

Biodegradable Microorganisms As Agents For Water Pollution Control

Sushma Darshanala¹, Pavithra Manimadde²

Student¹, Associate Professor²

St.Francis College for women, Hyderabad, Telangana, India

¹Author

²Co-Author

ABSTRACT

Water pollution caused by industrial effluents, agricultural runoff, municipal wastewater, heavy metals, and synthetic chemicals poses a severe threat to global ecosystems and human health (EPA, 2020; Alloway, 2013). Traditional treatment technologies often face limitations such as high operational cost, chemical dependency, and incomplete contaminant removal (Atlas & Bartha, 1998). Biodegradable microorganisms—including bacteria, fungi, algae, and mixed microbial consortia—offer an effective and environmentally sustainable alternative due to their abilities in biosorption, bioaccumulation, biotransformation, and mineralization (Wang & Chen, 2009; Vidali, 2001).

This review synthesizes existing research on microbial mechanisms, engineered treatment systems, removal efficiencies, challenges, and emerging technological opportunities. Enhanced microbial systems such as constructed wetlands, UASB reactors, membrane bioreactors, and algal-bacterial consortia demonstrate high potential in pollutant removal. The findings indicate that microbial agents are vital components of future scalable, low-cost, and sustainable water treatment technologies (WHO, 2017; Singh & Ward, 2004).

KEYWORDS:

Micro-organisms, Water Pollution, Pollutants, Bio-remediation

INTRODUCTION

Water pollution remains a global environmental and public health challenge due to rapid industrialization, urban expansion, and excessive chemical usage (EPA, 2020). Pollutants present in contaminated water include organic matter, pesticides, dyes, hydrocarbons, pharmaceuticals, endocrine-disrupting chemicals, and heavy metals such as lead, chromium, and cadmium (Alloway, 2013). These contaminants severely impact aquatic ecosystems, agriculture, and human health.

Microorganisms—including bacteria, fungi, algae, and microbial consortia—are biologically equipped to degrade or transform pollutants through diverse metabolic pathways (Atlas & Bartha, 1998). Their inherent ability to utilize pollutants as carbon or energy sources underpins the concept of bioremediation, offering sustainable alternatives to chemical treatments (Vidali, 2001). This article reviews microbial mechanisms, treatment systems, benefits, limitations, and the future scope of biodegradable microorganisms in water pollution control.

LITERATURE REVIEW

Microbial Mechanisms for Pollutant Removal

Scientific literature identifies five major microbial mechanisms:

Biodegradation:

Enzymatic breakdown of organic pollutants into simpler compounds (Vidali, 2001). Microorganisms use a variety of oxidative and reductive enzymes to break down hydrocarbons, dyes, pesticides, and other organic contaminants. This is one of the most widely applied mechanisms in wastewater treatment due to its reliability and effectiveness under both aerobic and anaerobic conditions.

Bioaccumulation:

Active uptake and intracellular storage of heavy metals (Wang & Chen, 2009). Metals are transported into the microbial cell and bound to proteins or stored in vacuoles, reducing their toxicity. This mechanism is particularly useful for removing non-degradable metals like cadmium and chromium from contaminated water.

Biosorption:

Passive adsorption of pollutants onto microbial cell surfaces (Wang & Chen, 2009). Cell wall components such as carboxyl and amino groups bind metals and dyes efficiently. Since it works even with dead biomass, biosorption is a cost-effective option for treating industrial effluents with high metal concentrations.

Biotransformation:

Chemical conversion of toxic pollutants into less harmful substances (Singh & Ward, 2004). Microbes alter pollutant structure through reactions like reduction or dechlorination, often producing by-products that are easier to degrade. This mechanism is especially useful for detoxifying persistent compounds.

Bioprecipitation:

Formation of insoluble metal compounds via microbial metabolism (Alloway, 2013). Certain microbes convert dissolved metals into stable mineral forms such as sulfides or phosphates. This process is widely applied in treating acid mine drainage and metal-rich wastewater streams.

Reported Microbial Groups

Bacteria (Pseudomonas, Bacillus, Acinetobacter, Sphingomonas):

Degradation of hydrocarbons, dyes, and chlorinated organics (Atlas & Bartha, 1998). These bacteria possess versatile metabolic pathways and adapt well to different environmental conditions. They play a central role in activated sludge systems and biofilm reactors.

Fungi (white-rot fungi):

Produce ligninolytic enzymes that degrade dyes, phenols, pesticides, and pharmaceuticals (Singh & Ward, 2004). Their extracellular enzymes allow them to break down complex, recalcitrant molecules. Fungi are especially effective in treating textile dyes and other colored industrial wastes.

Algae:

Remove nitrogen, phosphorus, and heavy metals through assimilation and biosorption (Wang & Chen, 2009). They also release oxygen during photosynthesis, supporting bacterial degradation. Algal systems are becoming popular for tertiary treatment and nutrient recovery.

