CHEMICAL SYNTHESIS, STRUCTURE DETERMINATION AND EVALUATION OF BIOLOGICAL ACTIVITY OF IMIDAZOLIDINONE DERIVATIVES

Ampily J S¹, Namitha R²

¹Associate Professor, Department of Chemistry, RSM SNDP Yogam Arts and Science College. Koyilandy, Kozhikode. 673305, Kerala. India
²Assistant Professor, Department of Chemistry, RSM SNDP Yogam Arts and Science College. Koyilandy, Kozhikode. 673305, Kerala. India

Abstract: A series of novel imidazolidinone derivatives have been obtained starting from 2,4-dinitro phenyl hydrazine and aldehyde. These were converted to corresponding Schiff bases using THF. The resulting Schiff base was treated with a-amino acids to obtain corresponding imidazolidinone derivatives. The newly synthesized compounds showed high antimicrobial activities against some bacterial and fungal strains and anticancer activity.

Keywords: antimicrobial activity, anticancer, tetrahydro furan, Staphylococcus aureus, Kirby Bauer Disk Diffusion.

I. INTRODUCTION

Heterocyclic chemistry is a very significant area of organic chemistry accounting for almost one-third of modern publications. In fact two thirds of organic compounds are heterocyclic compounds. A cyclic compound containing all carbon atoms in ring is referred to as a carbocyclic compound. If, at least one atom other than carbon forms a part of the ring system then it is designated a heterocyclic compound. Besides the boundless distribution of heterocycles in natural products, they are also the major components of biological molecules such as DNA and RNA. Heterocycles are present in a wide variety of drugs, most vitamins, many natural products, biomolecules, and biologically active compounds, including antitumor, antibiotic, anti-inflammatory, antidepressant, antimalarial, anti-HIV, antimicrobial, antibacterial, antifungal, antiviral, antidiabetic, herbicidal, fungicidal, and insecticidal agents. Also, they have been normally found as a key structural unit in synthetic pharmaceuticals. Moreover, they act as organic conductors, semiconductors, molecular wires, photovoltaic cells, and organic light-emitting diodes (OLEDs), light harvesting systems, optical data carriers, chemically controllable switches, and liquid crystalline compounds.

Five membered nitrogen containing heterocyclic compounds such as imidazolidinones and imidazolidines possess potent antiviral activities. The imidazolidinone moiety has received considerable attention by medicinal chemists, as many compounds of this scaffold class possess a variety of biological activities.

In addition, organic chemists appreciate them for their use as chiral catalysts. Some of the imidazolidinones have either antiviral, antitumor, or anti-inflammatory activities, or act as NK1 receptor antagonists, Leishmania spp. inhibitors, or β3 adrenergic receptor agonists.

Imidazoline, a versatile moiety, could be a possible pharmacophore in designing safer anti-inflammatory medicinal agents. The importance of imidazolidinone moiety for cytotoxicity of 4-phenyl 1-arylsulfonyl imidazolidinones was also reported.

In view of these observations in this work, we thought that it would be interesting to synthesise the newer substituted imidazolidinone derivatives from easily available starting material, like 2,4-dinitro phenyl hydrazine, benzaldehyde and salicylaldehyde compounds with interesting applications in the field of pharmacology.
II. RESULTS AND DISCUSSION

2.1. Synthesis of 2-((2-(2,4-dinitrophenyl)hydrazono)methyl)phenol 4(a)

2,4-dinitro phenyl hydrazine 1g (5mmol) and salicylaldehyde 0.6161g (5mmol) were stirred for 1 hour. The reaction was routinely followed by TLC. After the completion of reaction the excess solvent was removed by slow evaporation method and recrystallised from alcohol. Yield and melting point were noted. Yield: 95%, melting point: 265ºC.

IR (cm⁻¹) fig (1) 3(a) spectrum of the compound showed absorption peak at 3270(NH), 3388(OH), 1514(NO₂), 1619(C=N), 1334(NO₂).

