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Abstract: This Distributed generation (DG) is becoming more important due to the increase in the demands 

for electrical energy. Distribution system loss reduction is one of the prime objectives for planning of 

distributed generation. To minimize the losses, optimal sizing and location of distributed generation (DG) is 

critically important. In this thesis, the optimal DG placement and sizing problem is investigated using 

single-objective optimization problem, where the systems power losses are considered as the objective to be 

minimized. These problems are formulated as constrained linear optimization problems using the Sequential 

Quadratic Programming method (SQP). The proposed method is demonstrated on IEEE-15 bus and IEEE-

33 bus radial distribution systems extensively used as examples in solving the optimal location and sizing 

problem of distributed generators. Simulation results with the DG shows improvement in terms of voltage 

profile enhancement and power losses reduction are obtained satisfactorily. 

 

Index Terms - Optimal Location, Distributed Generation (DG), Sequential Quadratic Programming 

method (SQP), Voltage profile enhancement. 

I. INTRODUCTION 

One of the largest consumer markets in the world is the electric power industry. For instance, in the 

United States, 3% of Americas Gross Domestic Product (GDP) is spent on electric energy purchases, 

which are increasing faster than the rate of economic growth. The cost of electricity is estimated at 

around 50% for fuel, 20% for generation, 5% for transmission and 25% for distribution [1]. Distribution 

systems must deliver electricity to each customer's service entrance at an appropriate voltage rating. The 

X/R ratio for distribution levels is low compared to transmission levels, causing high power losses and a 

drop in voltage magnitude along radial distribution lines. Studies [2] have indicated that approximately 

13% of the total power generated is consumed as real power losses at the distribution level. Such non-

negligible losses have a direct impact on the financial issues and overall efficiency of distribution 

utilities. Traditionally, distribution power losses are minimized through proper dispatch of reactive 

power control devices, which can be done by deploying automatic voltage regulators (tap changing 

transformers) and shunt capacitors installed at low voltage buses [3]. The installation of Distributed 

Generation (DG) units is becoming more prominent in distribution systems due to their overall positive 

impacts on power networks. Some major advantages of integrated DGs include reducing power losses, 

improving voltage profiles, reducing emission impacts and improving power quality. Because of these 

benefits, utility companies have started to change their electric infrastructure to adapt to the introduction 

of DGs in their distribution systems. Nonetheless, in order to maximize benefits, solution techniques for 

DG deployment should be obtained using optimization methods, since installing DG units at non-

optimal places and in inappropriate sizes may cause an increase in system power losses and costs. 

Moreover, installing DG units is not straightforward, and thus the placement and sizing of DG units 
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should be carefully addressed. Investigating this optimization problem is the major motivation of the 

present thesis research. 

 

II.  OBJECTIVES 

The main goal of this thesis is to solve the optimal DG placement and sizing problem in distribution 

networks. This problem is treated both as a single-objective and a multi-objective optimization problem. 

Both problems are formulated as constrained nonlinear optimization problems and are solved using the 

Sequential Quadratic Programming (SQP) deterministic method. 

The single-objective optimization problem aims to find the optimal placement and size of DG by using 

the total real power losses as a particular objective to be minimized. In a similar fashion, the multi-

objective optimization method is proposed to consider the cost aspects of DG installation, where the 

total real power losses and the total DG installation cost are considered as objectives that should be 

minimized simultaneously. The multi- objective optimization problem aims to find the Pareto front, 

which consists of a set of trade-off solutions. Each solution gives a particular place and size for the DG 

unit to be installed. As a result, the decision-maker can select the proper solution according to subjective 

preferences. In addition, a fuzzy decision-making procedure for order preference is used to guide the 

decision-maker to the best compromise solution among all acceptable solutions. The impact of 

integrating single and multiple DGs is also investigated in this work. Two topologies of distribution test 

networks (radial and meshed) are selected to validate the proposed methods and the results are 

presented. 

A. Problem Formulation 

An optimization problem can be mathematically defined as the minimization or maximization of a function 

(called the objective function) while satisfying a number of equality and/or inequality constraints on its 

variables [4]. The general optimization problem can be formulated as: 

 xfMaxMin
nRx

;/       …..(1) 

  nixhtosubject i ,......,2,1,0; 
    

…..(2) 

  mixgtosubject i ,......,2,1,0; 
    

…..(3) 

maxmin; xxxtosubject       …..(4) 

where 

f(x) : the objective function, a function of x that we want to maximize or minimize. 

h(x), g(x) : the vectors of equality and inequality constraints that the unknowns must satisfy. 

x : the vector of n decision or unknown variables and x=[x1, x2, … ,xn]. 

