Uniform spaces

Dr. Ranjan Kumar Singh

Abstract :-

This paper deals with the concepts in the theory of uniform spaces. We also observe that the neighbourhood system of X for each U in the uniformity and consequently the family of all sets U \([X] \) for U in \(\nu \) is the base for the neighbourhood. Since again we conclude that the uniformity is inherited by subsets of a uniform space by restriction.

Key-words: Uniform Structure, Subbase, Uniform Space, Interior, diagonal.

Introduction :-

In the mathematical field of topology a uniform space in a set with a uniform structure. A uniform structure on a non-empty set X was first defined by A. Weil (1937) in terms of subsets of \(X \times X \). J.W. Tukey (1940) later provided as alternative description of a uniform structure using covers of X.

Basic concepts in the theory of uniform spaces:

Let \(X \) be a non-empty set. For arbitrary subsets \(U \) and \(V \) of \(X \times X \), we write \(V^{-1} = \{(y,x) : (x,y) \in V\} \) and \(U \circ V = \{(x,y) : \exists z \in X \text{ such that } (x,z) \in V \text{ and } (z,y) \in U\} \). It follows easily that \(U \circ (V \circ W) = (U \circ V) \circ W \) and \((U \circ V)^{-1} = V^{-1} \circ U^{-1} \). We shall write \(U^2 \) for \(U \circ U \). The diagonal of \(X \times X \) which is denoted by \(\Delta (x) \) or simply \(\Delta \) defined as the set \(\{(x,x) : x \in X\} \). For each subsets \(A \) of \(X \) the set \(U[A] \) is defined to be \(\{y : (x,y) \in U \text{ for some } x \in A\} \). We write \(U[x] \) or \(U[\{x\}] \) if \(x \) is a point in \(X \). For each \(U \) and \(V \) and each \(A \) it is true that \((U \circ V)[A] = U[V[A]] \).

Clearly \((U^{-1})^{-1} = U \), \(U \) is said to be symmetric if \(U^{-1} = U \).

Definition:

A uniformity or uniform structure for a set \(X \) is a non-empty family \(\mathcal{U} \) of subsets of \(X \times X \) which satisfy the following conditions:

(i) Each member of \(\mathcal{U} \) contains the diagonal \(\Delta \);

(ii) if \(U \in \mathcal{U} \), then \(U^{-1} \in \mathcal{U} ; \)

(iii)If \(U \in \mathcal{U} \), then \(\exists V \in \mathcal{U} \text{ such that } V^2 \subseteq U \);

(iv)If \(U \in \mathcal{U} \text{ and } U \subseteq V \subseteq X \times X \), then \(V \in \mathcal{U} \text{ and } \)
(v) If \(U \) and \(V \) are members of \(\mathcal{U} \), then \(\bigcup \cap V \in \mathcal{U} \); Elements of \(\mathcal{U} \) are said to be vicinities. A uniform space is a set together with a uniformity for it. Thus the pair \((X, \mathcal{U})\) is a uniform space.

Definition:

(i) A subfamily \(\mathcal{B} \) for a uniformity \(\mathcal{U} \) is a base for \(\mathcal{U} \), iff each member of \(\mathcal{U} \) contains a member of \(\mathcal{B} \).

(ii) If \(\mathcal{B} \) is a base for \(\mathcal{U} \); then \(\mathcal{B} \) determines \(\mathcal{U} \) entirely, for a subsets \(U \) of \(X \times X \) belongs to \(\mathcal{U} \) if \(U \) contains a member of \(\mathcal{B} \).

Definition:

(i) A subfamily \(\mathcal{B} \) is a subbase for \(\mathcal{U} \) if the family of finite intersections

(ii) of members of \(\mathcal{B} \) is a base for \(\mathcal{U} \).

(iii) We now state the following theorem, the proof of which is simple.