2.2. Synthesis of imidazolidinones

The obtained Schiff base was refluxed with the alpha amino acids such as alanine, phenyl alanine, tryptophan in THF (10mL) to get corresponding imidazolidinones. The reaction progress was monitored by using TLC. The excess solvent was evaporated and the product obtained was recrystallised.

Synthesis of 5-((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl) imidazolidin-4-one. 5(a) 2-((2-(2,4-dinitrophenyl)hydrazono)methyl)phenol: 0.6g(1.98mmol), Tryptophan: 0.408g(1.98mmol), Refluxing time: 14 hour, Yield: 85% , Melting point: >250ºC.

IR (cm⁻¹) fig (3) spectrum of the compound 5(a) showed absorption peak at 3271(NH), 2924(NH), 2854(NH), 1735(C=O), 3101(OH) 1319, 1501(NO₂).
1H-NMR (DMSO)(ppm) spectrum fig (4) of the compound 5-((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one (5a) showed absorption at δ 8.3, δ 8.8, δ 8.9 (bs, 1H, NH), δ 6.4-7.3 (m, 5H, Ar-H), δ 11 (OH).

13C-NMR (CDCl₃) (ppm) spectrum of the compound 5(a) fig (5) showed absorption at δ 163 (C=O), δ 79 (Aliphatic C), δ 109-157 (Ar-C).

2.3 Antibacterial susceptibility of (5-((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one (5a)

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Concentration of the sample in mg</th>
<th>MIC</th>
<th>Ciprofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>12 mm</td>
<td>12 mm</td>
<td>14 mm</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10 mm</td>
<td>10 mm</td>
<td>12 mm</td>
</tr>
<tr>
<td>S. typhi</td>
<td>12 mm</td>
<td>12 mm</td>
<td>14 mm</td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>12 mm</td>
<td>12 mm</td>
<td>12 mm</td>
</tr>
</tbody>
</table>

Table 1 Antibacterial activity of (5-((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one 5(a)
From the results it is evidenced that (5-((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one5(a) showed remarkable activity towards all the tested organisms and among these *Escherichia coli* exhibited more value for zone of inhibition infers that the compound is more active against this organism.

Table 2. Antibacterial activity of benzyl-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl) imidazolidin-4-one 5c

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Concentration of the sample in mg</th>
<th>Ciprofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>10 mm</td>
<td>10 mm</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10mm</td>
<td>12mm</td>
</tr>
<tr>
<td>S. typhi</td>
<td>12mm</td>
<td>14mm</td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>12mm</td>
<td>12mm</td>
</tr>
</tbody>
</table>

From the *Table 2* and *figure 7* it is found that benzyl-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl) imidazolidin-4-one 5c is more active towards *K. pneumonia*.

Table 3. Antibacterial activity of 5-((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-phenyl imidazolidin-4-one 5f

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Concentration of the sample in mg</th>
<th>Ciprofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>10 mm</td>
<td>10 mm</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10mm</td>
<td>10mm</td>
</tr>
<tr>
<td>S. typhi</td>
<td>12mm</td>
<td>12mm</td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>10mm</td>
<td>12mm</td>
</tr>
</tbody>
</table>

2.4. Antibacterial susceptibility of 5-benzyl-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl) imidazolidin-4-one 5c:

From the *Table 2* and *figure 7* it is found that benzyl-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl) imidazolidin-4-one 5c is more active towards *K. pneumonia*.
Figure (8) Antibacterial activity of 5-((1H-indol-3-yl)methyl)-3-(2,4-dinitrophenyl)amino)-2-phenyl imidazolidin-4-one 5f

5-((1H-indol-3-yl)methyl)-3-(2,4-dinitrophenyl)amino)-2-phenyl imidazolidin-4-one 5f at 40mg/mL exhibited the highest inhibition against E.coli acted as a good inhibitor at 40mg/mL. When comparing these results with the standard drug, the tested compounds were equally or more active than the standard drug and hence the tested compounds might be used as an antibacterial drug in mere future. The compounds showing promising antibacterial activity were evaluated for minimum inhibitory concentration and minimum Inhibitory concentration for all the organism are marked as bold.