This kind of optimization is called a single-optimization problem, since f(x) is only one objective function. 

On the other hand, a multi-optimization problem has more than one objective function, as illustrated in the 

following chapter. 

B. Problem Objective  

The objective function to be minimized to solve the optimization problem is the total active power loss of a 

distribution system. 

)(: XPMinimize Loss         ..(5) 

where is the total  real  power  loss,  which  can  be  expressed  in  the  following equation: 

  



NS

k

jijijikLOSS VVVVGP
1

22
cos2 

               

…..(6) 

where 

NS: the total number of branches, 

Gk: the conductance of the k-th branch which connects the sending bus i and the receiving bus j, 

Vi,Vj  : voltage magnitude at bus i and j, 

δi,δj : voltage angle at bus i and bus j. 
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C. Constraints 

Equality Constraints: The objective function is minimized subject to various operational constraints to 

satisfy the electrical  

requirements for the distribution network and constraints on DG operation. These constraints are 

discussed as follows: 

Power Balance Constraints: Power balance is given by nonlinear power flow equations, which state that 

the sum of complex  

power flows at each bus in the distribution system injected into a bus minus the power flows extracted 

from the bus should equal zero. 

  0cos
1

 


NB

j

ijjiijjiDiDGi YVVPP 

    

…..(7) 

  0sin
1

 


NB

j

ijjiijjiDiDGi YVVQQ 

    

…..(8) 

 

where 

 PDGi, QDGi: active and reactive power delivered by DG at bus i 

 PDi, QDi : active and reactive power demand at bus i 

 |Yij|: the magnitude of the ij-th element of the admittance matrix 

 𝜙ij: the angle of the ij-th element of the admittance matrix 

 NB : the total number of buses 

 

Inequality Constraints  

Power Flow Constraints: The power flow constraint is used to ensure that they do not approach their 

thermal limits. The following constraint checks for the absolute power flow both at the sending and receiving 

ends of a particular line to be within the upper limit of the line. 
max

ijij SS                …..(9) 

max

jiji SS         …..(10) 

where 

 
max

jiS
: apparent power maximum allowable for branch i j 

 Sij: apparent power flow transmitted from bus i to bus  

Generation Capacity Constraints: Limiting the DG size so as not to exceed the power supplied by the 

substation and the output power of each DG unit is constrained by lower and upper limits. 

  ssss

nDG

i

DGiDGi jQPjQP 
1

        …..(11) 

maxmin

DGiDGiDGi
PPP          …..(12) 

where and are the minimum and maximum operating outputs of unit i, respectively.   

 
Bus voltage limit: Bus voltage magnitudes and phase angles of the radial distribution system are to be 
bounded between maximum and minimum values, imposed by a system operator. The boundary constraint 
can by expressed as follows: 

maxmin

iii VVV          …..(13) 

maxmin

iii           …..(14) 

where: 
min

iV , 
max

iV , 
min

i  and 
max

i  are the lower and upper 

Mathematical Models of DG Units 

A DG unit can be modelled as either a PV or PQ bus in the distribution system. If DGs have control 

over the voltage by regulating the excitation voltage (synchronous generator DGs) or if the control circuit of 

the converter is used to control P and V independently, then the DG unit may be modelled as a PV type. 

Other DGs, like induction generator-based units or converters used to control P and Q independently, are 
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modelled as PQ types. The most commonly used DG model is the PQ model [5]. In this work, the PQ-DG 

units are represented as a negative PQ load model delivering active and reactive power to a distribution 

system. The DG reactive power can be calculated by the following equation: 

  DGiDGiDGi PFPQ 1costan        …..(15) 

Sequential Quadratic Programming 

Since the objective function and its constraints are naturally nonlinear equations, the optimization problem is 

classified as a Nonlinear Optimization Problem (NLP) [4]. The DG optimization problem is performed using 

a conventional Sequential Quadratic Programming (SQP) method also known as Iterative Quadratic 

Programming and Recursive Quadratic Programming, meaning that one Quadratic Programming (QP) sub 

problem is solved at each major iteration. According to the accuracy, efficiency and percentage of successful 

solutions of the SQP method over a large number of test problems, it is considered as the best nonlinear 

programming method for constrained optimization [6]. 