Theorem:

A non-empty family \(\mathcal{B} \) of subsets of \(X \times X \) is a base for some uniformity for \(X \) if and only if

(i) Each member of \(\mathcal{B} \) contains the diagonal \(\Delta \);

(ii) If \(U \in \mathcal{B} \), then \(\exists V \in \mathcal{B} \) such that \(V \subseteq U^{-1} \);

(iii) If \(U \in \mathcal{B} \), then \(\exists V \in \mathcal{B} \) such that \(V^2 \subseteq U \);

(iv) If \(U, V \in \mathcal{B} \) then \(\exists W \in \mathcal{B} \) such that \(W \subseteq U \cap V \).

Proof:

We have to show that the family \(\mathcal{B} \) of finite intersections of member of \(\mathcal{B} \) satisfies the condition of theorem (5.1).

If \(U_1, U_2, \ldots, U_n \) and \(V_1, V_2, \ldots, V_n \) are subsets of \(X \times X \) all belonging to \(\mathcal{B} \) and if \(U = \bigcap_{i=1}^{n} U_i \) and

\[
V = \bigcap_{i=1}^{n} V_i \text{ then } V \subseteq U^{-1} \left(\text{or } V^2 \subseteq U \right) \text{ whenever } V_i \subseteq U_i^{-1} \text{ (respectively, } V^2_i \subseteq U_i \text{) for each } i. \text{ From this observation the proof of this theorem follows.}

Definition:

If \((X, \mathcal{U})\) is a uniform space the topology \(J \) of the uniformity \(\mathcal{U} \), or the uniform topology is the family of all subsets \(T \) of \(X \) such that for each \(x \in T \) there is \(U \in \mathcal{U} \) such that \(U \left[x \right] \subseteq T \).
To verify that J is a topology is simple. In fact the union of members of J is surely a member of J. If T and S are members of J and $x \in T \cap S$, there are U and V in \mathcal{U} such that $U[x] \subseteq T$ and $V[x] \subseteq S$, and hence $U \cap V[x] \subseteq T \cap S$ consequently $T \cap S \in J$ and J is a topology.

Theorem:
The interior of a subset A of X relative to the uniform topology is the set of all points x such that $U[x] \subseteq A$ for some U in \mathcal{U}.

Proof:
To prove the theorem it is sufficient to prove that the set $B = \{ X : U[X] \subseteq A \text{ for some } U \in \mathcal{U} \}$ is open relative to the uniform topology, for B surely contains every open subset of A and, if B is open, then $\exists U \in \mathcal{U}$ such that $U[X] \subseteq A$ and again $\exists V \in \mathcal{U}$ such that $V^2 \subseteq U$. If $y \in V[X]$ then $V[y] \subseteq V^2[X] \subseteq U[X] \subseteq A$ and $y \in B$. hence $V[X] \subseteq B$ and B is open.

This completes the proof.

Remark:
It follows immediately that $U[X]_x$ is a neighbourhood system of x for each U in the uniformity \mathcal{U}, and consequently the family of all sets $U[X]$ for U in \mathcal{U} is a base for the neighbourhood system of x (the family is actually identical with the neighbourhood system). The following theorem is then clear.

Theorem:
If \mathcal{B} is a base (or subbase) for the uniformity \mathcal{U}, then for each x the family of sets $U[X]$ for U in \mathcal{B} is a base (subbase respectively) for the neighbourhood system of x.

Remark (2):
A uniformity is inherited by subsets of a uniform space by restriction.

If X is a uniform space for a uniformity \mathcal{U}, and Y is a subset of X, then Y is a uniform space (called subspace) under the induced (relative) uniformity $Y_u = \{ YxY \cup U : U \in \mathcal{U} \}$ for Y.

If \mathcal{B} is a base for \mathcal{U}, then $Y_\mathcal{B} = \{ YxY \cup U : U \in \mathcal{B} \}$ is a base for Y. It can be verified that the topology of the relative uniformity \mathcal{S} is the relativized topology for.

Conclusion: Hence, the interior of a subset A of X relative to the uniform topology is the set of all points x such that $U[x] \subseteq A$ for some U in \mathcal{U} and also a uniformity is inherited by subsets of uniform space by restriction.

Reference:

