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Abstract 

          Physical system manufacturing the items are often subject to the random fluctuations. It may happen at 

some point of time of instability in the sequence of lifetimes is observed. Such observed points are known as 

change point in the inferential problem. For a given sequential data such as stock market prices or streaming 

stories in a newswire, we might be interested in when these data change in some way, such as a stock price 

falling or the document topics shifting. This abrupt change can cause shift in sequence and divide the sequence 

into two parts. Such change point problem is used in statistical quality control to study the change in the process 

mean, Linear time series models related to the econometrics. The Bayes Estimates of Change point is studied 

through numerical calculation by using “R” programming and also it is compared with real data. The results are 

also discussed in this paper. 

    For a given sequential data such as stock market prices or streaming stories in a newswire, we might be 

interested in when these data change in some way, such as a stock price falling or the document topics shifting. 

This abrupt change can cause shift in sequence and divide the sequence into two parts. For example, If n items 

are put to test their lives then their lives will be 𝑥1, 𝑥2, … . . , 𝑥𝑛. If  there is one break in sequence, then sequence 

is divided into two parts. Suppose the change occurs at point mth, the sequence will be 𝑥1, 𝑥2, … . . , 𝑥𝑚.  and  

𝑥𝑚, 𝑥2, … . . , 𝑥𝑛+1. If we view our data as observations from a generative process, then we care about when the 

generative parameters change. Now the problem is how to detect and estimate the break point Such change point 

problem is used in statistical quality control to study the change in the process mean, Linear time series models 

related to the econometrics. The Bayes Estimates of Change point in Weibull Model are studied through 

Bayesian preliminary test Estimation (BPTE) method. The numerical calculation by using “R” programming and 

also it is compared with real data.  

Keywords. Change-point analysis, Bayesian Estimation, Preliminary test estimator, SELF, R Software. 

1. Introduction.  

       In statistical quality control such studies are very much useful for the shifting in process mean for example 

cumulating sum (CUSUM) control chart are used in production process to detect in shift in target value, when 

small shift or change (<1.5𝜎) of interest occur, the CUSUM chart and the exponentially weighted chart are used. 

Montgomery (2001) and Wu et. al. (2004), discussed the procedure of CUSUM control in shifting in target value. 
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Lim et. al. (2002), Wu and Tiau (2005) and Zhang and Wu (2005) considered the applications of CUSUM control 

charts. 

        Change point models are used to describe discontinuous behavior in stochastic phenomena. The change 

point indexes where or when the shift occurs. It is a discrete random variable. The prior probability mass function 

of the shift point gives the nature of the change to be expected. 

      The Bayesian inferential applications can play an important role in study  of such problem of change points. 

Many of statisticians like Chin and Broemeling (1980), Calabria and Pulcini (1994), Zacks (1983), Pandya and 

Jani (2006), Shah and Patel (2007,2009), Chib (1998), Altissemo and Corradi (2003) and Fiteni (2004) studied 

the change point Models in Bayesian framework. Broemeling (1985) and Broemeling and Tsurume (1987)are 

the useful references on structural change . 

            When a point estimate is required and alternative hypotheses lead to different estimates, an optimal Bayes 

estimate is obtained by minimizing posterior expected loss averaged over the hypotheses, with posterior 

probabilities used as weights. In order to reflect uncertainty regarding the validity of different hypotheses, Zellner 

and Vandaele (1975) suggested preliminary test estimation of the parameter under a specified loss function in 

Bayesian framework. Such a Bayesian preliminary test estimate (BPTE) incorporates prior information and is 

optimal relative to a given loss function. However, so far, no attempt has been made to study BPTE of the change 

point. Some of the literature includes Dey et al. (1998), Martin et al. (1988), Dey and Micheas (2000), Rios 

,Insua and Ruggeri (2000), Micheas and Dey (2004), and the references therein. 

        The aim of this paper to discuss the Bayesian Preliminary Test Estimation (BPTE) Method of a change 

point in Weibull sequence under squared loss function and examine its robustness through numerical simulation. 