     The main idea of SQP is to model the optimization functions at the current point,  xk, by making a 

quadratic model of the objective function and linear models of the constraints using Taylors expansion. These 

are then solved at each iteration to find a new search direction, d, with a better solution, xk+1. This method 

closely resembles Newton’s method for unconstrained minimization [7]. By applying Taylors expansion to 

the general optimization problem, we get: 

 

            kkTkkTkk xxxxxxxxfxfxf  2

2

1

   
 …..(16) 

       kTkk xxxhxhxh         …..(17) 

 

       kTkk xxxgxgxg        …..(18) 

 

where  refers to the gradient of the f(x), and 
2 is the Hessian of the f(x).Setting: 

 kxxd           …..(19) 

 kk xfH 2          …..(20) 

 

Thus, the QP sub problem will have the form: 

minimize:     dHddxfxf kTTkk

2

1
      …..(21) 

    0:  dxhxhtoSubject
Tkk

      …..(22) 

    0:  dxgxgtoSubject
Tkk

      …..(23) 
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Satisfying the KKT Conditions 

The SQP applies the Lagrange multipliers method to the QP sub problem, starting by transforming 

the constrained optimization problem to a Lagrangian function and then satisfying conditions (called 

Karush-Khun-Tuker (KKT) conditions) and solving the unknown variables from the derived equations 

through Quasi-Newton method in each iteration. The Lagrangian function for this problem can be written as 

follows: 

       xgxhxfxL TT  ,,
      …..(24) 

 

 

Where 

 λ : the equality Lagrange multiplier, 

μ : the inequality Lagrange multiplier. 

 

    The KKT conditions state that, at the optimal point solution, the gradients of the Lagrange function are 

equal to zero, as follows: 

      0 xgxhxf TT        …..(25) 

  0xh          …..(26) 

  0xg          …..(27) 

  0,0   xgT
        …..(28) 

The active set method [8] applies to the inequality constraints to partition it into two groups. The first group 

is to be treated as active and the second group as inactive. Let A  be  a  set  of  i,  such  that, the  necessary  

conditions  for  the  inequality   constraints then become: 

      0 xgxhxf i

TT        …..(29) 

  Aixgi  ,0         …..(30) 

  Aixg i  ,0         …..(31) 

Aii  ,0          …..(32) 

Aii  ,0          …..(33) 

The Lagrange multipliers for the inactive inequality constraints are set to zero.Therefore, they will be 

considered as equality constraints in the Lagrange function. 

The QP sub problem is formulated as: minimize: 

     dxLddxfxf TTkk ,,
2

1 2      …..(34) 

    0:  dxhxhtoSubject
Tkk

      …..(35) 

    0:  dxgxgtoSubject
Tkk

      …..(36) 

where  ,,2 xL is the Hessian of the Lagrange function. 

     The local convergence of the SQP method follows from the application of Newton's method to the 

nonlinear system given by the Kuhn-Tucker-Karush (KKT) conditions: 
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The QP sub-problem solution is obtained by solving the Quasi-Newton, as follows: 
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The Newton step from the iterate k is thus given by: 
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where and are the Newtons steps toward a KKT solution point. 

 

These formulae may be rearranged by moving the term to  the left-hand side of (3.39), giving:  
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The Newton-KKT system solves the equations starting by estimated solution points to get the search 

direction and new values for the Lagrange multipliers in order to be utilized in the next iteration. The 

process is repeated iteratively until an optimal solution, x*, is reached or certain convergence criteria are 

satisfied. 

Update the Hessian Matrix 

 

The Hessian of the Lagrangian function in the QP sub problem is to be calculated in every iteration. 

The Quasi-Newton method approximates the Hessian matrix (B) instead to calculate it. The most widely 

used formula, and the one considered to be most effective, is the BFGS update formula, named for its 

inventors, Broyden, Fletcher, Goldfarb, and Shanno [47]. Using this scheme, we set: 

  kkkkkk sByr   1        …..(42) 
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Then we can update Bk+1 using, 

k
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III SIMULATION RESULTS OF IEEE-15 & IEEE-33 BUS SYSTEMS 

Software Tools Used 

The proposed optimal DG size and placement in the distribution systems was coded in MATLAB® 

Version 8.5.0.197613 (R2015a). MATLAB is a high-level language and interactive environment for 

numerical computation, visualization, and programming. Programmers and users of MATLAB can analyse 

data, develop algorithms, and create models and applications, using the language, tools, and built-in math 

functions to explore multiple approaches and solve technical computing problems faster than with 

spreadsheets or traditional programming languages, such as C/C++ or Java. 

Two different distribution systems were used to test the proposed optimization method in finding the 

optimal DG size and place. The first system is a 15-bus radial distribution system and the second system is a 

33-bus meshed distribution system. Various scenarios are analysed using these systems. The following 

analysis is performed with the test systems and presented accordingly:  

 Determining the optimal size and placing of DG.  

 The effect of DG allocation on a voltage profile.  

 The effect of DG allocation on a power loss. 

     A voltage deviation index was calculated in all tests and cases to show improvements in the voltage 

profiles. 
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Radial Distribution System (IEEE-15 BUS)   

The first test was applied on an existing rural distribution feeder. This system consists of 15 buses and 14 

branches at 12.66 KV voltage level. The capacity of the system is 3802 kW real power and 2694 KVAR 

reactive power. The full network parameters are given in Appendix-A, Figure 4.2 shows the single line 

diagram of the radial distribution system under study, with its lateral branches. The optimization problem is 

investigated for single DG installation as follows. 

 
Figure1:  A single-line diagram of a 15-bus radial distribution system 

 

Case 1: Installing One DG 

The proposed method was applied to a 15-bus radial distribution system by installing one DG at each 

candidate bus. All buses are considered as candidate buses in this test and in all subsequent tests. Table 4.1 

shows the DG optimal size and corresponding real power losses and voltage deviation at all of the system 

buses. 

Figure 4.5 shows the corresponding total real power losses for installing the optimal DG size at each bus of 

the system. From the figure, we can determine that the best bus for optimal DG allocation is at bus 13. 

Installing the DG at bus 13 with a size of 467  KVA caused a reduction in real power losses from 671.6 kW 

to 557.42 kW, which is about a 17% reduction. Figure 4.6 shows the improvement in the voltage profile 

after installing the DG unit at bus 14. Here we can see that voltage deviation improved  to 1.17%. 

 

Table1: Real and Reactive power loss comparison Table 

BUS 

No. 

P Loss without DG 

(KW) 

P Loss with DG 

(KW) 

Q Loss without DG 

(KVAR) 

Q Loss with DG 

(KVAR) 

1     

2 235.0968 182.4347 229.9539 178.4438 

3 70.2140 44.8507 68.6780 43.8695 

4 15.1987 6.2080 14.8662 6.0722 

5 0.3443 0.3403 0.2322 0.2295 

6 0.8798 0.8756 0.5803 0.5776 

7 0.2048 0.2038 0.1381 0.1375 

8 22.0069 21.9012 14.8438 14.7726 

9 5.9019 5.8735 3.9809 3.9617 

10 2.9457 2.9316 1.9869 1.9774 

11 13.5184 13.3977 9.1183 9.0369 

12 3.7304 3.6970 2.5162 2.4937 

13 0.4587 0.4546 0.3094 0.3066 

14 1.2726 1.4335 0.8584 0.9669 

15 4.5046 4.4515 1.8460 1.8243 

TOTAL 376.2777 KW 289.0537 KW 349.9087 KVAR 264.6701 KVAR 

1 2 3 4 5 

7 6 

8 

9 

10 

11 

12 

13 

14 

15 

Substation 
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Figure2: Active power loss with and without DGFigure3: Reactive power loss with and without DG 

 

 

Table2: Voltages (P.U) before and after placement of DG 

BUS No. Voltages (P.U)  without DG Voltages (P.U)  with DG % Voltage Improvement 

1 1 1 0.00 

2 0.9815 0.9838 0.23 

3 0.9721 0.9764 0.44 

4 0.9684 0.9742 0.60 

5 0.9677 0.9735 0.60 

6 0.9745 0.9768 0.24 

7 0.9721 0.9744 0.24 

8 0.9727 0.9750 0.24 

9 0.9803 0.9826 0.23 

10 0.9797 0.9820 0.23 

11 0.9675 0.9718 0.44 

12 0.9647 0.9690 0.45 

13 0.9638 0.9681 0.45 

14 0.9668 0.9759 0.94 

15 0.9659 0.9716 0.59 

 

 
                Figure 4: Voltage Profiles of 15 bus radial distribution system       Figure 5:  Comparison chart for 

Voltage profile for IEEE-15BUS System 
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Figure6:   Voltage Profiles of 15 bus radial distribution system                Figure7: Active power loss with 

and without DG 

 

Case 2: Installing Two DGs 

The proposed method was applied by installing two DGs. Table 4.3 shows the DG optimal size and 

corresponding real power losses and voltage deviation at all of the system buses. The optimal location of 

DG is determined by SQP is at bus numbers 4 and 6. Installing the DG at these buses with a size of 760.062 

KW and 466.338KW caused a reduction in apparent power losses from 512.7 KVA to 204.8 KVA, which is 

about 60.12% reduction. Table 4.4 shows the improvement in the voltage profile after installing the DG 

units at bus numbers 4 and 6. Voltage profiles are also improved to 1.84 % and 1.12 % at buses 4 and 6 

respectively, the obtained results are verified. 

 

Table3: Real and Reactive power loss comparison Table 

0 
P Loss without 

 DG (KW) 

P Loss with  

DG (KW) 

Q Loss without 

DG (KVAR) 
Q Loss with DG (KVAR) 

1     

2 235.0968 90.22 229.9539 87.23 

3 70.2140 9.47 68.6780 9.23 

4 15.1987 1.8352 14.8662 1.71 

5 0.3443 0.3417 0.2322 0.3328 

6 0.8798 0.9260 0.5803 0.9142 

7 0.2048 0.2123 0.1381 0.1923 

8 22.0069 25.823 14.8438 22.821 

9 5.9019 8.797 3.9809 7.917 

10 2.9457 3.245 1.9869 2.245 

11 13.5184 0.3441 9.1183 0.312 

12 3.7304 3.6743 2.5162 3.152 

13 0.4587 0.4591 0.3094 0.4423 

14 1.2726 1.5679 0.8584 1.32 

15 4.5046 2.784 1.8460 2.164 

TOTAL 376.2777 KW 149.70 KW 349.9087 KVAR 139.9826 KVAR 
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Figure8: Reactive power loss with and without DG                                     Figure9:  Voltage improvement of 

IEEE-15 BUS System 

 

 

Table4: Voltages (P.U) before and after placement of DG 

 

BUS No. Voltages (P.U)  without DG Voltages (P.U)  with DG % Voltage Improvement 

1 1 1 0.00 

2 0.9815 0.9852 0.38 

3 0.9721 0.9821 1.03 

4 0.9684 0.9862 1.84 

5 0.9677 0.9812 1.40 

6 0.9745 0.9854 1.12 

7 0.9721 0.9833 1.15 

8 0.9727 0.9833 1.09 

9 0.9803 0.9869 0.67 

10 0.9797 0.9847 0.51 

11 0.9675 0.9812 1.42 

12 0.9647 0.9852 2.13 

13 0.9638 0.9864 2.34 

14 0.9668 0.9884 2.23 

15 0.9659 0.9883 2.32 

 

 

 
Figure 10: Comparison chart for Voltage profile for IEEE-15BUS SystemFigure11: Voltage Profiles of 15 bus 

radial distribution system 

 

 

Meshed Distribution System (33-BUS) 

In the second test, a meshed distribution system was used to investigate the proposed optimization 

problem in finding the optimal DG size and place. The 33-bus meshed distribution system is a 12.66 kV 

voltage level and has 33 bus and 37 branches. The total active and reactive loads are 3715 kW and 2300 

KVAR, respectively. The corresponding single line of the meshed distribution system is shown in Figure 

4.6 and the systems parameters are provided in Appendix-B. The optimization problem was solved for 

single DG installations. 
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Figure12: A single-line diagram of a 33-bus meshed distribution system Case 1: Installing One DG 

 

Case 1: Installing One DG  

At all of the 33 buses, the optimal DG sizing problem was solved for installing a single DG. The 

results are listed in Table 4.5. Figure 4.16 shows the corresponding total real power losses for installing an 

optimal DG size at each bus of the system. The figure shows that the minimal total real power loss is at bus 

23. By locating the single DG at bus 23 with power output of 4370 kVA, the total real power loss is reduced 

from 2.02 MW at no DG installed to 1.18MW, which is an approximate reduction of 41.5% in losses. As 

shown in Figure 4.8, voltage profiles are also improved, with voltage to 0.929%. 