2.6. Anticancer studies

Most of the anti-tumor drugs currently used in chemotherapy are toxic to normal cells and cause toxicity for immune cells, so it is important to minimize doses to the least amount possible as well as try to minimize the side effects of these drugs. Cervical cancer one of the most frequently detected cancers in women around the globe and ranks third among all the cancers diagnosed in women. Approximately 0.5 million patients are diagnosed for this lethal type of cancer that is almost 9% of all the new cancer cases diagnosed annually. Although, the currently used treatment options such as chemotherapy, radical hysterectomy and radiotherapy have shown promising outcomes, approximately 0.3 millions deaths still occur due to cervical cancer annually. For the early stage cervical cancers mainly involves office-based ablative therapies. Cold-knife conization or electroconization is performed in most of the patients to exclude invasive disease. Furthermore, surgery followed by chemotherapy is recommended for patients with advanced stage cervical cancer. However the chemotherapeutic agents exhibit adverse effect that compromise the health of the patients and as such Therefore, to there is an urgent need to identify novel molecules that could prove efficient in the treatment of cervical cancer with minimal side effects (3).

The newly synthesized (5-((1H-indol-3-yl)methyl)-3-(2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one 5a were evaluated for their in vitro anticancer activity against MTT assay.

<table>
<thead>
<tr>
<th>Sample Concentration (µg/ml)</th>
<th>MTT assay 14a % viability</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>97.58%</td>
<td>2.42%</td>
</tr>
<tr>
<td>50</td>
<td>84.26%</td>
<td>15.74%</td>
</tr>
<tr>
<td>100</td>
<td>63.54%</td>
<td>36.46%</td>
</tr>
<tr>
<td>150</td>
<td>55.55%</td>
<td>44.45%</td>
</tr>
<tr>
<td>200</td>
<td>45.23%</td>
<td>54.77%</td>
</tr>
<tr>
<td>250</td>
<td>40.25%</td>
<td>59.75%</td>
</tr>
</tbody>
</table>

Table 4 Anticancer activity of (5-((1H-indol-3-yl)methyl)-3-(2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one 5a. LC 50 =76µg/mL

Our results from Table 4 showed that synthesized product exhibited a moderate to strong growth inhibition activity on the tested cell lines between 50 and 250 µg/mL concentrations in comparison to the reference anticancer drugs. The relationship between surviving fraction and drug concentration was plotted to obtain the survival curve of the two cell lines. The response parameter calculated was the LC50 value, which corresponds to the concentration required for 50% inhibition of cell viability.

Fig 9 Anticancer activity of (5-((1H-indol-3-yl)methyl)-3-(2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one 5a
III. MATERIALS AND METHOD

All the reagents and solvents were received from commercial supplier. Reactions were done in dried glass ware. Melting points were taken in open capillaries by CINTEK melting point apparatus and are uncorrected. The purity of the newly synthesised compounds was checked by thin layer chromatography on silica gel-G coated plates using ethyl acetate and petroleum ether as solvents. Infra red spectra were determined in in ATR-IR Affinity instrument and the absorption frequencies quoted in reciprocal centimeters. 1H NMR and 13C NMR spectra were recorded in AMX-400(400MHz) spectrometer recorded in CDCl$_3$ and DMSO-d$_6$ as solvent with TMS as internal standard. The chemical shift were expressed in parts per million (ppm). Tetra methyl silane was used as internal standard.

3.1. Synthesis of 1-benzylidene-2-(2,4-dinitrophenyl)hydrazine (Schiff base) 4b: 2,4-dinitro phenyl hydrazine: 1g (5mmol), Benzaldehyde: 0.5151g (5mmol), Stirring time: 1 hour, Yield: 83%, Melting point: 270°C. IR (cm$^{-1}$) fig 10 spectrum of the compound 4b showed absorption peak at 3263 (NH), 1508 (NO$_2$), 1600 (C=N), 1319 (NO$_2$).