Mixed microbial consortia:

Exhibit synergistic interactions that enhance degradation efficiency (Vidali, 2001). Different species complement each other's metabolic activities, allowing complete breakdown of contaminants. Consortia also handle environmental fluctuations better than single strains

Engineered Systems in Literature

Studies highlight several engineered systems:

- Activated sludge systems (EPA, 2020)
- Sequencing batch reactors
- Membrane bioreactors
- Constructed wetlands (WHO, 2017)
- Anaerobic UASB reactors for industrial wastewater (Vidali, 2001)
- Algal-bacterial symbiotic systems
- Immobilized microbial biofilters

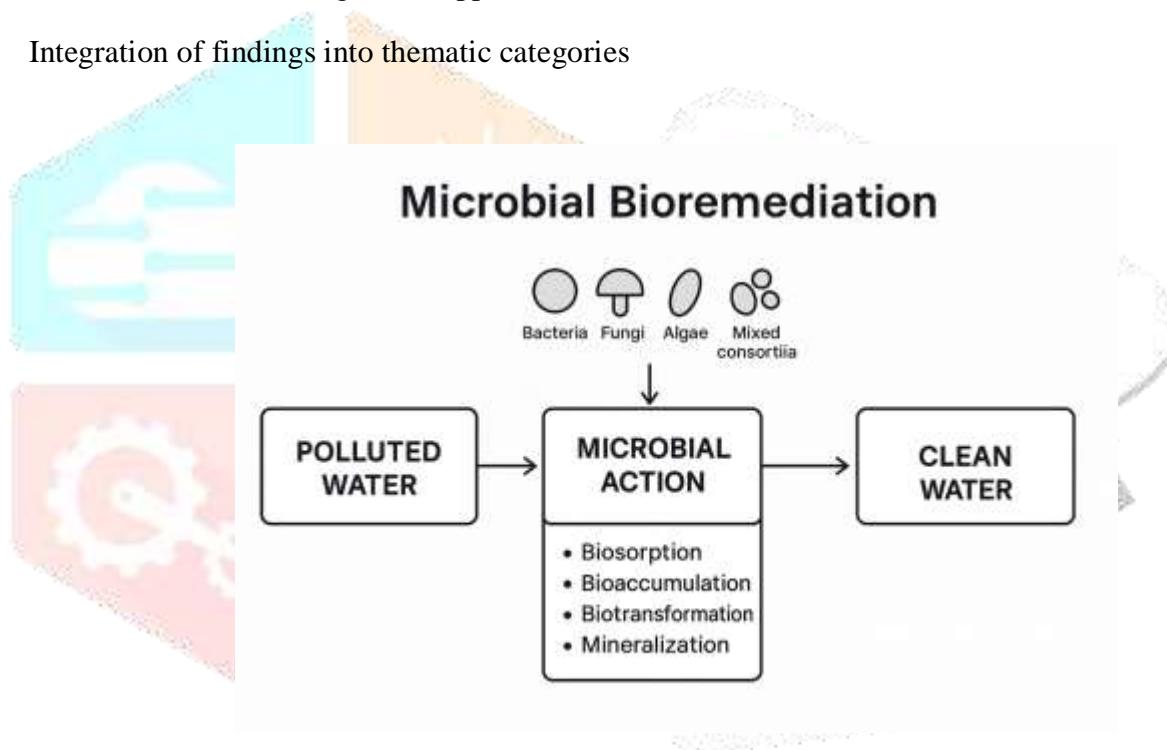
Biological systems demonstrate reduced chemical requirements, high adaptability, and low energy consumption compared to traditional physicochemical methods (Atlas & Bartha, 1998).

METHODOLOGY

This review article follows a qualitative research methodology based on secondary data.

Data Sources

- Peer-reviewed journals, books, theses
- Governmental and environmental agency reports
- Databases: ScienceDirect, Scopus, PubMed, Web of Science, IEEE Xplore


Selection Criteria

Included studies must:

1. Investigate microorganisms used in water pollution control
2. Discuss microbial mechanisms, engineered systems, or case studies
3. Be frequently cited or high-impact publications (e.g., Vidali, 2001; Atlas & Bartha, 1998)

Analysis Procedure

- Comparative synthesis of microbial processes
- Evaluation of pollutant removal efficiencies
- Identification of challenges and opportunities
- Integration of findings into thematic categories

RESULTS

Pollutant Removal Efficiencies

Across studies:

- **Organic pollutants:** 70–95% degradation by bacteria and fungi (Atlas & Bartha, 1998).
- **Nutrients:** Nitrogen removal up to 90%; phosphorus removal 60–80% via algal-bacterial systems (Wang & Chen, 2009).
- **Heavy metals:** 80–95% biosorption by algae, fungi, and bacteria (Alloway, 2013).
- **Pharmaceuticals:** 30–70% removal using fungal enzymes (Singh & Ward, 2004).

