measure the performance on the 

cloudlet. One measuring cycle consists of measuring the response 
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time given a predetermined number of sensor and smartphone 

clients that are sending data. We start off the measuring process 

with a N-client cycle, and then gradually increase the number of 

clients for each further cycle. The cloudlet prototype and the 

testing workbench were performed using an Apple MacBook Pro, 

whose hardware and software specifications are provided in Table 

4. 

 

Table 4. Computer Hardware 

4. Testing workbench 

 

Because the Docker daemon uses Linux-specific features, is not 

possible to run Docker natively in OS X or Windows machines. 

Therefore, is necessary to use a Linux VM that can host Docker. 

In a Linux installation, the Docker daemon, Docker client, and 

any container run directly on the physical machine. In the case of 

our OS X installation, we used Docker Machine to install and run 

Docker inside a lightweight Linux VM made specifically for the 

running of the Docker daemon on Mac OS X (Table 5). 

 
Table 5. VM Specifications 

In OS X, the Docker host address is the address of the Linux VM. 

When we start a device agent (container), the ports map to ports 

on the VM, which means that the user can address ports on a 

device agent using the VM addressing. 

The Docker Machine is currently the only way to run Docker on 

Mac OS X or Windows. It can also be used for provisioning and 

management of multiple remote Docker hosts, as well as 

provision of Swarm clusters. 

 

Fig.22 Docker OS X Installation 

5. Device Agent Simulators 

The device agent simulator is a Java-based application that uses 

threads to simulate multiple mobile devices that send http 

requests to create, stop, and remove device agents. When we type 

in the number of devices and press create, each of these devices 

will send a create request at a random time that ranges from zero 

to ten seconds. Then we can choose to either start sending data or 

to stop and remove the agent. If we decide to start a data 

simulation, we can introduce the duration in seconds. In the case 

of the sensor simulator, each simulated device sends a set of 

messages containing a JSON object with a randomly generated 

CO2 sensor reading. The smartphone simulator sends instead a 

speed value and a set of coordinates. 

 
Fig.23 Device Agent Simulator 

6. Hard disk and memory usage 

Figure 24 presents a comparison of the size between different 

Docker images. The largest images that we compared were the 

official Node.js image and the official Java language image, both 

of which are over 500 MB in size.Our device agent images for 

both sensor and smartphone devices, which include all the 

required files and software ready to be used, fits in only 34.7 MB 

of space. With respect to memory usage, each agent requires ∼18 

MB of RAM and ∼0.30% of CPU utilization to run and process 

the data from the mobile client. 
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Fig.24 Docker Images Comparison 

In the case of smartphone agents, we can see that after increasing 

the number of devices above 125, the disk usage is increasing at a 

lower rate, which is due to the fact that many of the smartphone 

agents that were deployed started to fail because of the lack of 

available resources in the VM and, therefore, they were unable to 

process and cache any data. 

 

Fig.25 Hard Disk Usage 

Figure 26 presents the memory usage evaluation. After exceeding 

125 devices, the memory usage remained to be around 1.7 GB, 

which was the real maximum amount that could be used, since the 

remaining 0.3 GB is used by other activities of the operating 

system. 

 

Fig.26 Memory Usage 

 

7. Cloudlet response time 

The Cloudlet response time evaluation consisted of a set of REST 

requests to deploy, stop, and remove a number of device agents 

during a fixed period of time. For this purpose, we measured the 

time between the client requests coming into the Cloudlet server 

and when the response headers are written, in milliseconds. 

Figure 27 and Figure 28 show the response time from Post and 

Put requests respectively. We observe that in both cases, after 

having more than 75 devices sending requests in parallel the 

response time increases dramatically. 

 

Fig.27 Post Response Time 

 

Fig.28 Put Response Time 

On the contrary, the response time from Delete requests remained 

between 10 to 15 milliseconds, regardless of the number of 

parallel requests that were sent. 

 
Fig.29 Delete Response Time 

VI. Conclusions 

We are still in an early stage of the development of mobile edge 

computing solutions, and there are still numerous efforts focused 

on the standardization of these technologies. This is of paramount 

importance, as otherwise there will exist multiple and not 

necessarily compatible solutions; this can lead to a fragmented 

marketplace that would fail to grow. It is also important that key 

industry players, such as network providers understand what are 

the benefits of opening their infrastructure to allow third parties to 

provide new services at the edge. In the specific case of our 

cloudlet architecture, its ability of operating on any commodity 

hardware is a very attractive feature, allowing mobile developers 

to deploy highly scalable applications in a secure and highly 

customizable environment. Finally, the user case itself is a very 

interesting tool that can be helpful to understand how the driving 

styles can affect the CO2 emissions from vehicles. 
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