2. Statistical Model and Loss Function 

         The probability density function of Weibull distribution is given as 

𝑔(𝑦) =
𝜃

𝜎
𝑦(𝜃−1) exp (−

𝑦𝜃

𝜎
)   ;              𝑦, 𝜃, 𝜎 > 0    ,                                                                             (2.1) 

     Where ′𝜎′  is the scale and ‘𝜃’ is shape parameters. Weibull distribution has extensively been used in life 

testing and reliability problems. The Weibull distribution is a continuous probability distribution. It is named 

after Waloddi Weibull(1931,1951), who described it in detail in 1951, although it was first identified by Fréchet 

(1927) and first applied by Rosin & Rammler (1933) to describe the size distribution of particles in connection 

with his studies on strength of material.  

      The most widely used loss function in estimation problems is quadratic loss function given as (�̂�, 𝜎) = 𝑘(�̂� −

𝜎)2 , where 𝜃  is the estimate of  𝜃,  the loss function is called quadratic weighed loss function. If   k=1, we have  

𝐿(�̂�, 𝜎) = (�̂� − 𝜎)2   ,                                                                                                                          (2.2)       known 

as squared error loss function (SELF). This loss function is symmetrical because it associates the equal 

importance to the losses due to overestimation and under estimation with equal magnitudes however in some 

estimation problems such an assumption may be inappropriate. Overestimation may be more serious than 

underestimation or Vice-versa Ferguson(1985). Canfield (1970), Basu and Ebrabimi(1991). Zellner (1986) 

Soliman (2000) derived and discussed the properties of varian’s (1975) asymmetric loss function for a number 

of distributions.  

      In many practical situations, it appears to be more realistic to express the loss in terms of the ratio  
�̂�

𝜃
 . In 

this case Calabria and Pulcini (1994) points out that a useful asymmetric loss function is the Entropy loss   

𝐿(𝛿)𝛼[𝛿𝑃 − 𝑝 𝑙𝑜𝑔𝑒(𝛿) − 1    ; Where  𝛿 =
�̂�

𝜃
 , 

  and whose minimum occurs at (𝜃 = 𝜃) ,where p>0, a positive error (𝜃 > 𝜃) causes more serious consequences 

that a negative error and vice-versa. For small |p| value the function is almost symmetric, when both 𝜃 and 𝜃  are 

measured in a logarithmic scale and is approximately. 
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𝐿(𝛿) = 𝑏[𝛿 − 𝑙𝑜𝑔𝑒(𝛿) − 1];      𝑏 > 0;               where  𝛿 =
�̂�

𝜃
 .                                                           (2.3) 

3. The Detection of Change Point. 

     Suppose 𝑦1, 𝑦2, … , 𝑦𝑚, 𝑦(𝑚+1), … , 𝑦𝑛 is a sequence of independent random variables such that 

𝑦𝑖 = {
𝑔1(𝑦𝑖 ; 𝜎1, 𝜃1); 𝑖 = 1,2, …………… ,𝑚

𝑔2(𝑥𝑖 ; 𝜎2, 𝜃2), 𝑖 = (𝑚 + 1),……… , 𝑛
                                                                                         (3.1)  

Here  y1, y2,....,yn (n ≥ 3)  be a sequence of observed life times. First let observations y1, y2,....,yn  have come from 

Weibull distribution with probability density  function (pdf)  as 

𝑔(𝑦) =
𝜃

𝜎
𝑦(𝜃−1) exp (−

𝑦𝜃

𝜎
)   ;        𝑦, 𝜃, 𝜎 > 0    ,                                                                                 (3.2) 

 Let ‘m’ is change point in the observation, which breaks the distribution in two sequences as (y1, y2,....,ym 

) & (ym+1,....,yn). 