Performance of Systems

- **Constructed wetlands:** Effective long-term BOD, COD, nutrient, and solids removal (WHO, 2017).
- **Activated sludge:** Efficient for municipal wastewater, but requires acclimation for industrial wastes (EPA, 2020).
- **Anaerobic UASB reactors:** Support high organic load removal and generate biogas (Vidali, 2001).
- **Bioaugmentation systems:** Enhance microbial degradation where native populations fall short (Atlas & Bartha, 1998).

Key Findings

- Mixed consortia consistently outperform single microbial strains (Vidali, 2001).
- Temperature, pH, salinity, and oxygen availability significantly affect efficiency (Atlas & Bartha, 1998).
- Some microbial pathways generate toxic intermediates requiring secondary treatment (Singh & Ward, 2004).

DISCUSSION

Advantages

- Sustainable and environmentally friendly (Vidali, 2001)
- Cost-effective for large-scale applications
- High removal efficiency for organic pollutants, nutrients, and heavy metals
- Supports resource recovery, such as biogas production (EPA, 2020)

Challenges

- Microbial acclimation needed for toxic pollutants
- Environmental fluctuations reduce treatment performance (Atlas & Bartha, 1998)
- Potential formation of toxic intermediate compounds (Singh & Ward, 2004)
- Field results may differ from controlled laboratory studies
- Biosafety concerns regarding genetically engineered microorganisms

Future Technological Opportunities

- Synthetic biology for designing high-efficiency degraders
- Hybrid systems: advanced oxidation + biological treatment
- Biosensors for real-time microbial monitoring
- Immobilized microbial systems improving stability and reusability
- AI-based optimization models for treatment plant operation

Conclusion

Biodegradable microorganisms offer a powerful, sustainable solution to water pollution. Their ability to degrade, transform, and immobilize pollutants—ranging from organic chemicals to heavy metals—makes them indispensable in modern wastewater treatment (Vidali, 2001; Atlas & Bartha, 1998). When incorporated into engineered systems such as wetlands, bioreactors, and microbial consortia-based units, microbial treatment becomes scalable, cost-effective, and environmentally safe.

Future Scope

- Development of enhanced microbial strains using genetic engineering
- Field-scale validation with advanced molecular monitoring tools
- Integration with renewable energy systems (biogas, bioelectricity)
- Expansion of algal-bacterial circular economy models
- Stronger regulatory frameworks for safe microbial deployment

Microbial remediation will play a key role in global water sustainability planning through the next century.

REFERENCES

1. Alloway, B. J. (2013). *Heavy Metals in the Environment*.
2. Atlas, R. M., & Bartha, R. (1998). *Microbial Ecology and Biodegradation*.
3. Gadd, G. M. (2004). Microbial influence on metal mobility and toxicity. *Environmental Microbiology*, 6(6), 609–620.
4. EPA. (2020). *Water Quality Guidelines*.
5. Singh, A., & Ward, O. P. (2004). *Biodegradation and Bioremediation Techniques*.
6. Vidali, M. (2001). Bioremediation: An overview. *Pure and Applied Chemistry*.
7. Wang, J., & Chen, C. (2009). Biosorption of heavy metals: A review. *Journal of Biotechnology*.
8. WHO. (2017). *Global Water Quality Guidelines*.

9. Volesky, B. (2003). Sorption and biosorption of heavy metals. *Biosorption Journal*, 1, 1–32.
10. Gupta, V. K., & Rastogi, A. (2008). Biosorption of heavy metals using algae biomass. *Journal of Hazardous Materials*, 152(1), 407–414.
11. Pointing, S. B. (2001). Feasibility of fungal bioremediation of toxic compounds. *Mycological Research*, 105(6), 715–726.
12. Rawat, I., Kumar, R., Mutanda, T., & Bux, F. (2011). Microalgae for wastewater treatment: A review. *Water Research*, 45(9), 3351–3368.
13. Vymazal, J. (2010). Constructed wetlands for wastewater treatment. *Ecological Engineering*, 36(1), 117–126.

APPENDICES

Appendix A: Common Microorganisms Used in Water Treatment

Microorganism	Target Pollutant	Notes
<i>Pseudomonas putida</i>	Hydrocarbons	Aerobic degradation
<i>Bacillus subtilis</i>	Organics & metals	Produces extracellular enzymes
White-rot fungi	Dyes, phenols	Strong ligninolytic activity
<i>Chlorella</i> spp.	Nitrogen, phosphorus	Effective biosorption capacity

Appendix B: Summary of Removal Efficiencies

Pollutant Type	Microorganism	Efficiency	Mechanism
Hydrocarbons	<i>Pseudomonas</i> spp.	80–95%	Aerobic biodegradation
Dyes	Fungi	70–90%	Enzymatic oxidation
Nitrogen	Algae + bacteria	Up to 90%	Assimilation
Heavy metals	Algae/fungi	80–95%	Biosorption