3.2. Synthesis of 3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)-5-methylimidazolidin-4-one 5b: 2-((2,4-dinitrophenyl)hydrazono)methylphenol: 0.6g (1.98mmol), Alanine: 0.1768g (1.98mmol), Refluxing time: 20 hour, Yield: 83%, Melting point: 258°C. IR (cm$^{-1}$) fig (11) spectrum of the compound showed absorption peak at 2924 (NH), 1504 (NO$_2$), 1735 (C=O), 1604 (C=N), 1327 (NO$_2$), 3263 (OH).

3.3. Synthesis of 5-benzyl-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl) imidazolidin-4-one 5c: 2-((2,4-dinitrophenyl)hydrazono)methylphenol: 0.6g (1.98mmol), Phenylalanine: 0.330g (1.98mmol), Refluxing time: 28 hour, Yield: 84%, Melting point: 240°C. IR (cm$^{-1}$) fig (12) spectrum of the compound showed absorption peak at 3101 (NH), 1504 (NO$_2$), 1735 (C=O), 1612 (C=N), 1327 (NO$_2$), 3263 (OH).

3.4. Synthesis of 3-((2,4-dinitrophenyl)amino)-5-methyl-2-phenylimidazolidin-4-one 5d: 1-benzylidene-2-(2,4-dinitrophenyl)hydrazine: 1g (3.4965mmol), Alanine: 0.3112g (3.4965mmol), Refluxing time: 19 hour, Yield: 80%, Melting point: 250°C. IR (cm$^{-1}$) fig (13) spectrum of the compound showed absorption peak at 2950 (NH), 1500 (NO$_2$), 1750 (C=O), 1600 (C=N), 1227 (NO$_2$).
medium – 15.

ed plates were e above said 4
isms.

ill

illion (100µl)

258ºC.

IR
dinitrophenyl)hydrazine: 0.6g(2.0979mmol), Tryptophan: 0.4080g(2.0979mmol),

3.7.

- 3.6.

3.5. Synthesis of 5-benzyl-3-((2,4-dinitrophenyl)amino)-2-phenylimidazolidin-4-one 5e: 1-benzylidene-2-(2,4- dinitrophenyl)hydrazine: 0.6g(2.0979mmol), Tryptophan: 0.4080g(2.0979mmol), Refluxing time: 13 hour, Yield: 82%, Melting point: 258ºC. IR (cm⁻¹) fig (14) spectrum of the compound showed absorption peak at 2944(NH), 1340(C=O), 1745(C=O), 1510(C=N), 1327(NO₂).

3.5. Synthesis of 5-((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-phenylimidazolidin-4-one 5f: 1-benzylidene-2-(2,4-dinitrophenyl)hydrazine: 0.6g(2.0979mmol), Tryptophan: 0.4080g(2.0979mmol), Refluxing time: 13 hour, Yield: 82%, Melting point: 258ºC. IR (cm⁻¹) fig (15) spectrum of the compound showed absorption peak at 2944(NH), 1340(C=O), 1745(C=O), 1510(C=N), 1327(NO₂).

3.6. Synthesis of 5-((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-phenylimidazolidin-4-one 5a, 5-benzyl-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one 5d, 5-((1H-indol-3-yl)methyl)-3-((2,4- dinitrophenyl)amino)-2-phenylimidazolidin-4-one 5f were studied against Escherichia coli, Staphylococcus aureus, S. typhi and K. pneumonia by using Kirby Bauer Disk Diffusion Method. In this method the dried samples were made in to a solution with DMSO. In this method the liquid was made up to different concentration as considering the liquid as stock. Overnight bacterial suspension (100µl) adjusted to contain 1x106 CFU/mL of bacteria, spread by a sterile glass rod on Nutrient Agar (NA) medium. The inoculated plates were incubated at 27±20ºC for 24 h, and then the inhibition zones were measured in diameter (mm). Antibiotic discs containing 1µg of Ciprofloxacin CF1 was used as positive controls and DMSO used as negative control. The MIC was calculated using the above said 4 concentrations of the samples.