The probability density functions of the above sequences are 

g1(y) =
𝜃1

𝜎1
𝑦𝑖
𝜃1−1 exp(−

𝑦𝑖
𝜃1

𝜎1 
)   ;          𝑦, 𝜎1 , 𝜃1 > 0    ,                                                                       (3.3) 

g2(x) =
𝜃2

𝜎2
𝑦𝑖
𝜃2−1 exp(−

𝑦𝑖
𝜃2

𝜎2
)   ;           𝑦, 𝜎2 , 𝜃2 > 0    ,                                                                       (3.4)                  

       This can be written with Weibull sequence before and after change point ‘m’ 

𝑦𝑖 =

{
 
 

 
 𝜃1
𝜎1
𝑦𝑖
𝜃1−1 exp(−

𝑦𝑖
𝜃1

𝜎1 
)                    𝑖 = 1, ………… . ,𝑚

𝜃2

𝜎2
𝑦𝑖
𝜃2−1 exp(−

𝑦𝑖
𝜃2

𝜎2
)             𝑖 = (𝑚 + 1),……… . , 𝑛

                                                               (3.5) 

4. Likelihood, Prior and Posterior. 

    The joint likelihood function of the Weibull sequences of before and after change point ‘m’ is given by  

𝑙(𝜎1, 𝜎2, 𝑝|𝑦) = ∏ 𝑔1(𝑦𝑖|𝜎1)∏ 𝑔2(𝑦𝑖|𝜎2)
𝑛
(𝑚+1)

𝑚
𝑖=1 ,                                                                                (4.1)  

𝑙(𝜎1, 𝜎2, 𝑝|𝑦) = ∏
𝜃1

𝜎1
𝑦𝑖
𝜃1−1 exp (−

𝑦𝑖
𝜃1

𝜎1 
)∏

𝜃2

𝜎2
𝑦𝑖
𝜃2−1 exp (−

𝑦𝑖
𝜃2

𝜎2
)𝑛

(𝑚+1)
𝑚
𝑖=1                                            (4.2)  

The joint prior for ‘m’ is given by 

𝑞(𝑚|𝑥) = ∬ 𝑞(𝜎1, 𝜎2, 𝑚|𝑦)𝑑𝜎1𝑑𝜎2
 

𝜎1,𝜎2
;                                                                                              (4.3) 

𝑠. 𝑡.    𝜎1 ∈ Θ1  ;    𝜎2  ∈  Θ2   𝑎𝑛𝑑     𝑚 = 1,2, … . (𝑛 − 1). 

With a change point at ‘m’, where m is unknown, using the equations (4.2) and (4.3), the joint posterior 

distribution is given by 

𝑟(𝜎1, 𝜎2, 𝑝|𝑦) = 𝑙(𝜎1, 𝜎2, 𝑚). 𝑞(𝜎1, 𝜎2, 𝑚); 𝜎1 ∈ 𝜃1, 𝜎2 ∈ 𝜃2,                                                               (4.4) 

such that  m=1,2,…(n-1) 
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Detection of Change Point. 

Let the hypothesis for detecting change point ‘m’ is  

𝐻𝑜:𝑚 = 𝑛      𝑉𝑠       𝐻1: 𝑚 ≠ 𝑛 

Let us assume that the prior probability mass function of the change point ‘m’ is 

𝑔(𝑚) = {
𝑝,    𝑖𝑓 𝑚 = 𝑛

(1−𝑝)

𝑛−1
     𝑖𝑓 𝑚 ≠ 𝑛

       ;    𝑜 < 𝑝 < 1, 𝑝 is known  probability;                                             (4.5) 

        Let us assume that the scalar parameters 𝜎1and 𝜎2 and the change point ‘m’ are independent of each other. 

