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Abstract: India is an agricultural country. 70% of Indian economy depends on agriculture but leaf infection 

phenomena cause the loss of major crops which results in economic loss. Modern technologies have given human 

society the ability to produce enough food to meet the demand of more than 7 billion people. However, food 

security remains threatened by a number of factors including climate change, the decline in pollinators, plant 

diseases, and others. Plant diseases have turned into a dilemma as it can cause significant reduction in both quality 

and quantity of agricultural products. Automatic detection of plant diseases is an essential research topic as it may 

prove benefits in monitoring large field of crops, and thus automatically detect the symptoms of diseases as soon as 

they appear on plant leaves. The proposed system is a software solution for automatic detection and classification of 

tomato plant leaf diseases. To achieve this, CNN based automatic detection of disease is carried out using Village 

plant dataset and the accuracy if the model is found to be 98.68%. 

 

Index Terms: CNN, Village plant dataset 

 

I.INTRODUCTION 

In plants, disease is defined as any impairment of physiological function of plants, producing characteristic 

symptoms. Plant disease is caused by pathogens, which is defined as any agent causing disease. There are two types 

of agents that can destroy plants: living and non-living agents. Living agents include bacteria, fungi, insects and 

viruses. Non-living agents include extreme temperatures, excess moisture, insufficient nutrients, poor light, poor soil 

PH level and air pollutants. 

Tomato is a food-rich plant, a consumable vegetable widely cultivated. The tomato, a significant contributor to 

reducing poverty, is seen as an income source for farm households [3]. Tomatoes are one of the most nutrient-dense 

crops on the planet, and their cultivation and production have a significant impact on the agricultural economy. 

Tomato demand is also increasing as a result of its widespread use. According to statistics, small farmers produce 

more than 80% of agricultural output [2]; due to diseases and pests, about 50% of their crops are lost. The diseases 

and parasitic insects are the key factors impacting tomato growth, making it necessary to research the field crop 

disease diagnosis. The manual identification of pests and pathogens is inefficient and expensive. Therefore, it is 

necessary to provide automated AI image-based solutions to farmers. 

Due to increase in diseases among plants, cultivation of crops in order to yield quality products is extremely 

challenging and highly technical. This can be improved with the help of technical support. One such approach is the 

detection of plant diseases using deep learning. This method can efficiently detect diseases in plants with the help of 

a well-trained neural network. Usually, pests and diseases are found on the leaves or stems of the plant. Therefore, it 

is necessary for this technology to be able to identify leaves, stems, pests and diseases. It does this efficiently by 

using a Convolution Neural Network (CNN). 
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Figure 1. Basic CNN Architecture

In the recent years, deep learning in NNs has been getting much prominences. Unsupervised classification is the most active 

research area in hyperspectral data analysis. CNN is a leading unsupervised CNN and conventional NNs is that CNN is inspired from 

retinal fields in the vision system. In a simple word, CNN is an integration of biological vision and neural system. CNN is a complex 

architecture deep learning architecture that learns ‘filters performing convolutions’ in the image domain. A measure difference 

between which takes considerably more time to train the neurons. Nonetheless, it has remarkable classification accuracy, and rate of 

object recognition is very high. 

In neural networks, Convolution neural network (ConvNets or CNNs) is one of the main categories to do images recognition, 

images classifications. Objects detections, recognition faces etc., are some of the areas where CNNs are widely used. CNNs, like 

neural networks, are made up of neurons with learnable weights and biases. Each neuron receives several inputs, takes a weighted sum 

over them, pass it through an activation function and responds with an output. 

For image recognition problems, convolution neural networks, or CNNs, is a common choice. A common choice for the structure 

of a CNN consists of alternating layers of convolution and max pooling layers, which are then combined with a fully connected dense 

layer. The convolution layers work as a feature extractor, or a filter, and extract some sort of characteristic features from the input 

image. Usually, one convolution layer has several filters which are all applied in the same step to extract different features. The size of 

the filter, or the kernel, depends on what the size of a specific feature is expected to be extracted. Convolution Neural Network uses 

different layers to extract features from the input image. Those layers are, 

1. Convolution layer 

2. ReLU Layer (Rectified Linear Unit) 

3. Pooling Layer (Max Pooling) 

4. Flattening 

5. Fully Connected Layer 

1. Convolution layer – It is the first layer to extract features from the input image and it learns the relationship between 

features using kernel or filters with input images. 

2. ReLU Layer – ReLU stands for the Rectified Linear Unit for a non-linear operation. The output is ƒ(x) = max (0, x). This is 

used because to introduce the non-linearity to CNN. 

3. Pooling Layer – It is used to reduce the number of parameters by down sampling and retain only the valuable information to 

process further. There are types of Pooling: Max Pooling Average and Sum Pooling 

4. Flattening – This process flattens the entire matrix into a vector like a vertical one. So, that it will be passed to the input 

layer. 

5. Fully Connected Layer – This layer passes the flatten vector into input Layer. These features are then combined to create a 

model. Finally, an activation function such as SoftMax or sigmoid is used to classify the outputs. 

 

II.METHODS 

In this section let see the models and datasets utilized to carry out this work. Village plant data set contains ten classes of which 9 

classes are diseased and 1 class for healthy tomato leaf dataset as shown in Figure 2. In this work the entire dataset is divided into 

80:20 for training and test dataset.Before training the model, image pre-processing was used to change or boost the raw images that 

needed to be processed by the CNN classifier. Building a successful model requires analyzing both the design of the network and the 

format of input data. We pre-processed our dataset so that the proposed model could take the appropriate features out of the image.  

The first step was to normalize the size of the picture and resize it to 252 × 252 pixels. The images were then transformed into 

grey. The stage of pre-processing means that a considerable amount of training data is required for the explicit learning of the training 

data features. The next step was to group tomato leaf pictures by type and then marks all images with the correct acronym for the 

disease. In this case, the dataset showed ten classes in test collection and training. 
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Figure 2 Sample leaf image with disease and pathogen (a) Bacterial_Spot (Xathomonas vesicatoria) (b) 

Early_Blight (Fungus Alternaria solanji) (c) Late_Blight (Phytophthora infestans) (d) Leaf_Mold (Clasospporium 

fulvum) (e)Septoria_leaf (Fungus Septoria lycopersci) (f) Spider_Miters (Floridana) (g) Target_Sport (Fungus 

Corynespora) (h) Tomato_Mosaic_Virus (Tobarnovirus) (i) Tomato_Yellow_Leaf_Curl_Virus (genus 

Begomovirus) (j) Healthy_Leaf 

 

 

III. CONVOLUTIONAL LAYERS

3.1 Layer1 

In this layer, a 2D convolutional layer is added to process the two-dimensional input images. The first argument passed to the 

Conv2D() layer function is the number of output channels. In this case 32output channels are used. The next input is the kernel size, 

which in this case is chosen a 5×5 moving window, followed by the strides in the x and y directions (1, 1). Next, the activation 

function, which is a rectified linear unit (ReLU) and finally the model with the size of the input to the layer. Declaring the input shape 

is only required for the first layer. The output of Layer 1 produces an output of size 252x252x32. 

Next, a 2D max pooling layer is added. In max pooling layer no hyperparameters that is to be learnt. Only it shrinks the output .In 

this case, the size of the pooling in the x and y directions is 3 x 3 and the strides are not declared as the default value of strides is 1. 

This pooling layer produces a max-pooled output with an image size of 84 x 84. 

 

3.2 Layer2 

In next layer another convolutional and max pooling layer is added, with 64 output channels. The default strides argument in the 

Conv2D() function is (1, 1) in Keras, so it need not to be declared again. Usually, the default strides argument in Keras is to make it 

equal or the pool size. The next input is the kernel size, which in this case we have chosen a 3 x 3 moving window, followed by the 

strides in the x and y directions (1, 1). Next, the activation function, which is again a rectified linear unit (ReLU). 

The input tensor for this layer is (84, 84, 32). The 84 x 84 is the size of the image, and the 32 is the number of output channels 

from the previous layer. This allows rapid assembling of network architectures irrespective of the sizes of the tensors flowing around 

our networks. 

Next, a 2D max pooling layer is added. In this case, the size of the pooling in the x and y directions is 2 x 2. This pooling layer 

produces a max-pooled output with an image size of 41x41. 

 

3.3 Layer 3 

In this layer another set of convolutional and max pooling layer is added with 128 output channels with a kernel size of 3 x 3 

followed by an activation function, which is ReLU. The input tensor for this layer is (41, 41, 64) in which the 41 x 41 is the size of the 

image, and the 64 is the number of output channels from the previous layer. Next, a 2D max pooling layer is added with pooling size 

of 2 x 2 which produces a max-pooled output with an image size of 19x19. 

 

3.4 Fully Conncected Layer 

 

After defining the convolutional layers, the fully connected layers are added. To connect the output of the pooling layer to the fully 

connected layer, the previous layer output needs to be flattened into a single (N x 1) tensor. 

Here, the previous layer is the pooling layer that produces an output of 128 channels of 19 x 19 pooling matrices. All of this output 

data is flattened into a vector with one column and 19 x 19 x 128 = 46208 rows. This equates to 46208 nodes per training sample. 

 

3.5 Dense Layer 

After flattening the output, a dense layer is created with 512 nodes with ReLU as an activation function. Then the connection is 

made between the flattened output and 512 nodes which produces a fully connected layer. The weights of the fully connected layer are 
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determined by multiplying them with the flattened convolutional output, then adding a bias. The total parameters in this layer is the 

value which is obtained when multiplying the rows of the flattened data with the total number of dense nodes. In this case, a total of 

23659008 learning parameters are created. 

 

3.6 Output Layer 

This layer is also a dense layer that connects to the output, and therefore a soft-max activation is used to produce the predicted 

output values. 

This dense is declared with the value that is equal to the number of diseased classes in the dataset. Here, totally 10 classes are in 

the dataset. So, a dense layer with 10 nodes is created. This layer with 10 nodes is connected to the previous dense layer with 512 

nodes that approximately produces about 5120 training parameters. The total learning hyperparameters are given in the table 1 

 

 

Table 1 Hyperparameters involved in training 

 

Layer (Type) Output shape Parameter

s 

conv2d_1 

(Conv2D) 

(None,252, 252, 32) 2432 

 

max_pooling2d

_1 

(None, 84, 84, 32) 0 

conv2d_2------

(Conv2D) 

(None, 82, 82, 32) 18496 

max_pooling2d

_2 

(None, 41, 41, 64) 0 

conv2d_3 -------

----(Conv2D) 

(None, 39, 39, 128) 73856 

max_pooling2d

_3 

(None, 19, 19, 128) 0 

flatten_1 --------

----(Flatten) 

(None, 46208) 0 

dense_1 ---------

----(Dense) 

(None, 512) 23659008 

dropout_1  (None, 512) 0 

dense_1 ---------

----(Dense) 

(None, 10) 5130 

Total parameters 23758922 

 

3.7 Training the Network 

After building the CNN architecture, it needs to be trained with the dataset in a particular learning method that suits the problem. 

Since the dataset is already classified under different classes, supervised learning method is followed while training the CNN 

architecture. To improve the accuracy and efficiency of the network in predicting the leaf disease the weights of the network needs to 

be updated after every epoch in accordance with the output. So, the back propagation method is followed to do the same. Also, the 

other essential parameters for the network training is chosen. 

 Loss – The loss function represents the inaccuracy in predictions made by the neural network 

 Optimizer – It update the weight parameters to minimize the loss function. 

 Metrics – Accuracy is a common metric for binary classifiers. It takes into account both true positives and true negatives 

with equal weight. 

 Epoch – It is the number of times that the CNN should be trained with the training dataset. 

 Learning rate – It decides the rate of learning. 

In order to train the CNN, the above hyperparameters must be defined. The CNN training includes the following steps. 

1. Chose a loss function and an optimizer 

2. Create correct prediction and accuracy evaluation operations 

3. Initialize the operations 

4. Determine the number of batches runs within a training epoch 

5. For each epoch: 

 Extract the batch data 

 Run the optimizer and cross-entropy operations 

 Add to the average cost 
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6. Calculate the current test accuracy 

7. Calculate the final test accuracy. 

In this case, the categorical cross entropy is used as the loss function. This is chosen because the detection of leaf disease comes 

under categorical class classification type. 

For optimizer, Adam optimizer is used with a learning rate of 0.001. 

Once the parameters are chosen, the model is trained using model.fit() function During the training process, for each step, one data 

object is run through the model and the weights are adjusted. When all training data has passed through the network once, one epoch 

is completed. 

 

IV. TESTING AND EVALUATION 

Evaluation is the process of measuring the accuracy of the trained network. The 80% of the dataset is used for the training and the 

remaining 20% is used for evaluation and for validating the trained network. The testing data is also preprocessed as same as training 

data. After the completion of the training and testing processes, the proposed deep CNN model was selected for the validation 

process. In addition, the trained model was tested with new inputs and the results are verified. The achieved validation loss and 

validation accuracy of the model is about 13.56% and 98.68% respectively. 

 

V.  RESULTS &CONCLUSIONS 

The proposed Deep CNN model can effectively classify 10 distinct classes of healthy and diseased tomato plant using leaf images. 

The Deep CNN model was trained and tested with using an augmented dataset with 18,835 images and 20 training epochs. The 

proposed model achieves an average validation accuracy of 98.68% in the classification of the testing set plant leaf images. The 

number of training epochs, batch size and dropout had greater influences on the respective results. The most important goal of the 

future work will be to extend the plant disease identification objective from plant leaves to other parts of the plants, such as flowers, 

fruits and stems. 
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