 

 
Figure13: Active power loss with and without DGFigure14: Reactive power loss with and without DG 

 

Voltage (P.U) before and after Placement of DG table  

 
Figure15: Voltage Profiles of 33 bus radial distribution system             Figure 16: Comparison chart for 

voltage profile for IEEE-33 BUS System 
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Figure17:  Voltage profile of 33-Bus radial distribution system 

Case 2: Installing two DGs: 

The optimal DG location and sizing problem was solved for installing a two DGs. The results are 

listed in Table 4.9 shows the corresponding total real and reactive power losses for installing an optimal DG 

size at each bus of the system. The optimal location of DG is determined by SQP is at bus numbers 14 and 

30. By locating the two DGs at buses 14 and 30 with power output of 508KW and 838KW, the total real 

power loss is reduced from 2436 KVA at no DG installed to 630.92 KVA, which is an approximate 

reduction of 74.2% in losses. Voltage profiles are also improved to 8.18% and 8.44% at buses 14 and 30 

respectively. 

 

        
Figure18: Active power loss with and without DG       Figure19: Reactive power loss with and without DG 

 

Voltage (P.U) before and after Placement of DG table  

 

 
Figure 20: Voltage Improvement IEEE-33         Figure 21: Comparison chart for voltage profile for IEEE-33 

BUS System 
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Figure 22:  Voltage profile of 33-Bus radial distribution system 

Summary 

In this chapter, the simulation results are tabulated for optimal DG sizing and placement in IEEE-15 

and IEEE-33 Bus radial distribution network, where the total real power losses of the network were 

employed as the objective to be minimized. The proposed method applied to two different distribution 

systems topologies with single DG and two DGs installations, to show its applicability. The results are 

demonstrated that DG size and placement have a significant influence in minimizing power losses as well as 

improving voltage profiles. 

CONCLUSION AND SCOPE FOR FUTURE WORK 

Conclusion 

DGs are perfect solution of today’s and futures power generation and distribution system which 

could meet the demanding needs of the consumers economically and environmentally by minimizing the 

cost, reducing power losses, improving voltage profiles, complexity, interdependencies and inefficiencies 

associated with onsite power generation, transmission and distribution network.  

In this thesis, the optimal placement and sizing of DGs within distribution networks was 

investigated. The single-objective optimization problem attempted to determine a DGs optimal place and 

size by using total real power losses is an objective to be minimized by using Sequential Quadratic 

Programming (SQP). Single DG installation cases were studied using two different topology distribution 

systems, a 15-bus radial distribution system and a 33-bus meshed distribution system. The results were 

compared to a case without DG. It was shown that choosing proper DG size and place has a significant 

impact on minimizing power losses and improving voltage profiles. The results are tabulated in chapter-4.  

The following points are the major contributions of this thesis:  

 Including additional advantages in reducing power losses and improving voltage profile.  

 The optimal DG size and placement problem could be investigated using DG with different practical values 

of power factor, such as 0.9, 0.95 and unity, or using DG with unspecified power factors.  

Scope for future work 

In this thesis work we dealt with single objective function with minimization of real power losses 

and constraints were voltage and size of DG. It can be multiple objective functions and different constraints 

with uncertainty included in objective function as well as in constraints. Multiple objective functions may 

include minimization of cost as well as maximization of profit. Multiple objective functions with constraints 

in optimal distributed generation plant may include. 

Objective function 

1. Minimization of total cost of the system  

2. Minimization of the energy losses  

3. Minimization of the voltage deviation  

4. Maximization of DG capacity  

5. Maximization of voltage limit liability 
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Constraints 

1. Power flow equality constraints  

2. Bus voltage or voltage drop limit 

3. Short circuit level limit 

4. Power generation limit 

5. Discrete size of DG units  

6. Limited buses for DG installation 
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