 Let us take prior of scalar parameter 𝜎1  as natural conjugate gamma prior given by, 

q(𝜎1)  =  {
b1
a1 

Γa1
𝜎1
−(a1+1)e−

b1
𝜎1
⁄  ;        𝜎1 > 0, (a1, b1) > 0

0                         ,          Otherwise
,                                                                  (4.6) 

   The prior of scalar parameter 𝜎2  as natural conjugate gamma prior given by 

q(𝜎2)  =  {
b2
a2 

Γa2
𝜎2
−(a2+1)e−

b2
𝜎2
⁄ ,     where   𝜎2 > 0 and (a2, b2) > 0

0                                                     ,                        Otherwise
,                                                 (4.7) 

    Again with independent  𝜎1, 𝜎2  and ‘m’, we have under null hypothesis𝐻0, the joint prior as 

𝑞(𝜎1, 𝜎2, 𝑚) = 𝑞(𝜎1). 𝑞(𝑚)   ,                                                                                                             (4.8) 

However under alternative hypothesis 𝐻1, the joint prior is given by 

𝑔(𝜎1, 𝜎2, 𝑚) = 𝑔(𝜎1) 𝑔(𝜎2)𝑔(𝑚),                                                                                                       (4.9)  

Now the joint likelihood is given by  

𝑙 (𝜎1, 𝜎2, 𝑚|𝑦)  = {
∏ 𝑔1(𝑦𝑖 ; 𝜎1)  ;                                        𝑖𝑓 𝑚 = 𝑛𝑛
𝑖=1

∏ 𝑔1(𝑦𝑖 ; 𝜎1)∏ 𝑔2(𝑦𝑖 ; 𝜎2);
𝑛
𝑖=𝑚+1         𝑖𝑓 𝑚 ≠ 𝑛𝑚

𝑖=1
;                                                (4.10)      

This is derived as 

𝑙 (𝜎1, 𝜎2,𝑚|𝑦) = {
∏  

𝜃1

𝜎1
𝑦𝑖 

(𝜃1−1) exp (−
∑𝑦𝑖 

𝜃1

𝜎1
)𝑛

𝑖=1  ;                                                          

∏
𝜃1

𝜎1
𝑦𝑖 

(𝜃1−1) exp (−
∑𝑦𝑖 

𝜃1

𝜎2
)∏  

𝜃2

𝜎2
𝑦𝑖 

(𝜃2−1) exp (−
∑𝑦𝑖 

𝜃2

𝜎2
)𝑛

𝑖=𝑚+1
𝑛
𝑖=1

                                   (4.11) 

Combining the equations(4.5) ,(4.8),(4.9) and (4.11),we get the joint posterior of 𝜎1, 𝜎2    𝑎𝑛𝑑      𝑚     as 

ℎ (𝜎1, 𝜎2,𝑚|𝑦) = {
𝑝 𝑔(𝜎1)∏ 𝑔1(𝑦𝑖 ; 𝜎1) 𝑑𝜎1 ;                                                           𝑖𝑓 𝑚 = 𝑛𝑛

𝑖=1
(1−𝑝)

(𝑛−1)
∏ 𝑔1(𝑦𝑖 ; 𝜎1)∏ 𝑔2(𝑦𝑖 ; 𝜎2) 𝑞(𝜎1, 𝜎21)𝑑𝜎1𝑑𝜎2;

𝑛
𝑖=𝑚+1

𝑚
𝑖=1   𝑖𝑓 𝑚 ≠ 𝑛

                           (4.12) 

And the marginal posterior of ‘m’ is given by 

ℎ (𝑚|𝑦) = {
𝑃  ∫ 𝑔(𝜎1)∏ 𝑔1(𝑦𝑖 ; 𝜎1)𝑑𝜎1 ;                                                   𝑖𝑓 𝑚 = 𝑛𝑛

𝑖=1
(1−𝑃)

(𝑛−1)
   ∬ ∏ 𝑔1(𝑦𝑖 ; 𝜎1)∏ 𝑔2(𝑦𝑖 ; 𝜎2)𝑑𝜎1𝑑𝜎2;