3.7. Pharmacological activities

Antimicrobial is a general term for natural or synthetic compounds which at certain concentrations inhibit the growth of or kill microorganisms completely. Due to the rapid development of microorganism’s resistance to antimicrobial agents, it is necessary to discover compounds both natural and synthetic as new antimicrobial agents to help in the battle against pathogenic microorganisms. Antibacterial activity of 5-((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one 5a, 5-benzyl-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl) imidazolidin-4-one 5d, 5-((1H-indol-3-yl)methyl)-3-((2,4- dinitrophenyl)amino)-2-phenylimidazolidin-4-one 5f were studied against Escherichia coli, Staphylococcus aureus, S. typhi and K. pneumonia by using Kirby Bauer Disk Diffusion Method. In this method the dried samples were made in to a solution with DMSO. In this method the liquid was made up to different concentration as considering the liquid as stock. Overnight bacterial suspension (100µl) adjusted to contain 1x106 CFU/mL of bacteria, spread by a sterile glass rod on Nutrient Agar (NA) medium. The inoculated plates were incubated at 27±20ºC for 24 h, and then the inhibition zones were measured in diameter (mm). Antibiotic discs containing 1µg of Ciprofloxacin CF1 was used as positive controls and DMSO used as negative control. The MIC was calculated using the above said 4 concentrations of the samples.

3.8. Anticancer Studies. MTT assay (HeLa)

For adherent cells, remove the medium and replace it with 100 µL of fresh culture medium. For non-adherent cells, centrifuge the microplate, pellet the cells, carefully remove as much medium as possible and replace it with 100 µL of fresh medium. Add 10 µL of the 12 mm MTT stock solution to each well. Include a negative control of 10 µL of the MTT stock solution added to 100 µL of medium alone. Incubate at 37°C for 4 hours. At high cell densities (>100,000 cells per well) the incubation time can be shortened to 2 hours. Add 100 µL of the SDS-HCl solution to each well and mix thoroughly using the pipette. Incubate the micro plate at 37°C for 4– hours in a

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 5 May 2020 | ISSN: 2320-28820
humidified chamber. Longer incubations will decrease the sensitivity of the assay. Mix each sample again using a pipette and read absorbance at 570 nm.

\[
\% \text{ Viability} = \frac{\text{Corrected OD of sample}}{\text{Control OD}} \times 100
\]

\[
\% \text{ Inhibition} = 100 - \% \text{ viability}
\]

IV. CONCLUSION

A series of novel imidazolidinone derivatives were prepared from 2,4-dinitro phenyl hydrazine and aldehyde. In the first step 2,4-dinitro phenyl hydrazine and aldehyde were converted to corresponding Schiff bases in the presence of THF. The resulting Schiff base was treated with \(\alpha\)-amino acids to obtain corresponding imidazolidinone derivatives. The newly synthesized compound screened for their antimicrobial activity. Further one of the synthesized compounds viz (5-(((1H-indol-3-yl)methyl)-3-((2,4-dinitrophenyl)amino)-2-(2-hydroxyphenyl)imidazolidin-4-one 5a was analysed for its anticancer behaviour. All the tested drugs showed high antimicrobial activities against some bacterial and fungal strains. Our results of anticancer studies showed that synthesized product exhibited a moderate to strong growth inhibition activity on the tested cell lines between 50 and 250 µg/mL concentrations in comparison to the reference anticancer drugs.

V. REFERENCES

5. Anastreozol. Chemical Entities of Biological interest, European Molecular Biology Laboratory. Retrieved. 08; 14: 2011