𝑛
𝑖=𝑚+1      𝑚

𝑖=1        𝑖𝑓 𝑚 ≠ 𝑛
;                                      (4.13) 

with constant of proportionality 

[𝐷(𝑦)]−1 = 𝑃∫ 𝑞(𝜎1)∏𝑔1(𝑦𝑖 ; 𝜎1)𝑑𝜎1 +
(1 − 𝑃)

(𝑛 − 1)
∑ ∬ ∏𝑔1(𝑦𝑖 ; 𝜎1) ∏ 𝑔2(𝑦𝑖 ; 𝜎2)𝑞(𝜎1𝜎2)𝑑𝜎1𝑑𝜎2

𝑛

𝑖=(𝑚+`1)

𝑚

𝑖=1

𝑛−1

𝑚=1

𝑛

𝑖=1

 

                                                                                                                                                            (4.14) 
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Which is derived as 

𝒉(𝒎|𝒚) =

{
  
 

  
 𝐩∫[

𝐛𝟏
𝐚𝟏  

𝚪𝐚𝟏
𝝈𝟏

−(𝐚𝟏+𝟏)𝐞−
𝐛𝟏

𝝈𝟏
⁄  

𝜽𝟏
𝝈𝟏
∏𝒚𝒊 

(𝜽𝟏−𝟏) 𝐞𝐱𝐩(−
∑𝒚𝒊 

𝜽𝟏

𝝈𝟏
)

𝒏

𝒊=𝟏

 ] 𝒅𝝈𝟏;

𝒅𝝈𝟏

(𝟏 − 𝒑)

(𝒏 − 𝟏)
∬[{∏{ 

𝜽𝟏
𝝈𝟏
𝒚𝒊 

(𝜽𝟏−𝟏) 𝐞𝐱𝐩(−
∑𝒚𝒊 

𝜽𝟏

𝝈𝟐
)
𝜽𝟐
𝝈𝟐

∏  𝒚𝒊 
(𝜽𝟐−𝟏) 𝐞𝐱𝐩(−

∑𝒚𝒊 
𝜽𝟐

𝝈𝟐
) ∗

𝐛𝟏
𝐚𝟏  

𝚪𝐚𝟏
𝝈𝟏

−(𝐚𝟏+𝟏)𝐞−
𝐛𝟏

𝝈𝟏
⁄ 𝐛𝟐

𝐚𝟐  

𝚪𝐚𝟐
𝝈𝟐

−(𝐚𝟐+𝟏)𝐞−
𝐛𝟐

𝝈𝟐
⁄

𝒏

𝒊=(𝒎+𝟏)

𝒎

𝒊=𝟏

}]𝒅𝝈𝟏𝒅𝝈𝟏

 

                                                                                                                                                            (4.13) 

On simplifying we get 

ℎ (𝑚|𝑦) =

{
 
 

 
 

𝑝θ1a1b1
a1∏ 𝑦𝑖 

(𝜃1−1)𝑛
𝑖=1

(b1+∑𝑦𝑖 
𝜃1)

(a1+1)

(1−𝑝)

(𝑛−1)
∗
θ1a1b1

a1∏ 𝑦𝑖 
(𝜃1−1)𝑚

𝑖=1

(b1+∑𝑦𝑖 
𝜃1)

(a1+1)
∗
a2θ2b2

a2∏ 𝑦𝑖 
(𝜃2−1)𝑛

𝑖=(𝑚+1)

(b2+∑𝑦𝑖 
𝜃2)

(a2+1)

   ;                                                  (4.15) 

The posterior in favour of the null hypothesis 𝐻0 is  

𝑂(𝐻0|𝑦) = 𝑝[(𝑚 = 𝑛|𝑦)]/𝑝{𝑚 ≠ 𝑛|𝑦},                                                                                           (4.16) 

=
𝑝∫ 𝑞(𝜎1)∏ 𝑔1(𝑦|𝜎1)𝑑𝜎1

𝑛
𝑖=1

(1 − 𝑝)/(𝑛 − 1)∑ ∬∏ 𝑔1(𝑦|𝜎1)∏ 𝑔2(𝑦|𝜎2)𝑞(𝜎1, 𝜎2)
𝑛
𝑖=(𝑚+1)

𝑚
𝑖=1 𝑑𝜎1𝑑𝜎2

(𝑛−1)
𝑚=1

 

= 
𝐩∫

𝐛𝟏
𝐚𝟏
 

𝚪𝐚𝟏
𝝈𝟏

−(𝐚𝟏+𝟏)𝐞
−
𝐛𝟏

𝝈𝟏
⁄ 𝜽𝟏

𝝈𝟏
∏  𝒚𝒊 

(𝜽𝟏−𝟏) 𝐞𝐱𝐩(−
∑𝒚𝒊 

𝜽𝟏

𝝈𝟏
)𝒎

𝒊=𝟏 𝒅𝝈𝟏

(𝟏−𝒑)

(𝒏−𝟏)
∑ ∬ {

𝜽𝟏
𝝈𝟏
∏  𝒚𝒊 

(𝜽𝟏−𝟏) 𝐞𝐱𝐩(−
∑𝒚𝒊 

𝜽𝟏

𝝈𝟐
)∗ 

𝜽𝟐
𝝈𝟐
∏  𝒚𝒊 

(𝜽𝟐−𝟏) 𝐞𝐱𝐩(−
∑𝒚𝒊 

𝜽𝟐

𝝈𝟐
)
𝐛𝟏
𝐚𝟏
 

𝚪𝐚𝟏
𝝈𝟏

−(𝐚𝟏+𝟏)𝐞
−
𝐛𝟏

𝝈𝟏
⁄ 𝐛𝟐

𝐚𝟐
 

𝚪𝐚𝟐
𝝈𝟐

−(𝐚𝟐+𝟏)𝐞
−
𝐛𝟐

𝝈𝟐
⁄𝒏

𝒊=𝒎+𝟏
𝒎
𝒊=𝟏 }𝒅𝝈𝟏𝒅𝝈𝟏

(𝒏−𝟏)
𝒎=𝟏

 

                                                                                                                                                              (4.17)  

= 

𝑝θ1a1b1
a1 ∏ 𝑦𝑖 

(𝜃1−1)𝑛
𝑖=1

(b1+∑𝑦𝑖 
𝜃1)

(a1+1)

(1−𝑝)

(𝑛−1)
∑ {

θ1a1b1
a1 ∏ 𝑦𝑖 

(𝜃1−1)𝑚
𝑖=1

(b1+∑𝑦𝑖 
𝜃1)

(a1+1)
∗
a2θ2b2

a2 ∏ 𝑦𝑖 
(𝜃2−1)𝑛

𝑖=(𝑚+1)

(b2+∑𝑦𝑖 
𝜃2)

(a2+1)
}

(𝑛−1)
𝑚=1

;                                                                      (4.18)                                                                                                                                                              

𝑂(𝐻0|𝑦) =

𝑝∏ 𝑦𝑖 
(𝜃1−1)𝑛

𝑖=1

(b1+∑𝑦𝑖 
𝜃1)

(a1+1)

(1−𝑝)

(𝑛−1)
∑ {

∏ 𝑦𝑖 
(𝜃1−1)𝑚

𝑖=1

(b1+∑𝑦𝑖 
𝜃1)

(a1+1)
∗
a2θ2b2

a2 ∏ 𝑦𝑖 
(𝜃2−1)𝑛

𝑖=(𝑚+1)

(b2+∑𝑦𝑖 
𝜃2)

(a2+1)
}

(𝑛−1)
𝑚=1

;                                                          (4.19) 

The hypothesis 𝐻0 is not accepted, if the Posterior odds are less than 1. 

5. Bayesian Preliminary Test Estimation (BPTE) of the Change Point 

Suppose 𝑦1, 𝑦2, …… , 𝑦𝑚, 𝑦(𝑚+1),…… , 𝑦𝑛 is a sequence of independent random variables such that 

𝑦𝑖 = {
𝑔1(𝑦𝑖 ; 𝜎1, 𝜃1); 𝑖 = 1,2, ……………𝑚

𝑔2(𝑦𝑖 ; 𝜎2, 𝜃2), 𝑖 = (𝑚 + 1),………𝑛
  ;                                                                                         (5.1) 

      The change point ‘m’ is an unknown discrete random parameter. Further suppose that the scalar parameters 

𝜎1, 𝜎2 and ‘m’ are independent of each other. 

     Let  𝑝0 denote the posterior probability of the hypothesis 𝐻0: 𝑚 = 𝑛  of no change so that  (1 − 𝑝0)  is the 

posterior probability of the alternative hypothesis 𝐻1:𝑚 ≠ 𝑛 of a change. 
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The posterior expected loss under the Squared Error loss function 𝐿(𝑚, �̂�) with change point ‘m’ is given by 

𝐸(𝐿(𝑚, �̂�|𝑦) = 𝑃0𝐸(𝐿(𝑚, �̂�|𝐻0𝑦) + (1 − 𝑃0)𝐸(𝐿(𝑚, �̂�|𝐻1𝑦))                                                        (5.2) 

= 𝑃0𝐿(𝑛, �̂�) + (1 − 𝑃0)𝐸(𝐿(𝑚, �̂�|𝐻1𝑦))                                                                                            (5.3) 

Thus the BPTE   �̂� of change point ‘m’ under Squared error loss function is 

Again under SELF, BPTE of the change point ‘m’ is 

�̂�𝑠 = 𝑝0 𝐸(𝑚|𝐻0,𝑦) + (1 − 𝑝0)𝐸(𝑚|𝐻1,𝑦)   ;                                                                                     (5.6) 

This will give 

�̂�𝑠 = 𝑝0
𝑝θ1a1b1

a1∏ 𝑦𝑖 
(𝜃1−1)𝑛

𝑖=1

(b1+∑𝑦𝑖 
𝜃1)

(a1+1)
+ (1 − 𝑝0)

(1−𝑝)

(𝑛−1)
∗
θ1a1b1

a1∏ 𝑦𝑖 
(𝜃1−1)𝑚

𝑖=1

(b1+∑𝑦𝑖 
𝜃1)

(a1+1)
∗
 a2θ2b2

a2∏ 𝑦𝑖 
(𝜃2−1)𝑛

𝑖=(𝑚+1)

(b2+∑𝑦𝑖 
𝜃2)

(a2+1)
           (5.7) 

                                                                                                                        

     For squared error loss function, the posterior means are optimal, the minimizing value �̂�𝑠 for �̂� is a weighted 

average of the posterior means under the two hypotheses. 

 

Let  𝑝0 denote the posterior probability of the hypothesis 𝐻0: 𝑚 = 𝑛  of no change so that  (1 − 𝑝0)  is the 

posterior probability of the alternative hypothesis 𝐻1:𝑚 ≠ 𝑛 of a change. 

      Provided expectation exists. Here 𝐾01 =
𝑝0

(1−𝑝0)
    is the posterior odds ratio (POR) in favour of  𝐻0 . It is to 

note that 𝐾01 close to 1 suggests   that    𝐻0 is more or less as likelihood as   𝐻1 a posteriori while if this ratio is 

large, we regard   𝐻0  as relatively more likely than  𝐻1. 

        For  𝐾01 = 0, that is the posterior odds ratio indicates a change in the sequence. BPTE  𝑚�̂� will reduce to 

the Bayes estimate under linex loss. However, for large values of   𝐾01, 𝑚�̂� would be close to n. 

       As observed by Zeller and Vandale (1975), it may interest to recall that (i) �̂�𝑢  is a continuous function of 

the observations (ii) prior information about m under 𝐻1 can be induced through use of an appropriate prior 

probability mass function and (iii) there is no arbitraries in the choice of the classical significance level. 
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